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Mass-imbalanced Fermi gases with spin-orbit coupling
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We use the mean-field theory to analyze the ground-state phase diagrams of spin-orbit-coupled mass-
imbalanced Fermi gases throughout the BCS-BEC evolution, including both the population-balanced and
-imbalanced systems. Our calculations show that the competition between the mass and population imbalance
and the Rashba-type spin-orbit coupling gives rise to very rich phase diagrams, involving normal, superfluid,
and phase-separated regions. In addition, we find quantum phase transitions between the topologically trivial
gapped superfluid and the nontrivial gapless superfluid phases, opening the way for the experimental observation
of exotic phenomena with cold atom systems.
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Introduction. Following great successes with single-species
(mass-balanced) two-component Fermi gases [1,2], there has
been increasing experimental interest in realizing and studying
two-species (mass-imbalanced) Fermi-Fermi mixtures over
the past few years [3,4]. So far the most prominent candidate
seems to be the 6Li-40K mixtures, for which experimental
methods are currently being developed in several groups. For
instance, recently 6Li-40K mixtures have been trapped and in-
terspecies Feshbach resonances have been identified, opening
a frontier in ultracold atom research to study exotic many-body
phenomena. We also note that several other fermionic atoms,
including 171Yb [5] and 87Sr [6], are also currently being
investigated, allowing for future mixture experiments with
various other species. Motivated partly by these experiments,
and also due to the natural way of creating superfluidity with
mismatched Fermi surfaces, there has also been increasing
theoretical interest in understanding and studying two-species
mixtures [7,8].

In addition to these developments, following the recent
realization of synthetic gauge fields with neutral bosonic atoms
[9] and the more recent creation of spin-orbit-coupled (SOC)
Bose-Einstein condensates (BECs) [10], it is now possible
to create and study spin-orbit-coupled Fermi gases by making
use of similar experimental methods [11]. Since this technique
allows for the realization of topologically nontrivial states in
atomic systems, with possibly broad interest for the physics
community [12–14], there has been increasing theoretical
interest in studying the effects of SOC on single-species
two-component Fermi gases. For instance, it has been found for
the population-balanced Fermi gases that the SOC increases
the single-particle density of states, which in return favors the
Cooper pairing so significantly that by increasing the SOC
while the scattering length is held fixed eventually induces
a BCS-BEC crossover even for a weakly interacting system
when as → 0− [15–17]. The increased density of states also
has important effects on the population-imbalanced Fermi
gases [18,19], for which we have recently found that the
SOC and population imbalance are counteracting, and that
this competition tends to stabilize the uniform superfluid phase
against the phase separation. In addition, topological quantum
phase transitions associated with the appearance of momentum
space regions with zero quasiparticle energies have been found,

the signatures of which could be observed in the momentum
distribution [18,19].

In this Rapid Communication, we extend our recent work
[18] to the case of mass- and population-imbalanced Fermi
gases, and study the effects of spin-orbit coupling on the
ground-state phase diagrams across a Feshbach resonance,
i.e., throughout the BCS-BEC evolution. Since it is not
possible to have a spin-orbit field that converts different
species of atoms into each other, it may not be possi-
ble to create spin-orbit-coupled mass-imbalanced systems
with two-species mixtures. However, mass-imbalanced sys-
tems can be engineered with single-species two-component
Fermi gases loaded into spin-dependent optical lattices in
such a way that the components have different effective
masses.

Some of our main results are shown in Fig. 1, and they are
as follows. The competition between the mass and population
imbalance and the SOC gives rise to very rich phase diagrams,
involving normal, superfluid, and phase-separated regions, and
quantum phase transitions between the topologically trivial
gapped superfluid and the nontrivial gapless superfluid phases.
In addition, in sharp contrast to the no-SOC case where only
the gapless superfluid phase can support population imbalance,
both the gapless and gapped superfluid phases can support
population imbalance in the presence of a SOC for all mass
ratios including the mass-balanced Fermi gases. Similarly,
again in sharp contrast to the no-SOC case where only
the gapped superfluid phase can support population balance,
both the gapped and gapless superfluid phases can support
population balance in the presence of a SOC when the mass
difference becomes large enough.

