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Abstract. We study the effects of an artificial gauge field on the ground-state phases of the Bose-Hubbard
model on a checkerboard superlattice in two dimensions, including the superfluid phase and the Mott
and alternating Mott insulators. First, we discuss the single-particle Hofstadter problem, and show that
the presence of a checkerboard superlattice gives rise to a magnetic flux-independent energy gap in the
excitation spectrum. Then, we consider the many-particle problem, and derive an analytical mean-field
expression for the superfluid-Mott and superfluid—alternating-Mott insulator phase transition boundaries.
Finally, since the phase diagram of the Bose-Hubbard model on a checkerboard superlattice is in many ways
similar to that of the extended Bose-Hubbard model, we comment on the effects of magnetic field on the
latter model, and derive an analytical mean-field expression for the superfluid-insulator phase transition

boundaries as well.

1 Introduction

In the usual Bose-Hubbard model [1], competition be-
tween the kinetic and potential energy terms leads to two
phases: a Mott insulator (MI) when the kinetic energy is
much smaller than the potential energy and a superfluid
(SF) otherwise. The incompressible MI phase has an ex-
citation gap so that the incoherent bosons are localized,
and that a slight change in the chemical potential does
not change the number of bosons on a particular lattice
site. The compressible SF' phase, however, is gapless, and
the coherent bosons are delocalized over the entire lattice.

Recent advances with ultracold bosonic atoms loaded
into optical lattices have made it possible to simulate
Bose-Hubbard type many-particle Hamiltonians in a tun-
able setting. For instance, the ability to control on-site
boson-boson interactions has paved the way for observing
SF and MI phases as well as the transition between
the two [1,2]. In addition, a new technique has recently
been developed that allowed the production of ficti-
tious magnetic fields which can couple to neutral bosonic
atoms [3,4]. These fictitious magnetic fields are produced
through an all optical Raman process, couple to a ficti-
tious charge, but produce real effects like the creation of
vortices in the SF state of bosons. Such an ability to con-
trol the strength of the fictitious magnetic fields combined
with the ability to control the strength of the interparticle
interactions may allow exploration of new phenomena in
the near future [5-12].

# e-mail: miskin@ku.edu.tr

In contrast to its simplicity, the Bose-Hubbard model
is not exactly solvable even in one dimension. Therefore,
it is desirable to have a much simpler toy-model which
exhibits all the salient properties of the Bose-Hubbard
model, while also being more amenable to analytical treat-
ment. One of the most prominent candidates is the hard-
core Bose-Hubbard model on a checkerboard superlattice,
for which the existence of SF and MI phases at half fill-
ing in three dimensions [13], as well as a direct transition
between the two [14] have rigorously been shown. In addi-
tion, this model and its correlation functions are exactly
solvable in one dimension [15], thanks to the existence of
a mapping between the hardcore bosons and noninteract-
ing fermions. In the absence of a magnetic field, we have
recently analyzed the ground-state phase diagram of this
model in one, two and three dimensions using mean-field
approximation and strong-coupling expansion, and com-
pared them with the numerically exact results obtained
from the stochastic series expansion algorithm followed by
finite-size scaling [16]. Given that checkerboard superlat-
tices have already been realized [17] using multiple wave-
length laser beams, we extend previous works in two im-
portant directions. First, we relax the hardcore constraint
and study the ground-state phase diagram of the softcore
Bose-Hubbard model on a checkerboard superlattice, via
mean-field decoupling approximation. Second, we study
the effects of uniform magnetic field on the ground-state
phase diagram in two dimensions.

The rest of this paper is organized as follows. First,
we review the model at hand in Section 2, and present
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a qualitative description of its phase diagram. Then, we
study the single-particle Hofstadter problem in Section 3,
and show that the presence of a checkerboard superlattice
gives rise to a magnetic flux-independent energy gap in the
excitation spectrum. The many-particle problem is dis-
cussed in Section 4, where we derive analytical expressions
for the SF-insulator phase transition boundaries within
the mean-field decoupling approximation. Then, we give a
brief discussion and summary of our results in Section 5.
Finally, we conclude the paper with Appendix, where an
analytical mean-field expression for the SF-insulator phase
transition boundaries is derived for the extended Bose-
Hubbard model.

