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We use the self-consistent mean-field theory to analyze the effects of Rashba-type spin-orbit coupling

(SOC) on the ground-state phase diagram of population-imbalanced Fermi gases throughout the

BCS–Bose-Einstein condensate evolution. We find that the SOC and population imbalance are counter-

acting, and that this competition tends to stabilize the uniform superfluid phase against the phase

separation. However, we also show that the SOC stabilizes (destabilizes) the uniform superfluid phase

against the normal phase for low (high) population imbalances. In addition, we find topological quantum

phase transitions associated with the appearance of momentum-space regions with zero quasiparticle

energies, and study their signatures in the momentum distribution.
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Introduction.—The recent realization of synthetic gauge
fields with neutral bosonic atoms [1], evidently seen from
the appearance of vortices in a Bose-Einstein condensate
(BEC), has sparked a new wave of theoretical interest in
the cold atom community. This novel technique uses a
spatially dependent optical coupling between internal
states of the atoms, and can be used to engineer more
complicated gauge fields by dressing two atomic spin
states with a pair of lasers. For instance, it has recently
been used to create and study the effects of spin-orbit
coupling (SOC) in a neutral atomic BEC with equal
Rashba and Dresselhaus strengths [2]. Since this method
is equally applicable for neutral fermionic atoms, and
given that the coupling between a quantum particle’s spin
and its momentum is crucial for the topological insulators
and quantum spin Hall states, which have recently received
immense interest in the condensed matter community [3],
it may allow for the realization of topologically nontrivial
states in atomic systems with possibly a broad interest in
the physics community [4–6].

Motivated by the recent success in realization of the
SOC Bose gases [2], and by a practical proposal for gen-
erating a SOC in 40K atoms [7], effects of the SOC have
recently been studied for the two-component Fermi gases:
(i) the two-body problem exactly [8], and (ii) the many-
body problem in the BCS mean-field approximation
[5,6,9–11]. It has been found that the increased density
of states due to the SOC plays a crucial role for both
problems. In particular, for the two-body problem, this
gives rise to a two-body bound state even on the BCS
side (as < 0) of a resonance [8]. For the many-body prob-
lem, the increased density of states favors the pairing so
significantly that increasing the SOC, while the scattering
length is held fixed, eventually induces a BCS-BEC cross-
over even for a weakly interacting system when as ! 0�
[9–11]. In addition, the SOC leads to an anisotropic
superfluid, the signatures of which could be observed in

the momentum distribution or the single-particle spectral
function for sufficiently strong SOCs [11].
In this Letter, we study the competition between the

SOC and population imbalance on the ground-state phase
diagram of two-component Fermi gases across a Feshbach
resonance, i.e., throughout the BCS-BEC evolution. Our
main results are shown in Fig. 1, and they are as follows. In
the absence of a SOC, the phase diagram of population-
imbalanced mixtures is well studied in the literature [12],
and it mainly involves normal (N), phase separation (PS),
and topologically distinct gapless superfluid (GSF) as well
as the trivial gapped superfluid (SF) phases. In particular, at
and around unitarity (jasj ! 1), the system changes from

FIG. 1 (color online). The ground-state phase diagrams are
shown as a function of population imbalance P ¼ ðN" � N#Þ=N
and scattering parameter 1=ðkFasÞ, where the SOC parameter
m�=kF is set to 0.005 in (a), 0.05 in (b), 0.15 in (c), and 0.25 in (d).
We show normal (N), phase separation (PS), gapped superfluid
(SF), and gapless superfluid (GSF) phases, where the dashed blue
and dotted green lines separate topologically distinct regions.
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SF to PS and then to N as a function of increasing
population imbalance. In this Letter, we show that the
SOC and population imbalance are counteracting, and
that this competition always tends to stabilize the GSF
phase against the PS. However, we also show that the
SOC stabilizes (destabilizes) the GSF phase against the
N phase for low (high) population imbalances. In addition,
since the SOC stabilizes the GSF phase for a very large
parameter region, where most experiments are conducted
[13], it may allow for a possible realization of the GSF
phase with cold atoms.