Mean-field theory. We obtain these results within the self-
consistent mean-field approximation. In the absence of a SOC
and at low temperatures, it is well established that the mean-
field theory is sufficient to describe the physics of Fermi gases
both in the BCS and the BEC limits, and that this theory also
captures qualitatively the correct physics in the entire BCS-
BEC evolution [1,20]. Hoping that the mean-field formalism
remains sufficient in the presence of a SOC, which is expected
since the system is weakly interacting both in the BCS and
molecular BEC limits, here we analyze the ground-state phase
diagrams of the system as a function of SOC, scattering and
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FIG. 1. (Color online) The ground-state phase diagrams are
shown at unitarity, i.e., the scattering parameter is set to 1/(kF as) = 0,
as a function of population imbalance P = (N↑ − N↓)/N and mass
ratio m↑/m↓. Here the SOC parameter αm+/kF is set to 0.05 in
(a), 0.15 in (b), 0.3 in (c), and 0.45 in (d), where m+ is twice the
reduced mass of ↑ and ↓ fermions. We show normal (N), phase
separation (PS), topologically trivial gapped superfluid (SF), and the
topologically distinct gapless superfluid (GSF) phases.

population imbalance parameters, as well as the mass ratio of
the fermions.

For this purpose, we use the mean-field Hamiltonian (in
units of h̄ = 1 = kB)

H = 1

2

∑
k

ψ
†
k

⎛
⎜⎜⎜⎝

ξk,↑ Sk 0 �

S∗
k ξk,↓ −� 0

0 −�∗ −ξk,↑ S∗
k

�∗ 0 Sk −ξk,↓

⎞
⎟⎟⎟⎠ ψk + C, (1)

where ψ
†
k = [a†

k,↑,a
†
k,↓,a−k,↑,a−k,↓] denotes the fermionic op-

erators collectively, and a
†
k,σ (ak,σ ) creates (annihilates) a spin-

σ fermion with momentum k. Here, C = (1/2)
∑

k,σ ξk,σ +
|�|2/g is a constant, and ξk,σ = εk,σ − μσ with εk,σ =
k2/(2mσ ) the kinetic energy, μσ the chemical potential,

and k =
√
k2
x + k2

y + k2
z . In addition, Sk = α(ky − ikx) with

strength α � 0 is the Rashba-type SOC [21], and � =
g〈ak,↑a−k,↓〉 is the mean-field order parameter, where 〈· · ·〉
is a thermal average and g � 0 is the strength of the attractive
particle-particle interaction which is assumed to be local.

The corresponding mean-field thermodynamic potential
can be written as

� = T
∑
k,s

ln

[
1 + tanh

(Ek,s

2T

)
2

]
− 1

2

∑
k,s

Ek,s + C, (2)

where T is the temperature, s = ±, and E2
k,s = ξ 2

k,+ + ξ 2
k,− +

|�|2 + |Sk|2 + 2sAk gives the quasiparticle excitation spec-

trum [13,14]. Here, Ak =
√
ξ 2

k,−(ξ 2
k,+ + |�|2) + |Sk|2ξ 2

k,+ and

ξk,s = εk,s − μs , where εk,s = (εk,↑ + sεk,↓)/2 = k2/(2ms),
ms = 2m↑m↓/(m↓ + sm↑), and μs = (μ↑ + sμ↓)/2. Follow-
ing the usual procedure, i.e., ∂�/∂|�| = 0 for the order

parameter and N↑ + sN↓ = −∂�/∂μs for the number equa-
tions, we obtain the self-consistency equations [18]
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(
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Here, we eliminated the theoretical parameter g in favor of
the experimentally relevant s-wave scattering length as via the
relation 1/g = −m+V/(4πas) + ∑