2 Hamiltonian

In this paper we study the effects of magnetic field on the
Bose-Hubbard model on a checkerboard superlattice. For
this purpose, we consider a two-dimensional square lattice
described by the Hamiltonian

. U R
H =3 tie"ala; + 9 > ni(ni—1)

ch(q)aimfﬂZm, (1)

where aI (a;) creates (annihilates) a boson on site 7 and

n; = ag a; is the on-site boson number operator. The hop-
ping matrix ¢;; is assumed to connect two nearest-neighbor
lattice sites (t;; = t for ¢ and j nearest neighbors and 0
otherwise) belonging to different sublattices, e.g. the even
sublattice A and the odd one B, U > 0 is the strength of
the on-site boson-boson repulsion, u is the chemical poten-
tial, and C' > 0 is the amplitude of the alternating checker-
board superlattice potential such that o; = 0 (1) on sub-

lattice A (B). The phase factor 6;; = (1/¢o) [ Ao(r) - dr
takes into account the effects of a uniform magnetic field
that is applied perpendicular to the lattice, where Ag(r)
is the vector potential and ¢g = hc/e is the magnetic flux
quantum. All of our results recover the nonmagnetic ones
when the magnetic flux tends to 0.

Let us first analyze the atomic (¢ = 0) limit of this
Hamiltonian at zero-temperature. In this limit, there is no
kinetic term, and the boson number operator 7; commutes
with the Hamiltonian, so every lattice site is occupied by
a fixed number n; = (n;) of bosons. Here, (...) is the
thermal average, and the average boson occupancy n; is
chosen to minimize the ground-state energy for a given pu.
In particular, when C' = 0, this model is translationally
invariant, and the ground-state boson occupancy is the
same for all sites.

For instance, in the hardcore boson (U — o0)
limit [16], while the lattice is completely empty for p < 0
and the minimal energy configuration corresponds to a
vacuum of particles or a hole band insulator (VP, since
n; = 0 for all 7), it is completely full for g > 0 and the
minimal energy configuration corresponds to a vacuum
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of holes or a particle band insulator (VH, since n;, = 1
for all 7). The ground-state energy of these phases is de-
generate at ¢ = 0. However, when C > 0, the ground
state has an additional half-filled insulating (incompress-
ible) phase characterized by a crystalline order in the form
of staggered boson densities. For the nearest neighbor lat-
tice sites ¢ and j, (n;) = na = 1 for the sublattice A and
(nj) = np = 0 for the sublattice B. This phase resides
in the region || < C, and it is sandwiched between the
VP and VH phases. Since the checkerboard superlattice
breaks the translational invariance of the lattice, it di-
rectly causes such an alternating density pattern. For this
reason, this phase is often called a MI [14,16], to distin-
guish it from a true charge-density-wave (CDW) phase, for
which the translational invariance is broken spontaneously
due for instance to the presence of nearest-neighbor in-
teractions. (See Appendix). In this paper, for simplicity
we call this alternating density pattern an alternating MI
(AMI) with (1,0) fillings to prevent confusion.

On one hand, for softcore bosons with U > 2C' # 0, the
ground state alternates between the AMI and MI phases
as a function of increasing p, where the chemical potential
widths of AMI and MI lobes are 2C' and U — 2C', respec-
tively (see Fig. 4). On the other hand, for softcore bosons
with 2C > U, the ground state has only AMI insulators.
For instance, when 2U > 2C' > U, the ground state is a
VP with (0, 0) fillings for p < —C} it is an AMI with (1,0)
fillings for u between —C and U — C} it is an AMI with
(2,0) fillings for p between U — C' and C; it is an AMI
with (2,1) fillings for p between C' and 2U — C} it is an
AMI with (3, 1) fillings for 1 between 2U — C and U + C,
and so on. As t increases, the range of y about which the
ground state is insulating decreases, and the MI and AMI
phases disappear at a critical value of ¢, beyond which the
system becomes compressible. We note that, unlike the
compressible SF phase of the usual Bose-Hubbard model,
the compressible phase in this model is more like a su-
persolid (SS), where the SF and AMI orders coexist even
for arbitrarily small C. However, since the checkerboard
superlattice breaks the translational invariance of the lat-
tice, we call the compressible phase of this model a SF to
distinguish it from a true SS for which the translational
invariance is broken spontaneously. Having discussed the
atomic limit, let us now discuss the noninteracting single-
particle energy spectrum when t # 0.