Mean-field Hamiltonian.—To obtain these results,
we use the mean-field Hamiltonian [6,14] (in units of
@ ¼ 1 ¼ kB)
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which is defined up to the constant C ¼ ð1=2ÞPk;��k;� þ
j�j2=g. Here, c y

k ¼ ½ayk;"; ayk;#; a�k;"; a�k;#� denotes the

fermionic operators collectively, where ayk;� (ak;�) creates

(annihilates) a spin-� fermion with momentum k, �k;� ¼
��k;� ¼ �k;� ��� has the inversion symmetry with

�k;� ¼ k2=ð2m�Þ the kinetic energy, �� the chemical po-

tential, and k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
. Here, � ¼ ghak;"a�k;#i is

the mean-field order parameter, where g � 0 is the strength
of the attractive particle-particle interaction which is
assumed to be local, and h� � �i is a thermal average. We
consider only a Rashba-type SOC, i.e., Sk ¼ �S�k ¼
�ðky � ikxÞ, where � � 0 is its strength.

Self-consistency equations.—Following the usual proce-
dure, i.e., @�=@j�j ¼ 0 for the order parameter and
N" þ sN# ¼ �@�=@�s for the number equations where

� is the mean-field thermodynamic potential, s ¼ � and
�s ¼ ð�" þ s�#Þ=2, we obtain the self-consistency

equations
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Here, T is the temperature and E2
k;s¼�2

k;þþ�2
k;�þj�j2þ

jSkj2þ2sAk gives the quasiparticle excitation spectrum

[5,6], where Ak ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
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k;þ þ j�j2Þ þ jSkj2�2
k;þ

q
,

�k;s ¼ �k;s ��s with �k;s ¼ ð�k;" þ s�k;#Þ=2 ¼ k2=ð2msÞ
and ms ¼ 2m"m#=ðm# þ sm"Þ. Note that mþ is twice the

reduced mass of " and # particles, and m� ! 1 for
mass-balanced (m" ¼ m#) mixtures. In Eqs. (2) and (3),

the derivatives of the quasiparticle energies are given by
@Ek;s=@j�j ¼ ð1þ s�2

k;�=AkÞj�j=Ek;s for the order para-

meter, @Ek;s=@�þ¼�½1þsð�2
k;�þjSkj2Þ=Ak��k;�=Ek;s

for the average chemical potential, and @Ek;s=@�� ¼
�½1þ sð�2

k;þ þ j�j2Þ=Ak��k;�=Ek;s for the half of the

chemical potential difference.
Equations (2) and (3) are the generalization of the

mean-field expressions to the case of population- and/or
mass-imbalanced mixtures, and they recover the known
expressions (a) when �k;� ¼ 0 for which Ek;s simplifies to

E2
k;s ¼ ð�k;þ þ sjSkjÞ2 þ j�j2, and (b) when jSkj ¼ 0 for

which Ek;s simplifies to E2
k;s ¼ ½s�k;� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
k;þ þ j�j2

q
�2.

We eliminate the theoretical parameter g in favor of the
experimentally relevant s-wave scattering length as via the
relation, 1=g ¼ �mþV=ð4�asÞ þ

P
k1=ð2�k;þÞ, where V

is the volume. g can also be eliminated in favor of the two-
body binding energy �b � 0 in vacuum via the relation [8]

1=g¼ð1=2ÞPk;s1=ð2"k;sþ�th��bÞ, where "k;s ¼ �k;þ þ
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2k;� þ jSkj2

q
is the single-particle noninteracting

dispersion in the helicity basis, and �th is the threshold
for the two-body scattering. For the Rashba-type SOC,

and assuming m" � m#, we obtain �th ¼ 2�2m�ðm� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2� �m2þ

q
Þ=mþ, which gives �th ¼ mþ�2 when m� �

mþ, i.e., m" & m#.
Thermodynamic stability.—To construct the phase dia-

gram, we solve the self-consistency equations and check
the stability of these solutions for the uniform superfluid
phase using the compressibility (or the curvature) criterion
[15,16]. This says that the compressibility matrix �ðTÞ
with elements ��;�0 ðTÞ ¼ �@2�=ð@��@��0 Þ needs to be

positive definite, and it is directly related to the condition
that the curvature of � with respect to j�j, i.e.,
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needs to be positive. When at least one of the eigenvalues
of �ðTÞ, or the curvature @2�=@j�j2 is negative, the
uniform mean-field solution does not correspond to a
minimum of �, and a nonuniform superfluid phase, e.g.,
a phase separation, is favored [15,16].
Rashba-type SOC for mass- and population-balanced

mixtures.—To get more insight into the effects of the SOC
in the BCS-BEC evolution, let us first consider mass- and
population-balanced (m� ¼ m and N� ¼ N=2) mixtures,
where N is the total number of fermions. This case is
analytically more tractable, since the single-particle
energy in the helicity basis simplifies to [14] "k;s ¼
k2=ð2mÞ þ s�k?, where k? ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. For instance,

