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We use the Gutzwiller ansatz and analyze the phase diagram of the extended Bose-Hubbard Hamiltonian with
on-site (U ) and nearest-neighbor (V ) repulsions. For d-dimensional hypercubic lattices, when 2dV < U , it is
well known that the ground state alternates between the charge-density-wave (CDW) and Mott insulators, and
the supersolid (SS) phase occupies small regions around the CDW insulators. However, when 2dV > U , in this
Rapid Communication, we show that the ground state has only CDW insulators, and more importantly, the SS
phase occupies a much larger region in the phase diagram, existing up to very large hopping values which could
be orders of magnitude higher than that of the well-known case. In particular, the SS-superfluid phase boundary
increases linearly as a function of hopping when 2dV � 1.5U , for which the prospects of observing the SS phase
with dipolar Bose gases loaded into optical lattices is much higher.
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Can a solid be superfluid? The so-called supersolid phase
is characterized by the simultaneous existence of diagonal
(crystalline) and off-diagonal (superfluid) long-range orders.
Although this intriguing possibility was suggested a long time
ago in the context of solid 4He [1], and in spite of numerous
attempts over the past decades, convincing experimental
evidence for its existence is yet to be found [2]. On the one
hand, there is still some controversy in the condensed-matter
literature regarding the recent reports that the theoretically
predicted nonclassical rotational inertia was found in solid
4He with the torsional oscillator experiments [3]. On the other
hand, there is strong theoretical evidence that the situation in
lattice models is promising [4,5], which could be advanced
with ultracold quantum gases loaded into optical lattices [6].

Possibly the simplest models that show SS behavior
are the extended-type Bose-Hubbard ones with on-site and
nearest-neighbor (NN) repulsions. Since these models can
be naturally realized with dipolar bosons [7], i.e., bosonic
atoms or molecules with permanent or induced magnetic or
electric dipole moments, the ground-state phase diagrams
of various extended models have already been studied. For
instance, the existence and stability of SS phases have been
demonstrated via the Gutzwiller ansatz [4,8,9] and decoupling
mean-field [10] approaches, and numerically exact quantum
Monte Carlo [5,11] techniques. The SS phase is known to
be very fragile, and one of the major obstacles in creating
and observing it is its very small existence region and low
critical temperatures. In a very recent proposal [12], it has
been suggested that one way of overcoming these difficulties
is to load high occupancies of bosons into optical lattices.
Such systems are well described by the quantum rotor model,
for which the mean-field calculation gives linear dependence
between the critical hopping (tc) and occupancy.

In this Rapid Communication, we use the Gutzwiller ansatz
and mean-field decoupling to analyze the phase diagram of
the extended Bose-Hubbard Hamiltonian with on-site (U ) and
isotropic NN (V ) repulsions. For d-dimensional hypercubic
lattices, beyond the critical threshold 2dV > U , we show
that the SS phase occupies a much larger region in the phase
diagram, existing up to very large hopping values of the order
of 2dtc � U . In particular, the SS-superfluid phase boundary
increases linearly as a function of hopping when 2dV � 1.5U .
This must be contrasted with the below-threshold (2dV < U )

case, for which it is well known that the SS phase occupies
small regions around the CDW insulators, existing only up to
2dtc � 0.4U . Therefore, we show that the prospect of observ-
ing the SS phase is much higher when 2dV > U . We also argue
that our results for two dimensions are directly applicable to
the quasi-two-dimensional dipolar Bose gases, for which the
condition 4V > U could be easily achieved by tuning the
s-wave scattering length using the Feshbach resonances.

Hamiltonian. To obtain these results, we use the extended
Bose-Hubbard Hamiltonian with an isotropic NN repulsion,

H = −t
∑
〈i,j〉

(b†i bj + b
†
j bi) + U

2

∑
i

n̂i (̂ni − 1)

+V
∑
〈i,j〉

n̂i n̂j − µ
∑

i

n̂i , (1)

where t is the tunneling (or hopping) amplitude between NN
sites i and j , b

†
i (bi) is the boson creation (annihilation)

operator at site i, n̂i = b
†
i bi is the boson number operator, and

µ is the chemical potential. As it turns out, the phase diagram
of this Hamiltonian depends strongly on the relative strength
U − zV , where z = 2d is the lattice coordination number,
leading to the following two important cases.