3 Single-particle problem

In the absence of a checkerboard superlattice, i.e. when
C = 0, the single-particle excitation spectrum is the usual
Hofstadter butterfly [18], and here we generalize it to C' #
0. For this purpose, we choose the Landau gauge for the
vector potential [Ag(r) = (0, Box,0)], which leads to a
uniform Bg field in the z direction, and the strength of
the magnetic field By is related to the magnetic flux @
via @ = Byl?. Denoting the coordinates of lattice sites by
i = (x = nl,y = ml), this gauge simply implies 0;; = 0
for hoppings along the = direction, i.e. between (n, m) and
(nt1,m); and 0;; = +£2m¢n for links along the y direction,
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Fig. 1. (Color online) The 2 x ¢* supercell is shown where
q" = q (2q) for even (odd) ¢ values.

i.e. between (n,m) and (n, m=+1), where ¢ = ®/(2w¢p). In
the Landau gauge, the Hamiltonian given in equation (1)
can be written as

H,, = ftz (a};man“,m —+ ei2“¢"alman,m+1 + h.c.)

nm

—C> (~1)"™af,,anm, (2)

where n + m is even (odd) for sublattice A (B). Here, we
set U = 0 and p = 0 for the single-particle problem.

In the Landau gauge, taking ¢ = p/q, where p and ¢ are
integers with no common factor, while the Hamiltonian
given in equation (2) maintains its checkerboard transla-
tional invariance in the y direction, i.e. it remains the same
under 2 steps (m — m+2), it requires ¢* steps for transla-
tional invariance in the x direction. For the square lattice
considered, the period ¢* = ¢ (2¢) for even (odd) ¢ values.
Therefore, the Bloch theorem tells us that the 1st mag-
netic Brillouin zone is determined by —n/2 < k¢ < 7/2
and —7/¢* < ky¢ < 7/q¢*. This increased periodicity mo-
tivates us to work with a supercell of 2 x ¢* sites as shown
in Figure 1.

The single-particle excitation spectrum is deter-
mined by solving the Schrodinger equation Hg Wy, =
Ec(¢)Ws. for all k wvalues in the 1st magnetic
Brillouin zone. Choosing the wavefunction, W¥,. =

(1/1147 ¢137 1/)237 1/)547 1/)?7 ’l/)’o’B» ceey 7/}(? 5 w[;‘* )T, where ’l/);?(B) de-
notes the nth site of sublattice A (B), the 2¢* x 2¢* matrix

See equation (3) above

describes the supercell with periodic boundary (Bloch)
conditions. Here, a, = —2tcos(k,¢ + 2wnp/q). Equa-
tion (3) is the generalization of the Hofstadter problem
to the case of a checkerboard superlattice, and it reduces
to the usual result when C' = 0 [18].

In Figure 2, we show the single-particle excitation
spectrum E¢(¢) as a function of the magnetic flux ¢ = p/q

L
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Fig. 2. (Color online) The single-particle excitation spectrum
Ec(¢) of the Hamiltonian given in equation (3) (in units of ¢) is
shown as a function of the magnetic flux ¢ = ®/(2w¢o) = p/q
for two values of C: (a) C'= 0 and (b) C' = t. Note that a flux-
independent energy gap opens in (b), which exactly equals to
2C.

for two values of C: (a) C' =0 and (b) C = t. In both fig-
ures, Ec(¢) is shown to be symmetric around p/q = 1/2,
i.e. Ec(¢) = Ec(1 — ¢). This is simply because the mag-
netic flux values that add up to 2w¢y are equivalent,
eg. » = 0 and ¢ = 1. This also means that the max-
imal magnetic field By that can be applied corresponds
to p/q = 1/2. A list of minimal single-particle excitation
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Table 1. A list of minimal single-particle excitation energies
€(¢) = mink Eo(¢)/t of the usual Hofstadter butterfly (C' = 0)
is given for a number of magnetic flux ¢ = &/(27¢0) = p/q
values.