k 1/(2εk,+), where m+ is
twice the reduced mass of ↑ and ↓ fermions and V is the vol-
ume. The derivatives of the quasiparticle energies are given by
∂Ek,s/∂|�|2 = (1 + sξ 2

k,−/Ak)/(2Ek,s) for the order param-
eter, ∂Ek,s/∂μ+ = −[1 + s(ξ 2

k,− + |Sk|2)/Ak]ξk,+/Ek,s for
the average chemical potential, and ∂Ek,s/∂μ− = −[1 +
s(ξ 2

k,+ + |�|2)/Ak]ξk,−/Ek,s for the half of the chemical
potential difference.

We checked the stability of the mean-field solutions for
the uniform superfluid phase using the curvature criterion [7],
which says that the curvature of � with respect to |�|, i.e.,

∂2�
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2
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+ 4
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2T

)
2Ek,s

}
, (5)

needs to be positive. When the curvature ∂2�/∂|�|2 is
negative, the uniform mean-field solution does not correspond
to a minimum of �, and a nonuniform superfluid phase,
e.g. a phase separation, is favored. It is known that the
curvature criterion correctly discards the unstable solutions,
but the metastable solutions may still survive. This may
cause only minor quantitative changes in the first-order phase
transition boundaries as shown for the mass-balanced Fermi
gases [19]. Having set up the mean-field formalism, we are
now ready to discuss the competition between normal fluidity,
uniform superfluidity, and phase separation across a Feshbach
resonance.

Ground-state phase diagrams. There are typically three
phases in our phase diagrams. While the normal (N) phase
is characterized by � = 0, the uniform superfluid and nonuni-
form superfluid, e.g., phase separation (PS), are characterized
by ∂2�/∂|�|2 > 0 and ∂2�/∂|�|2 < 0, respectively, when
� �= 0. Furthermore, in addition to the topologically trivial
gapped superfluid (SF) phase, the gapless superfluid (GSF)
phase can also be distinguished by the momentum-space
topology of its excitations. Depending on the number of
zeros of Ek,s (zero energy points in k space), there are
two topologically distinct GSF phases: GSF(I), where Ek,s

has two, and GSF(II), where Ek,s has four zeros. For the
Rashba-type SOC, the zeros occur when k⊥ = 0 and at

real kz momenta, k2
z,s = B+ + s

√
B2

− − 4m↑m↓|�|2, provided

that |�|2 < |B−|2/(4m↑m↓) for B+ � 0, and |�|2 < −μ↑μ↓
for B+ < 0. Here, Bs = m↑μ↑ + sm↓μ↓. The topologically
trivial SF phase corresponds to the case where both Ek,+
and Ek,− have no zeros and are always gapped. From this
analysis, it follows that the conditions |�|2 = |B−|2/(4m↑m↓)
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FIG. 2. (Color online) The ground-state phase diagrams are
shown as a function of m↑/m↓ and α at 1/(kF as) = 0, where P

is set to 0.25 in (a), 0.5 in (b), −0.25 in (c), and −0.5 in (d). The
labels are described both in Fig. 1 and in the text.

and |�|2 = −μ↑μ↓ determine the phase boundaries between
the SF, GSF(I), and GSF(II) regions, and that these three phases
meet at a tricritical point determined by B+ = 0 [18].

In our numerical calculations, we use an effective Fermi
momentum kF and the corresponding Fermi energy εF =
k2
F /(2m+) as our length and energy scales, where kF is

determined by fixing the total number of fermions N =
N↑ + N↓ = k3

F V/(3π2). In addition, we choose ↑ (↓) to label
lighter (heavier) fermions such that lighter (heavier) fermions
are in excess when the population imbalance parameter
P = (N↑ − N↓)/N is positive (negative). Therefore, since
we choose −1 � P � 1, it is possible to span all possible
mass-imbalanced Fermi gases by considering the mass ratios
0 � m↑/m↓ � 1.