(i) Weak NN coupling (zV < U ): When V �= 0, the ground
state has two types of insulating phases [8,15]. The first one
is the Mott insulator (MI) where, similar to the usual Bose-
Hubbard model, the average boson occupancy is the same for
every lattice site, i.e., 〈̂ni〉 = n0. Here, 〈· · · 〉 is the thermal
average, and n0 is chosen to minimize the ground-state energy
for a given µ. The second one is the CDW insulator, which has
crystalline order in the form of staggered average occupancies.
To describe the CDW insulator, it is convenient to split the
entire lattice into two sublattices (e.g., A and B) such that the
NN sites belong to a different sublattice, i.e., 〈̂ni〉 = nA and
〈̂nj 〉 = nB for 〈i,j 〉. We assume the occupancies are such that
nA � nB , and the case with nA = nB corresponds to the Mott
insulator.

In the atomic (t = 0) limit, it turns out that the chemical-
potential width of all CDW and Mott insulators is zV and U ,
respectively, and the ground state alternates between the CDW
and Mott phases as a function of increasing µ. For instance,
the ground state is a (nA = 0,nB = 0) vacuum for µ � 0; a
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FIG. 1. (Color online) The ground-state phase diagrams are
shown as a function of the chemical potential µ and hopping t for
zV = (a) 0.9U , (b) 1.1U , (c) 1.25U , (d) 1.5U , (e) 2U , and (f) 4U .
The CDW and Mott insulators are indicated with their sublattice
occupancies (nA,nB ). Here, the red solid and blue dotted lines are
obtained from the Gutzwiller ansatz calculations, and the black
dashed lines are obtained from Eq. (7).

(1,0) CDW insulator for 0 < µ < zV ; a (1,1) Mott insulator
for zV < µ < U + zV ; a (2,1) CDW insulator for U + zV <

µ < U + 2zV ; a (2,2) Mott insulator for U + 2zV < µ <

2U + 2zV , and so on. As t increases, the range of µ about
which the ground state is insulating decreases, and the CDW
and Mott insulators disappear at a critical value of t , beyond
which the system becomes compressible [superfluid (SF) or
SS], as shown in Fig. 1(a).

(ii) Strong NN coupling (zV > U ): In contrast to the
well-known weak NN coupling, the strong NN coupling of
this model has not been studied much in the literature, which
is the main topic of this Rapid Communication. When zV

is exactly equal to U , it is easy to check, at least in the
atomic limit, that the (n0 + 1,n0) CDW insulator becomes
degenerate in energy with the (2n0 + 1,0) CDW insulator, and
the (n0,n0) Mott insulator becomes degenerate with the (2n0,0)

CDW insulator. This indicates that beyond the critical zV = U

threshold, both the CDW and Mott insulators that are found in
the weak NN coupling are unstable against formation of new
CDW insulators, leading to a phase diagram which has a very
different qualitative structure.

In this Rapid Communication, we show that the ground
state has only CDW-type insulating phases in the strong NN
coupling; the chemical-potential width of all is U in the atomic
limit. For instance, the ground state is a (0,0) vacuum for
µ � 0, a (1,0) CDW insulator for 0 < µ < U , a (2,0) CDW
insulator for U < µ < 2U , a (3,0) CDW insulator for 2U <

µ < 3U , and so on. As t increases, the range of µ about which
the ground state is insulating decreases, and the CDW insula-
tors disappear at a critical hopping, beyond which the system
becomes a SS, as shown in Figs. 1(b)–1(f). Most importantly,
unlike the weak NN coupling where the SS phase occupies
small regions in the phase diagram around the CDW insulators,
we show that the SS phase occupies a much larger region in this
case, existing up to very large hopping values, which could be
orders of magnitude higher than that of the weak NN coupling.
To obtain these results, we solve the Schrödinger equation for
the Gutzwiller ansatz, as discussed next.