pla (@) p/a @) pla  €d) pla €(P)
1/2 2828 2/3 -2.732 3/4 2828 4/5 -2.966
1/3 -2.732 2/5 2618 3/5 -2.618 4/7 2611
1/4 2828 2/7 -2.725 3/7 2611 4/9 -2.630
1/5 -2.966 2/9 -2.881 3/8 -2.613 4/11 -2.626
1/6 -3.096 2/11 -3.028 3/10 -2.698 4/13 -2.692
1/7 -3.203 2/13 -3.151 3/11 -2.746 4/15 -2.761
1/8 -3.291 2/15 -3.249 3/13 -2.854 4/17 -2.842
1/9 -3.362 2/17 -3.328 3/14 -2.906 4/19 -2.920
1/10 -3.420 2/19 -3.392 3/16 -3.005 4/21 -2.994
1/11 -3.469 2/21 -3.445 3/17 -3.050 4/23 -3.061
1/12 -3.510 2/23 -3.490 3/19 -3.132 4/25 -3.123
1/13 -3.545 2/25 -3.528 3/20 -3.168 4/27 -3.177
1/14 -3.576 2/27 -3.561 3/22 -3.234 4/29 -3.226
1/15 -3.602 2/29 -3.590 3/23 -3.263 4/31 -3.263

energies €(¢) = mink Fo(¢)/t of the usual Hofstadter but-
terfly is also given for a number of p/q values in Table 1.

In contrast to the presence of zero-energy excitations
for all possible ¢ values in Figure 2a, the most impor-
tant difference in Figure 2b is the presence of a flux-
independent energy gap. Our numerical calculations show
that the energy gap is exactly 2C. Since the on-site en-
ergy difference between the sublattice A and B is 2C,
this result is not so surprising at least in the ¢ — 0
limit. In an earlier work [16], in the absence of a magnetic
field, we showed that the single-particle excitation spec-
trum becomes Ec(0) = 41/C2 + E2(0), where Fy(0) =
—2t cos(kgl) — 2t cos(kyl) is the usual single-particle ex-
citation spectrum. Similar to the nonmagnetic case, our
numerical calculations show that

Ec(@) = +£1/C2 + E3(9) (1)

holds exactly in the presence of a magnetic field, where
Ey(¢) = Ec—o(¢) is the usual single-particle excitation
spectrum of the Hofstadter butterfly. Having discussed
the single-particle problem, now we are ready to analyze
the competition between the kinetic and potential energy
terms of the many-particle Hamiltonian when ¢ # 0.

4 Many-particle problem

For the many-particle problem, we add the boson-boson
interaction and chemical potential terms to equation (2),
and obtain

Hyyp =— tz (ajlman+1,m + ei2méng T mlnmi1 + . C)

U
+ 9 ;azmanm(azmanm —1)

- CZ(* Nzalmanm- (5)

n+m T
nmanm
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For illustrative purposes, let us first study the ground-
state phase diagram of this model for the hardcore bosons,
for which the calculation becomes considerably simpler
compared to the softcore case, but yet nontrivial.

4.1 Hardcore bosons

The hardcore boson operators satisfy the constraint
al?2 = a2, =0, which prohibit multiple occupancy of lat-
tice Sltes as dlctated by the infinitely large on-site boson-
boson repulsion (U — 00). In this limit, the many-particle
Hamiltonian given in equation (5) becomes invariant un-

der the transformation an, — ajlil m OF Qppm — ajl M1
which corresponds to a shift of one lattice site in z or Y
direction. This symmetry operation, which can be imme-
diately read off from the Hamiltonian, corresponds to a
particle-hole exchange combined with swapping A and B
sublattices. It leads to a u — —pu symmetry, i.e. the phase
diagram is symmetric around g = 0.

It turns out that the exact SF-VP and SF-VH phase
transition boundaries can be easily obtained analytically.
The simplest argument leading to this conclusion stems
from the fact that this boundary is determined by the ad-
dition of a single particle (hole) to the completely-empty
(-filled) lattice. It can then be argued that whether one
is dealing with hardcore bosons or noninteracting spin-
less fermions makes no difference, as the particle statistics
plays no role. This further means that one needs only to
diagonalize the single-particle Hamiltonian and find the
energy difference between the completely-empty (-filled)
lattice and the state with one particle (hole). The single-
particle spectrum is already given in equation (4), and this
procedure leads to

p= /0% + ()2, (6)

where €(¢) = ming Eo(¢)/t are the minimal single-particle
excitation energies of the usual Hofstadter butterfly which
are shown as big blue dots in Figure 2a. In other words,
the minus (plus) branch in equation (6) is determined by
the minimal (maximal) single-particle excitation energies
of the Hofsdtadter butterfly when C' # 0. The minimal
single-particle excitation energies are shown as big blue
dots in Figure 2b. We emphasize that equation (6) is exact
for two-dimensional square lattices, and the minus (plus)
sign determines the SF-VP (-VH) phase transition bound-
ary. Note again that equation (6) reduces to the known
result for the nonmagnetic case [16] in the e(¢p — 0) = —4
limit.