the bound-state equation can be solved to obtain 1=as ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2�2 �m�b

p þm� ln½ ffiffiffiffiffiffiffiffiffiffiffiffiffi�m�b
p

=ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2�2 �m�b

p þm�Þ�.
In the weak SOC limit, when m�2 	 �b, this expression
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gives �b 
 �1=ðma2sÞ þm�2, up to the leading order in�,
which recovers the usual result in the � ! 0 limit.
However, in the strong SOC limit, when m�2 � �b, the

general expression gives �b 
 �ð4m�2=e2Þe�2=ðm�asÞ,
which implies that a bound state exists even for as < 0,
although its energy is exponentially small [8]. This
is a result of increased density of states Dsð�Þ ¼P

k�ð�� "k;sÞ due to the SOC [8], where �ðxÞ is the

Dirac-delta function.
In the case of noninteracting (g ¼ 0 or as ! 0�) mass-

and population-balanced Fermi gases at zero temperature
(T ¼ 0), where �� ¼ �, calculating the total number
N ¼ Nþ þ N� ¼ k3FV=ð3�2Þ of fermions, where Ns ¼P

k	ð�� "k;sÞ, we obtain � 
 �F � 3m�2=2 up to the

leading order in � when m�2 	 �F, and � ¼ �m�2=2þ
2k3F=ð3�m2�Þ when �< 0. Note that we conveniently
choose the energy (length) scale as the Fermi energy �F
(momentum kF) of the N� ¼ N=2 fermions.

It has been shown that increasing the SOC for a non-
interacting Fermi gas leads to a change in the Fermi surface
topology, when the number of fermions in the þ-helicity
band (Nþ) vanishes [9]. This occurs when � goes below
the bottom of the energy band, i.e., � ¼ 0, or when �

increases beyond � ¼ ½4=ð3�Þ�1=3kF=m 
 0:75kF=m. In
some ways, this is similar to the usual BCS-BEC crossover
problem, where the quasiparticle excitation spectrum
changes behavior as a function of increasing the scattering
parameter 1=ðkFasÞ at � ¼ 0; i.e., its minimum is located
at a finite (zero) momenta when �> 0 (�< 0). However,
the topological transition discussed here is driven by in-
creasing the SOC parameter �, and the origin of it can also
be traced back to the change in the quasiparticle excitation
spectrum when g is finite. For instance, for mass- and
population-balanced mixtures, the excitation spectrum

simplifies to [9–11,14] Ek;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð"k;s ��Þ2 þ j�j2

q
, and

it also has a change of behavior at � ¼ 0. Having set up
the formalism, we are now ready to discuss the competition
between normal fluidity, uniform superfluidity, and phase
separation across a Feshbach resonance.

Ground-state phase diagrams.—In the absence of a SOC
and at low T, it is well established that the self-consistent
solutions of Eqs. (2) and (3) are sufficient to describe the
physics of fermion mixtures both in the BCS and the BEC
limits, and that these equations also capture qualitatively
the correct physics in the entire BCS-BEC evolution
[12,15]. Hoping that the mean-field formalism remains
sufficient in the presence of a SOC, here we analyze only
the ground-state phase diagram of population-imbalanced
but mass-balanced mixtures as a function of both the SOC
and scattering parameters.

There are typically three phases in our phase diagrams.
While the normal (N) phase is characterized by � ¼ 0,
the uniform superfluid and nonuniform superfluid, e.g.,
phase separation (PS), are characterized by @2�=@j�j2 > 0
and @2�=@j�j2 < 0, respectively, when � � 0. Fur-
thermore, in addition to the topologically trivial gapped

superfluid, the GSF phase can also be distinguished by
two topologically distinct regions, depending on the
momentum-space topology of their quasiparticle excitation
spectrum (see below).
In Fig. 1, the phase diagrams are shown as a function of

population imbalance P ¼ ðN" � N#Þ=N and scattering pa-

rameter 1=ðkFasÞ for four different � values. Comparing
these results with the � ! 0 limit [15], it is clearly seen
that the SOC and population imbalance are counteracting.
On one hand, this competition always tends to stabilize the
GSF phase against the PS, and therefore, at any given P,
the system eventually becomes a GSF by increasing �, no
matter how small 1=ðkFasÞ is. This is best seen in Fig. 2,
where the phase diagrams are shown as a function of P and
� for four different 1=ðkFasÞ values. On the other hand, we
find that while the SOC stabilizes the GSF phase against
the N phase for low P due to increased density of states, it
destabilizes the GSF phase against the N phase for high P.
In both figures, the dashed blue and dotted green lines