Gutzwiller ansatz. This ansatz has been frequently used to
approximate the many-body wave functions of Bose-Hubbard
Hamiltonians [4,8,9]. It can be written as

|ψ〉 =
∏

i

(∑
m

fi,m|i,m〉
)

, (2)

where |i,m〉 represents the Fock state of m bosons occu-
pying the site i, and fi,m is the probability amplitude of
its occupation. Here, m = 0,1, . . . ,mmax, where mmax is the
maximum number of bosons allowed in the numerics in which
we typically choose mmax = 50. The normalization of the wave
function 〈ψ |ψ〉 requires

∑
m |fi,m|2 = 1 for each i.

Within this ansatz, the superfluid order parameter φi =
〈ψ |bi |ψ〉 is determined by

φi =
∑
m

√
m + 1f ∗

i,mfi,m+1. (3)

This complex parameter describes the state of the system at site
i: while it vanishes for the CDW and Mott insulators, it is finite
for the SF and SS ground states. Therefore, φi → 0+ signals
the phase boundary between an insulating and a compressible
phase. Similarly, the average occupancy ni = 〈ψ |b†i bi |ψ〉 is
determined by

ni =
∑
m

m|fi,m|2. (4)

In Eqs. (3) and (4), the probability amplitudes are ob-
tained by solving the Schrödinger equation, 〈ψ |H |ψ〉 =
ih̄〈ψ |∂|ψ〉/∂τ, with fi,m = f0,i,me−iε0,i τ/h̄. This leads to

ε0,if0,i,m = −t(φ̄i

√
mf0,i,m−1 + φ̄∗

i

√
m + 1f0,i,m+1)

+
[
U

2
m(m − 1) + V mn̄i − µm

]
f0,i,m, (5)

where φ̄i = ∑
〈j〉i φj and n̄i = ∑

〈j〉i nj sum over sites j

neighboring to site i.
For the ground state, first we need the minimal eigenvalue

ε0,i and the elements f0,i,m of the corresponding eigenvector,
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and we then use them in Eqs. (3) and (4) to solve for φi

and ni self-consistently. Note that in uniform systems with
two sublattices discussed in this Rapid Communication, the
state of the whole system is sufficiently described by the
two order parameters φA and φB for the sublattices A and B,
respectively. When this is the case, note also that ε0,i = ε0,A,
f0,i,m = f0,A,m, φ̄i = zφB , ni = nA, and n̄i = znB for i ∈ A

sublattice, and ε0,i = ε0,B , f0,i,m = f0,B,m, φ̄i = zφA, ni = nB ,
and n̄i = znA for i ∈ B sublattice. To support our Gutzwiller
ansatz calculations, next we examine the mean-field theory,
which provides an analytical expression for the phase bound-
ary between the insulating and compressible phases.

Mean-field decoupling approximation. In constructing the
mean-field theory, one first defines the SF order parameter
φi = 〈bi〉, and then replaces the operator bi with φi + δbi

in the hopping terms of Eq. (1). This approximation decouples
the two-particle hopping terms into single-particle ones, and
the resultant mean-field Hamiltonian can be solved via exact
diagonalization in a power series of φi . Performing a second-
order perturbation theory in φi around the insulators, and
following the usual Landau procedure for second-order phase
transitions, i.e., minimizing the energy as a function of φi , we
eventually arrive at the condition

φi = φ̄i t

[
ni + 1

Uni + V n̄i − µ
− ni

U (ni − 1) + V n̄i − µ

]
, (6)

where the definitions of φ̄i and n̄i are the same as in Eq. (5).
It is known that the results of the mean-field theory coincide
with those of the Gutzwiller ansatz, and that they both become
exact when d � 1 [13]. We emphasize that the mean-field
calculations give a good qualitative description of the system,
and it becomes progressively accurate as the dimensionality
and/or the occupancy increases.