(I) General phase diagrams. In Figs. 1 and 2, the ground-
state phase diagrams are shown as a function of P and m↑/m↓
for fixed α values, and as a function of α and m↑/m↓ for fixed
P values, respectively, at unitarity, i.e., 1/(kF as) = 0. The
dashed (blue) and dotted (green) lines correspond to |�|2 =
−μ↑μ↓ and |�|2 = |B−|2/(4m↑m↓), respectively. Since our
classification of distinct topological phases applies only to the
uniform superfluid region, the dashed and dotted lines shown
within the PS regions are solely for illustration purposes.

We find that the phase diagrams are symmetric around
P = 0 for mass-balanced systems, and that this symmetry is
gradually broken as the mass difference increases. Due to this
asymmetry, while the N, SF, and GSF(II) phases occupy much
larger regions when heavier fermions are in excess, the PS and
GSF(I) phases occupy larger regions when lighter fermions are
in excess. It is clearly shown in these figures that increasing α

gradually stabilizes the SF and GSF phases against the N and
PS for all mass ratios, and mostly the SF and GSF(I) phases
remain in the phase diagrams for very large α. This is mainly a
consequence of increased single-particle density of states due
to the SOC as mentioned in the introduction.

In sharp contrast to the α = 0 case where only the gapless
GSF phase can support population imbalance, one of the
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FIG. 3. (Color online) The ground-state phase diagrams of a
Fermi gas with m↑ = 0.15m↓ are shown as a function of P and
1/(kF as), where αm+/kF is set to 0.05 in (a), 0.15 in (b), 0.3 in (c),
and 0.45 in (d). The labels are described both in Fig. 1 and in the text.

intriguing effects of the SOC is that both the gapless GSF
and gapped SF phases can support population imbalance
when α �= 0. As shown in Figs. 1 and 2, this happens for
all mass ratios, including the mass-balanced systems [18,19],
but the gapped SF phase with population imbalance occupies
a much larger region when the heavier fermions are in excess.
Similarly, again in sharp contrast to the α = 0 case where only
the gapped SF phase can support population balance, another
intriguing effect of the SOC is that both the gapped SF and
gapless GSF phases can support population balance for large
enough mass differences when α �= 0. At unitarity, this occurs
for all α values when m↑ � 0.5m↓, with the largest effect at
α ≈ 0.55kF /m+.

(II) Fermi gas with m↑ = 0.15m↓. Having discussed the
general structure of the phase diagrams as a function of
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FIG. 4. (Color online) The ground-state phase diagrams of a
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(d). The labels are described both in Fig. 1 and in the text.
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mass ratio, here we fix m↑ = 0.15m↓ and present a thorough
discussion of the resultant phase diagrams in the entire BCS-
BEC evolution. This particular mass ratio corresponds to that
of two-species 6Li-40K mixtures which are currently being
developed in several groups, making them the most prominent
candidate for realizing a mass-imbalanced Fermi gas [3].

Our results are shown in Figs. 3 and 4, where the
ground-state phase diagrams are shown as a function of P and
1/(kF as) for fixed α values, and as a function of P and α for
fixed 1/(kF as) values, respectively. In addition to the general
findings discussed above, we find that the gapped SF phase
with population imbalance gradually disappears toward the
BEC limit, giving way to the gapless GSF(I) phase. This is
quite intuitive since, in this limit, the Fermi gas is expected to
be well described by a much simpler Bose-Fermi description
of paired fermions (molecular bosons) and unpaired (excess)
fermions, consistent with the k-space topology of the GSF(I)
phase [7]. In addition, we find that both the gapped SF
and gapless GSF(II) phases occupy much larger regions for
all 1/(kF as) values when heavier fermions are in excess.
When m↑ = 0.15m↓, we finally note that the gapless GSF(I)
phase with population balance can be observed at unitarity
for moderate α values through, for instance, measurements
of the momentum distribution and single-particle spectral
function [22].