Unlike the SF-VP and SF-VH phase boundaries, the
SF-AMI phase transition boundary cannot be deter-
mined exactly, since the exact many-particle wave func-
tion for the AMI state is not known. However, this can
be achieved via the mean-field decoupling approxima-
tion. Within this approximation, the hopping terms in
the Hamiltonian given in equation (5) are decoupled ac-
cording t0, afynan+1,m = (@) tnt1,m + @l (@ni1,m) —
{al Y {(ant1.m), where the expectation values pn,(¢) =
(apm) correspond to the mean-field SF order parameters.
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Note that there are at most 2¢*, i.e. total number of sites
in a supercell, distinct ¢, and the SF (AMI) phase is
determined by the nonzero (zero) value of any one (all)
of them. In particular, there are two distinct SF order
parameters (one for each sublattice) in the nonmagnetic
case even for arbitrarily small C, as long as C' # 0. We
checked that these order parameters differ from each other
for all parameter space via Gutzwiller ansatz calculations.
Therefore, unlike the compressible SF' phase of the usual
Bose-Hubbard model, the SF phase in the checkerboard
model is more like a SS, where the SF and AMI orders
coexist.

Performing a second-order perturbation theory in ¢,
around the MI phase, and following the usual Landau pro-
cedure for second-order phase transitions, i.e. minimizing
the ground-state energy as a function of ¢,,,,, we eventu-
ally arrive at the phase transition boundary equation

p=£/0? = ()2, (7)

where the plus (minus) sign corresponds to particle (hole)
excitations above the AMI phase. We note that although
©nm are gauge dependent, the phase transition boundary
itself is not [6,7,9]. Alternatively, equation (7) follows di-
rectly from the strong-coupling expansion of the ground-
state energy of the AMI phase with respect to the hopping
term [16], where the first nontrivial hopping dependence
of the phase transition boundary arises from the maximal
eigenvalue of the T = t - t matrix'. Here, the elements of
T%j = Zk: tiktkj are such that Zj Tijfj = 62(¢))t2fi. Note
again that equation (7) reduces to the known result for
the nonmagnetic case [16] in the €(¢ — 0) = —4 limit.

In Figure 3, we show the ground-state phase diagram
as a function of the chemical potential p, hopping 4t and
magnetic flux ¢ = p/q, that is obtained from equations (6)
and (7). As we argued above, the phase diagram is sym-
metric around p = 0 and p/q = 1/2. The latter symme-
try is in agreement with the earlier findings on the usual
Bose-Hubbard model [5-7]. What is more interesting is the
intriguing structure of the phase transition boundaries on
the minimal single-particle excitation energies €(¢). In ad-
dition, the incompressible (compressible) AMI (SF) phase
grows (shrinks) when the magnetic field increases from
zero, due to the localizing effects of the magnetic field
on bosons. All of these observations are similar to earlier
findings on the usual Bose-Hubbard model [5-7].

4.2 Softcore bosons

Having studied the effects of magnetic field on the hard-
core bosons, let us now analyze the ground-state phase
diagram of the Hamiltonian given in equation (5) for the
softcore bosons. Since the exact many-particle wave func-
tions for the AMI and MI states are not known, we again

1 This is in contrast to the usual Bose-Hubbard model where
the first nontrivial hopping dependence of the phase transition
boundary arises from the minimal eigenvalue of the —t matrix,
such that — 37 ti; f; = e(¢)tfi [5].
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Fig. 3. (Color online) The ground-state phase diagram of
hardcore bosons is shown as a function of the chemical po-
tential p (in units of C), hopping 4¢ (in units of C) and mag-
netic flux ¢ = @/(2wdo) = p/q, as obtained from equations (6)
and (7). The phase diagram is symmetric around g = 0 and
p/q = 1/2 as explained in the text, and the intriguing structure
of the phase boundaries (which is clearly seen in the contour
plot) is due to the minimal single-particle excitation energies
€(¢) shown as big blue dots in Figure 2a.