For uniform systems with two sublattices, Eq. (6) gives
coupled equations for φA and φB , which can be solved to
obtain the phase boundary between the insulating (CDW or
Mott) and compressible (SF or SS) phases. Since φA,φB → 0+
near these boundaries, Eq. (6) can be satisfied only if [14]

1

z2t2
=

[
nA + 1

UnA + zV nB − µ
− nA

U (nA − 1) + zV nB − µ

]
×

[
nB + 1

UnB + zV nA − µ
− nB

U (nB − 1) + zV nA − µ

]
,

(7)

which gives a quartic equation for µ. An alternative way of
deriving this equation is the random-phase approximation [15].
Since a simple closed-form analytic solution for µ is not
possible, we solve Eq. (7) for each of the insulating lobes
separately. Having discussed the details of the Gutzwiller
ansatz and mean-field approximation, we are ready to discuss
the phase diagrams.

Phase diagrams. We solve Eqs. (3)–(5) self-consistently for
the order parameters (i.e., φA and φB) and average occupancies
(i.e., nA and nB), and use them to construct the phase diagram
of the system. The CDW and Mott insulators are characterized
by φA = φB = 0, and nA �= nB and nA = nB , respectively.
However, the SF and SS phases are characterized by φA =
φB �= 0 and φA �= φB , respectively, which naturally leads to
nA = nB in the SF phase and nA �= nB in the SS phase. In
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FIG. 2. (Color online) The colored maps of the (a) relative order
parameter φA − φB and (b) relative average occupancy nA − nB are
shown as a function of the chemical potential µ and hopping t when
zV = 1.15U .

this Rapid Communication, we choose φA and φB to be real,
since we are only interested in the CDW-SS and MI-SF phase
boundaries which are determined by {φA,φB} �= 0, and the SS-
SF phase boundaries which are determined by φA = φB �= 0.

Therefore, it is sufficient to look at the relative order
parameter φA − φB and relative average occupancy nA − nB to
distinguish between various phases. For instance, in Fig. 2, we
show the colored maps of φA − φB and nA − nB as a function
of the chemical potential µ and hopping t for zV = 1.15U .
The three dark lobes shown in Fig. 2(a), where φA = φB = 0,
correspond to (1,0), (2,0), and (3,0) CDW insulators (from
bottom to top), the occupancies of which are clearly seen in
Fig. 2(b). Here, the SF phase occupies the dark region that is
common in both Figs. 2(a) and 2(b). It is also clear that the
SS phase, where φA − φB �= 0 and nA − nB �= 0, shown with
bright colors in Figs. 2(a) and 2(b), respectively, is sandwiched
between the CDW insulators from the left and SF phase from
the right. Note that, in the SS phase, the superfluid order
parameter is larger on the sublattice with higher occupancy,
and both the crystalline and superfluid orders are primarily
on the same sublattice [16]. This is because the particle and
hole excitation energies are higher on the sublattice with lower
occupancy when zV > U .

In Fig. 1, we repeat this analysis for a number of NN
repulsions, and plot the phase diagrams as a function of µ

and t . In these figures, the red solid lines and blue dotted
lines are obtained from the Gutzwiller ansatz calculations, and
the black dashed lines are obtained from Eq. (7). Note that
both methods are in complete agreement, i.e., on top of each
other for the phase boundary between the insulating (CDW or
Mott) and compressible (SF or SS) phases, which supports our
Gutzwiller ansatz calculations.

A typical weak-NN-coupling phase diagram is shown in
Fig. 1(a) for zV = 0.9U . As discussed above, the ground state
alternates between the CDW and Mott insulators as a function
of increasing µ, and the SS phase occupies only small regions
around the CDW insulators. Unlike the weak-NN-coupling
phase diagrams, Figs. 1(b)–1(f) show that the ground state has
only CDW-type insulating phases in the strong NN coupling. In
particular, the chemical-potential width of all CDW insulators
is U in the atomic limit, and the ground state is a (n0,0) CDW
insulator for (n0 − 1)U < µ < n0U . As t increases, the range
of µ about which the ground state is insulating decreases,
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and the CDW insulators disappear at a critical value of tc,
beyond which the system becomes a SS. Note that, except for
the weak-NN-coupling phase diagram, all of the tc values are
comparable to each other for a fixed zV .