Conclusions. To summarize, we analyzed the effects of
SOC on the ground-state phase diagrams of mass-imbalanced
Fermi gases throughout the BCS-BEC evolution. One way to

engineer such a system is to load a two-component Fermi gas
into a spin-dependent optical lattice such that the components
have different effective masses. We showed that the compe-
tition between the mass and population imbalance and the
SOC gives rise to very rich phase diagrams, involving normal,
superfluid, and phase-separated regions, and quantum phase
transitions between the topologically trivial gapped superfluid
and the nontrivial gapless superfluid phases. According to
our calculations, one of the intriguing effects of the SOC is
that, in sharp contrast to the no-SOC case where only the
gapless superfluid phase can support population imbalance,
both the gapless and gapped superfluid phases can support
population imbalance in the presence of a SOC. This occurs
for all mass ratios including the mass-balanced systems.
Another intriguing effect of the SOC is that, again in sharp
contrast to the no-SOC case where only the gapped superfluid
phase can support population balance, both the gapped and
gapless superfluid phases can support population balance in
the presence of a SOC when the mass difference becomes
large enough.
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[7] M. Iskin and C. A. R. Sá de Melo, Phys. Rev. Lett. 97, 100404
(2006); Phys. Rev. A 76, 013601 (2007); 77, 013625 (2008).

[8] S.-T. Wu, C.-H. Pao, and S.-K. Yip, Phys. Rev. B 74, 224504
(2006); G.-D. Lin, W. Yi, and L.-M. Duan, Phys. Rev. A 74,
031604(R) (2006); G. Orso, L. P. Pitaevskii, and S. Stringari,
ibid. 77, 033611 (2008); G. J. Conduit, P. H. Conlon, and B. D.

Simons, ibid. 77, 053617 (2008); H. Guo, C. C. Chien, Q. Chen,
Y. He, and K. Levin, ibid. 80, 011601 (2009); J. E. Baarsma,
K. B. Gubbels, and H. T. C. Stoof, ibid. 82, 013624 (2010); R. B.
Diener and M. Randeria, ibid. 81, 033608 (2010).

[9] Y.-J. Lin et al., Phys. Rev. Lett. 102, 130401 (2009).
[10] Y.-J. Lin et al., Nature (London) 471, 83 (2011).
[11] J. D. Sau, R. Sensarma, S. Powell, I. B. Spielman, and

S. DasSarma, Phys. Rev. B 83, 140510 (2011).
[12] M. Sato, Y. Takahashi, and S. Fujimoto, Phys. Rev. Lett. 103,

020401 (2009).
[13] A. Kubasiak et al., Europhys. Lett. 92, 46004 (2010).
[14] M. Gong et al., e-print arXiv:1105.1796.
[15] J. P. Vyasanakere, S. Zhang, and V. B. Shenoy, Phys. Rev. B 84,

014512 (2011).
[16] Z.-Q. Yu and H. Zhai, e-print arXiv:1105.2250.
[17] Hui Hu et al., e-print arXiv:1105.2488.
[18] M. Iskin and A. L. Subaşı, Phys. Rev. Lett. 107, 050402 (2011).
[19] W. Yi and G.-C. Guo, Phys. Rev. A 84, 031608(R) (2011).
[20] C. Lobo, A. Recati, S. Giorgini, and S. Stringari, Phys. Rev. Lett.

97, 200403 (2006); S. Pilati and S. Giorgini, ibid. 100, 030401
(2008); I. Bausmerth, A. Recati, and S. Stringari, Phys. Rev. A
79, 043622 (2009); A. Gezerlis, S. Gandolfi, K. E. Schmidt, and
J. Carlson, Phys. Rev. Lett. 103, 060403 (2009).