obtain the phase diagram via the mean-field decoupling
approximation. Following the recipe given in the previous
section, the SF-MI and SF-AMI phase transition bound-
aries are found to be determined by

1 na+1 na
€2()t? B {UnA—C—uU(nA—l)—C—,u]
np+1 np
{UnB—i-C—,uU(nB—l)—i-C—,u]’

(®)

which gives a quartic equation for p. This equation is valid
for all C', and €(¢) = mingk Fo(¢)/t are the minimal single-
particle excitation energies of the usual Hofstadter butter-
fly. In the hardcore (U — oo) limit, note that equation (8)
reduces to equation (7) when nq =1 and np = 0, and to
equation (6) when ng = ng = 0orng = ng = 1. In
addition, equation (8) reduces to the known result [7] for
the usual Bose-Hubbard model when ng = ng = ng and
C =0, and it also agrees with the recent numerical calcu-
lations [19,20] in the absence of a magnetic field. Since a
simple closed form analytic solution for p is not possible
when C' # 0, we solve equation (8) with MATHEMATICA
for each of the AMI and MI lobes separately.

In Figure 4, we set C' = 0.2U and show the ground-
state phase diagram as a function of the chemical potential
u and hopping 4t for p/q = 1/1 (equivalent to zero mag-
netic field) and for p/g = 1/2 (maximum magnetic field).
As discussed in Section 2, the ground state alternates be-
tween the AMI and MI phases as a function of increasing
1. The chemical potential widths of AMI and MI lobes are
0.4U and 0.6U, respectively, but the size of the AMI (MI)
lobes increase (decrease) as a function of increasing C'/U
(not shown), since a nonzero C'is what allowed AMI states
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Fig. 4. (Color online) The ground-state phase diagram of soft-
core bosons is shown as a function of the chemical potential
4 (in units of U) and hopping 4¢ (in units of U), as obtained
from equation (8). Here, we set C = 0.2U, and p/q = 1/1
(1/2) is shown as solid red (dashed black), corresponding to
zero (maximum) magnetic field. The AMI and MI (SF) phases
grow (shrinks) when the magnetic field increases from zero,
due to the localizing effects of the magnetic field on bosons.

-0.2

02 025

to form in the first place. In addition, the incompressible
(compressible) AMI and MI (SF) phases grow (shrinks)
when the magnetic field increases from zero, due again
to the localizing effects of the magnetic field on bosons.
Since the phase diagram of the Bose-Hubbard model on a
checkerboard superlattice is in many ways similar to that
of the extended Bose-Hubbard model, we discussed the
latter model in Appendix.

5 Conclusions

In this paper, we studied ground-state phases of the
Bose-Hubbard model on a checkerboard superlattice in
two dimensions. First, we discussed the single-particle
Hofstadter problem, and showed that the presence of a
checkerboard superlattice gives rise to a magnetic flux-
independent energy gap in the excitation spectrum. Then,
we considered the many-particle problem, and derived an-
alytical mean-field expressions for the SF-MI and SF-AMI
phase transition boundaries. We showed that the size of
incompressible insulator phases grow when the magnetic
field increases from zero, due to the localizing effect of
the magnetic field on bosons. In addition, since the phase
boundaries are functions of the minimal single-particle ex-
citation energies, they have an intriguing dependence on
the magnetic flux.

We also showed that the phase diagram of the Bose-
Hubbard model on a checkerboard superlattice is in many
ways similar to that of the extended Bose-Hubbard model.
In particular, the compressible phase in the former model
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is more like a SS, where the SF and AMI orders coexist
even for arbitrarily small C'. However, since the checker-
board superlattice breaks the translational invariance of
the lattice, we call the compressible phase of this model
a SF to distinguish it from a true SS for which the trans-
lational invariance is broken spontaneously. For complete-
ness, we discussed the effects of magnetic field on the the
extended Bose-Hubbard model as well, and derived an an-
alytical mean-field expression for the SF-MI and SF-CDW
phase transition boundaries.