are obtained from the conditions j�j2 ¼ ��"�# and j�j ¼
j��j (see below), respectively, and they separate the topo-
logically distinct regions. As can be inferred from Fig. 2,
the dashed blue line makes a dip as 1=ðkFasÞ & 0, tip of
which eventually touches the P ¼ 0 line at� 
 0:75kF=m,
consistent with our analysis above for the topological
transition of a noninteracting (as ! 0�) system. In
Figs. 1 and 2, we also show that the SOC stabilizes the
GSF for a very large parameter region, at and around the
unitarity, which is normally unstable against PS when
� ¼ 0, allowing for a possible realization with cold atoms,
as discussed next in great detail.
Topological phase transition.—When � ! 0, popula-

tion imbalance is achieved when either Ek;þ (for N# >
N") or Ek;� (for N" >N#) has zeros in some places of

k space. Let us assume N" � N# without losing generality,

FIG. 2 (color online). The ground-state phase diagrams are
shown as a function of P ¼ ðN" � N#Þ=N and �, where

1=ðkFasÞ is set to �0:5 in (a), 0 in (b), 0.5 in (c), and 1.5 in
(d). The labels are described both in Fig. 1 and in the text.
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for which Ek;þ is always gapped. Depending on the

number of zeros of Ek;� (zero energy surfaces in

k space), there are two topologically distinct GSF phases:
GSF(I) where Ek;� has two, and GSF(II) where Ek;� has

four zeros. The zeros of Ek;� can be found by imposing

the condition E2
k;þE

2
k;� ¼ ð�k;"�k;# þ j�j2 � jSkj2Þ2 þ

4j�j2jSkj2 ¼ 0, indicating that both jSkj ¼ 0 and
�k;"�k;# þ j�j2 ¼ 0 needs to be satisfied.

For the Rashba-type SOC that we consider in this
Letter, the zeros occur when k? ¼ 0 and at real kz mo-

menta, k2z;s ¼ Bþ þ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2� � 4m"m#j�j2

q
, provided that

j�j2 < jB�j2=ð4m"m#Þ for Bþ�0, and j�j2 <��"�# for
Bþ<0. Here, Bs ¼ m"�" þ sm#�#. The topologically triv-
ial superfluid phase corresponds to the case where both
Ek;þ and Ek;� have no zeros and are always gapped. The

transition from GSF(II) to GSF(I) occurs when jkz;�j ! 0,
indicating a change in topology in the lowest quasiparticle
band.

The topological transition discussed here is unique,
because it involves an s-wave superfluid, and could be
potentially observed through the measurement of the
momentum distributions nk;� of " and # fermions, both of

which are readily available from Eqs. (3). For instance, we
illustrate the typical T ¼ 0 distribution of a GSF(II) phase
in Fig. 3(a), and of a GSF(I) phase in Fig. 3(b). In these
figures, we note that nk;� is anisotropic in k space, which

follows from the anisotropic structure of Ek;s. For k-space
regions where k? ¼ 0 and kz;� � jkzj � kz;þ, the corre-

sponding distributions are exactly nk;" ¼ 1 and nk;# ¼ 0.
Here, kz;s are approximately found to be kz;� ¼ 0:30kF

and kz;þ ¼ 1:01kF in Fig. 3(a), and kz;� ¼ 0 and kz;þ ¼
0:97kF in Fig. 3(b), in perfect agreement with our analysis
above. We also see that a major redistribution occurs for the
minority species (nk;#) at the GSF(II) to GSF(I) transition

boundary, where the sharp peak that is present near the origin
vanishes abruptly. Although this topological transition is
quantum (T ¼ 0) in nature, signatures of it should still be
observed at finite T within the quantum critical region, where
the nk;� are smeared out due to thermal effects.

Conclusions.—In summary, we found that the SOC and
population imbalance are counteracting, and that this com-
petition always tends to stabilize the GSF phase against the
PS. In contrast, while the SOC stabilizes the GSF phase
against the N phase for low population imbalances, it
destabilizes the GSF phase against the N phase for high
population imbalances. In addition, we found topological
quantum phase transitions associated with the appearance
of momentum-space regions with zero quasiparticle ener-
gies, and studied their signatures in the momentum distri-
bution. We hope that our work will motivate further
research in this direction, since the SOC stabilizes the
GSF phase for a very large parameter region, allowing
for a possible realization of the GSF phase with cold atoms.
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