[21] L. P. Gor’kov and E. I. Rashba, Phys. Rev. Lett. 87, 037004
(2001).

[22] J. P. Gaebler et al., Nat. Phys. 6, 569 (2010).

041610-4

http://dx.doi.org/10.1126/science.1122318
http://dx.doi.org/10.1126/science.1122876
http://dx.doi.org/10.1038/nature06473
http://dx.doi.org/10.1038/nature06473
http://dx.doi.org/10.1126/science.1187582
http://dx.doi.org/10.1103/PhysRevLett.102.020405
http://dx.doi.org/10.1103/PhysRevLett.103.223203
http://dx.doi.org/10.1103/PhysRevLett.104.053202
http://dx.doi.org/10.1103/PhysRevLett.105.123201
http://dx.doi.org/10.1103/PhysRevLett.105.123201
http://dx.doi.org/10.1209/0295-5075/96/33001
http://dx.doi.org/10.1103/PhysRevLett.106.115304
http://dx.doi.org/10.1103/PhysRevLett.106.153201
http://dx.doi.org/10.1103/PhysRevLett.106.205304
http://dx.doi.org/10.1103/PhysRevLett.98.030401
http://dx.doi.org/10.1103/PhysRevLett.98.030401
http://dx.doi.org/10.1103/PhysRevLett.105.190401
http://dx.doi.org/10.1103/PhysRevLett.105.190401
http://dx.doi.org/10.1103/PhysRevA.82.011608
http://dx.doi.org/10.1103/PhysRevA.82.011608
http://dx.doi.org/10.1103/PhysRevLett.97.100404
http://dx.doi.org/10.1103/PhysRevLett.97.100404
http://dx.doi.org/10.1103/PhysRevA.76.013601
http://dx.doi.org/10.1103/PhysRevA.77.013625
http://dx.doi.org/10.1103/PhysRevB.74.224504
http://dx.doi.org/10.1103/PhysRevB.74.224504
http://dx.doi.org/10.1103/PhysRevA.74.031604
http://dx.doi.org/10.1103/PhysRevA.74.031604
http://dx.doi.org/10.1103/PhysRevA.77.033611
http://dx.doi.org/10.1103/PhysRevA.77.053617
http://dx.doi.org/10.1103/PhysRevA.80.011601
http://dx.doi.org/10.1103/PhysRevA.82.013624
http://dx.doi.org/10.1103/PhysRevA.81.033608
http://dx.doi.org/10.1103/PhysRevLett.102.130401
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1103/PhysRevB.83.140510
http://dx.doi.org/10.1103/PhysRevLett.103.020401
http://dx.doi.org/10.1103/PhysRevLett.103.020401
http://dx.doi.org/10.1209/0295-5075/92/46004
http://arXiv.org/abs/arXiv:1105.1796
http://dx.doi.org/10.1103/PhysRevB.84.014512
http://dx.doi.org/10.1103/PhysRevB.84.014512
http://arXiv.org/abs/arXiv:1105.2250
http://arXiv.org/abs/arXiv:1105.2488
http://dx.doi.org/10.1103/PhysRevLett.107.050402
http://dx.doi.org/10.1103/PhysRevA.84.031608
http://dx.doi.org/10.1103/PhysRevLett.97.200403
http://dx.doi.org/10.1103/PhysRevLett.97.200403
http://dx.doi.org/10.1103/PhysRevLett.100.030401
http://dx.doi.org/10.1103/PhysRevLett.100.030401
http://dx.doi.org/10.1103/PhysRevA.79.043622
http://dx.doi.org/10.1103/PhysRevA.79.043622
http://dx.doi.org/10.1103/PhysRevLett.103.060403
http://dx.doi.org/10.1103/PhysRevLett.87.037004
http://dx.doi.org/10.1103/PhysRevLett.87.037004
http://dx.doi.org/10.1038/nphys1709