The main result of this Rapid Communication is shown in
Figs. 1(c)–1(f). It is clearly seen that the SS phase occupies a
much larger region when zV � 1.1U , existing up to very large
hopping values, which could be orders of magnitude higher
than that of the weak NN coupling. This result is intuitive given
that the ground state has only (n0,0) CDW insulators whose
sizes are comparable to each other, and the CDW modulations
become stronger as n0 (or µ) increases. In fact, the SS-SF
phase boundary becomes linear in µ and zt when zV � 1.5U .
Our numerical calculations suggest that the slope of this
line is approximately given by dµ/d(zt) = 2/(zV/U − 1).
A similar linear dependence between the particle density and
hopping has recently been found for the SS-SF phase-transition
boundary in the case of the quantum rotor model [12], when
the average occupation is much higher than unity.

Experimental realization. Here, we argue that our results
for two dimensions (z = 4) is directly applicable to the
quasi-two-dimensional dipolar Bose gases. For the optical
lattice potential VOL(r) = V0[sin2(kx) + sin2(ky)], where
k = 2π/λ is the wave vector and 	 = λ/2 is the lattice
spacing, the on-site interaction depends on the s-wave
scattering length as via [6] U = √

8/πkasErs
3/4. Typically,

s = V0/Er ∼ 10, where Er = h̄2k2/(2m) is the recoil energy
and m is the particle mass. Assuming all of the dipoles are
polarized along the z direction, the dipole-dipole interaction
becomes isotropic, leading to V = Cdd/(4π	3) for the NN
repulsion, where Cdd = µ0p

2 (or p2/ε0) for particles with
permanent magnetic (or electric) dipole moment p. The
ratio U/(4V ) = π2

√
2πs3/4/(12εdd), where εdd = add/as and

add = mCdd/(12πh̄2) is the dipolar length scale, determines
the critical threshold (4V > U ). For instance, p = 6µB and
add = 16a0 for the 52Cr atoms [17], where µB (a0) is the

Bohr magneton (radius), and the condition is as � 8a0/s
3/4.

However, p = 0.6 Debye and add = 2 × 103a0 for the KRb
molecules [17], and the condition is as � 103a0/s

3/4. Since
as ∼ 100a0 for Cr atoms, as needs to be tuned via a Feshbach
resonance [18] in order to achieve the critical threshold.

In addition, we note that it is easy to extract the finite-size
effects of an external trapping potential (e.g., present in atomic
systems) from Fig. 1. For instance, within the local-density
approximation, if the center of the trap is a (2,0) CDW insulator
(say zt � 0.6U ), the system is expected to first go through a
SS and then a (1,0) CDW insulator before becoming a SF as
a function of the radial distance toward the edge of the trap.
However, if the center of the trap is a SS (say zt � 0.6U ), the
system is expected to become a SF beyond a critical radius,
without any intermediate phase.

Conclusions. To summarize, beyond the critical threshold
zV > U , we showed that the SS phase occupies a much
larger region in the phase diagram, existing up to very
large hopping values of the order zt � U , and that the
SS-SF phase boundary increases linearly as a function of
t when zV � 1.5U . Therefore, our results suggest that the
prospect of observing the SS phase is much higher when
zV > U , which could be easily achieved with quasi-two-
dimensional dipolar Bose gases loaded into optical lattices
by tuning the s-wave scattering length via currently available
Feshbach techniques [18]. We believe our mean-field treatment
captures the qualitative physics correctly, and that this work
will motivate further quantum Monte Carlo calculations
in the strong-NN-coupling regime for more-accurate phase
diagrams.
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