In this paper, we relied on the mean-field theory which
is known to be sufficient in describing only the qualita-
tive features of the phase diagram when there is no mag-
netic field. In particular, for the hardcore Bose-Hubbard
model on a checkerboard superlattice, we have recently
shown that the mean-field theory has a large quantitative
discrepancy from the numerically exact Quantum Monte
Carlo results especially in lower dimensions [16]. However,
due to the infamous sign problem, such numerical calcu-
lations cannot be performed in the presence of a magnetic
field, and therefore, it is not clear to us whether the mean-
field theory is sufficient in this case or not. We hope that
the intriguing structure of the phase transition boundaries
on the minimal single-particle excitation energies of the
Hofstadter butterfly, pedicted by the mean-field theory,
could be observed in the experiments or verified via other
exact means in the future.

We plan to extend this work at least in one important
direction. There is some evidence that the ground-state
phase diagram of the extended Bose-Hubbard model in-
cludes a SS phase, in dimensions higher than one [21-24].
The localizing effect of magnetic field on such a phase
is yet to be studied, and it is not obvious whether SS
region would grow or shrink when the magnetic field in-
creases from zero. Although numerical calculations based
on the Gutzwiller ansatz are expected to give gauge de-
pendent results for the SS-SF phase boundary because of
the mean-field nature of the ansatz, they would provide a
good qualitative insight into this problem.
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Appendix: Extended Bose-Hubbard model

In many ways, the phase diagram of the Bose-Hubbard
model on a checkerboard superlattice turned out to be
similar to that of the extended Bose-Hubbard model.
Therefore, in this appendix, we comment on the effects
of uniform magnetic field on the insulating phases of the
latter model. In contrast to our model where the transla-
tional invariance is broken due to checkerboard superlat-
tice, the translational invariance is broken spontaneously
in the extended model, leading to CDW modulations.
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The extended Bose-Hubbard Hamiltonian with the on-site
(U > 0) and nearest-neighbor (V' > 0) boson-boson repul-
sions can be written as

H= —tz (ew”agaj + H.c.) + gzﬁl(ﬁl -1)

(ig)
) A

(ij

(A1)

Here, we again consider a two-dimensional square optical
lattice. For U > 4V # 0, it is well-known that the ground
state has two types of insulating phases [21-23,25]. The
first one is the MI phase where, similar to the usual Bose-
Hubbard model, the ground-state boson occupancy is the
same for every lattice site, i.e. (n;) = ng. The second one is
the CDW phase which has crystalline order in the form of
staggered boson occupancies, i.e. (;) = n4 and (7;) = np
for ¢ and j nearest neighbors.

When U > 4V, in the atomic ¢t = 0 limit, the ground
state alternates between the CDW and MI phases as a
function of increasing p, where the chemical potential
widths of CDW and MI lobes are 4V and U, respectively.
As t increases, the range of 1 about which the ground state
is insulating decreases, and the MI and CDW phases dis-
appear at a critical value of ¢, beyond which the system
becomes compressible (SF or SS). On the other hand, the
ground state has only CDW insulators when U < 4V. The
chemical potential width of all CDW insulators is U, and
the ground state is a CDW insulator with (ng,0) fillings
for (no—1)U < u < noU. As t increases, the CDW phases
disappear at a critical value of ¢, beyond which the sys-
tem first becomes a SS then a SF at a much larger ¢ with
a very large region of SS phase [24]. Within the mean-
field decoupling theory, the phase transition boundaries
are determined by

1 _ na+1 na
()2 [UnAJerVnB —p U(na—1)+4Vng u]
o { np+1 - npg ]
Unp+4Vna—pu Ulmp—1)+4Vna —p]’
(A.2)

which gives a quartic equation for u. Here, e(¢) =
minyg Ey(¢)/t depends on the minimal single-particle ex-
citation energies of the usual Hofstadter butterfly. Note
that equation (A.2) reduces to the known result for the
nonmagnetic case [25] in the e¢(¢ — 0) = —4 limit,
and it reduces to the known magnetic result [5-7] when
na = np = no and V = 0. Equation (A.2) shows that
the MI lobes are separated by 4V, but their shapes are
independent of V' within the mean-field decoupling ap-
proximation; in particular, the critical points for the MI
lobes are independent of V.

In Figure A.1, we set V = 0.1U and show the ground-
state phase diagram as a function of the chemical potential
w and hopping 4¢ for p/q = 1/1 (no magnetic flux) and
for p/qg = 1/2 (maximum magnetic flux). As discussed
above, the ground state alternates between the CDW and
MI phases as a function of increasing u. The chemical
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Fig. A.1. (Color online) The ground-state phase diagram of
the extended Bose-Hubbard model is shown as a function of
the chemical potential p (in units of U) and hopping 4t (in
units of U), as obtained from equation (A.2). Here, we set
V =0.1U, and p/q = 1/1 (1/2) is shown as solid red (dashed
black), corresponding to zero (maximum) magnetic field.

potential widths of CDW and MI lobes are 0.4U and U,
respectively, but the size of the CDW (MI) lobes increase
(decrease) as a function of increasing V/U (not shown),
since a nonzero V is what allowed CDW states to form
in the first place. In addition, the incompressible (com-
pressible) CDW and MI (SF or SS) phases grow (shrinks)
when the magnetic field increases from zero, due to the
localizing effects of the magnetic field on bosons.

References

1. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80,
885 (2008)

2. M. Greiner, O. Mandel, T. Esslinger, T.W. Hénsch, I.
Bloch, Nature 415, 39 (2002)

3. Y.-J. Lin, R.L. Compton, K. Jiménez-Garcia, J.V. Porto,
I.B. Spielman, Nature 462, 628 (2009)

4. Y.-J. Lin, R.L. Compton, A.R. Perry, W.D. Phillips, J.V.
Porto, I.B. Spielman, Phys. Rev. Lett. 102, 130401 (2009)

5. M. Niemeyer, J.K. Freericks, H. Monien, Phys. Rev. B 60,
2357 (1999)

6. M.O. Oktel, M. Nita, B. Tanatar, Phys. Rev. B 75, 045133
(2007)

7. R.O. Umucalilar, M.O. Oktel, Phys. Rev. A 76, 055601
(2007)

8. D.S. Goldbaum, E.J. Mueller, Phys. Rev. A 79, R021602
(2009)

9. S. Sinha, K. Sengupta, e-print arXiv:1003.0258 (2010)

10. T. Duric, D.K.K. Lee, Phys. Rev. B 81, 014520 (2010)


http://www.epj.org
arXiv:1003.0258

Page 8 of 8

11.

12.

13.

14.
15.

16.
17.

S. Powell, R. Barnett, R. Sensarma, S. Das Sarma, Phys.
Rev. Lett. 104, 255303 (2010)

O. Tieleman, A. Lazarides, C. Morais Smith, Phys. Rev.
A 83, 013627 (2011)

M. Aizenman, E.H. Lieb, R. Seiringer, J.P. Solovej, J.
Yngvason, Phys. Rev. A 70, 023612 (2004)

I. Hen, M. Rigol, Phys. Rev. B 80, 134508 (2009)

V.G. Rousseau, D.P. Arovas, M. Rigol, F. Hébert, G.G.
Batrouni, R.T. Scalettar, Phys. Rev. B 73, 174516 (2006)
I. Hen, M. Tskin, M. Rigol, Phys. Rev. B 81, 064503 (2010)
J. Sebby-Strabley, M. Anderlini, P.S. Jessen, J.V. Porto,
Phys. Rev. A 73, 033605 (2006)

18.
19.
20.

21.
22.

23.

24.

25

Eur. Phys. J. B (2012) 85: 76

D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976)

P. Buonsante, A. Vezzani, Phys. Rev. A 70, 033608 (2004)
B.-L. Chen, S.-P. Kou, Y. Zhang, S. Chen, Phys. Rev. A.
81, 053608 (2010)

C. Bruder, R. Fazio, G. Schon, Phys. Rev. B 47, 342 (1993)
P. Niyaz, R.T. Scalettar, C.Y. Fong, G.G. Batrouni, Phys.
Rev. B 50, 362 (1994)

D.L. Kovrizhin, G. Venketeswara Pai, S. Sinha, Europhys.
Lett. 72, 162 (2005)

M. Iskin, Phys. Rev. A 83, R051606 (2011)

. M. Iskin, J.K. Freericks, Phys. Rev. A 80, 063610 (2009)


http://www.epj.org

	Introduction
	Hamiltonian
	Single-particle problem
	Many-particle problem
	Conclusions
	Appendix: Extended Bose-Hubbard model
	References

