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Mean-field theory for the Mott-insulator–paired-superfluid phase transition
in the two-species Bose-Hubbard model
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The standard mean-field theory for the Mott-insulator–superfluid phase transition is not sufficient to describe
the Mott-insulator–paired-superfluid phase transition. Therefore, by restricting the two-species Bose-Hubbard
Hamiltonian to the subspace of paired particles, and using perturbation theory, here we derive an analytic
mean-field expression for the Mott-insulator–paired-superfluid transition boundary.
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I. INTRODUCTION

Following the recent observation of Mott-insulator–
superfluid phase transition with ultracold atomic Bose gases
loaded into optical lattices [1–4], there has been intense
theoretical activity in analyzing many Hubbard-type lattice
models [5]. Among them the two-species Bose-Hubbard
model, which can be studied with two-component Bose gases
loaded into optical lattices, is one of the most popular. This is
because, in addition to the Mott-insulator and single-species-
superfluid phases, it has been predicted that this model has at
least two additional phases: an incompressible super-counter
flow and a compressible paired-superfluid phase [6–11].

Our main interest here is in the latter phase, where a
direct transition from the Mott-insulator phase to the paired-
superfluid phase (superfluidity of composite bosons, i.e., Bose-
Bose pairs) has been predicted, when both species have integer
fillings and the interspecies interaction is sufficiently large
and attractive. In this paper, we derive an analytic mean-field
expression for the Mott-insulator–paired-superfluid transition
boundary in the two-species Bose-Hubbard model. The re-
maining paper is organized as follows. After introducing the
model Hamiltonian in Sec. II, first we derive the mean-field
theory in Sec. II A, and then present typical phase diagrams
in Sec. II B. A brief summary of our conclusions is given in
Sec. III.

II. TWO-SPECIES BOSE-HUBBARD MODEL

The two-species Bose-Hubbard Hamiltonian is given by

H = −
∑
i,j,σ

tij,σ b
†
i,σ bj,σ +

∑
i,σ

Uσσ

2
n̂i,σ (̂ni,σ − 1)

+U↑↓
∑

i

n̂i,↑n̂i,↓ −
∑
i,σ

µσ n̂i,σ , (1)

where the pseudospin σ ≡ {↑ ,↓} labels the trapped hyperfine
states of a given species of bosons or labels different types
of bosons in a two-species mixture, tij,σ is the tunneling
(or hopping) matrix between sites i and j , b

†
i,σ (bi,σ ) is the

boson creation (annihilation) and n̂i,σ = b
†
i,σ bi,σ is the boson

number operator at site i, Uσσ ′ is the strength of the onsite
boson-boson interaction between σ and σ ′ components, and
µσ is the chemical potential. In this paper, we consider a
d-dimensional hypercubic lattice, for which we assume tij,σ

is a real symmetric matrix with elements tij,σ = tσ � 0 for
i and j nearest neighbors and 0 otherwise. We take the
intraspecies interactions to be repulsive ({U↑↑,U↓↓} > 0) and
the interspecies interaction to be attractive (U↑↓ < 0) such
that U↑↑U↓↓ > U 2

↑↓, to guarantee the stability of the mixture
against collapse.

For sufficiently attractive U↑↓, it is well established that
[6–11] instead of a direct transition from the Mott insulator
to a single-particle superfluid phase, the transition is from
the Mott insulator to a paired-superfluid phase (superfluidity
of composite bosons, i.e., Bose-Bose pairs). In fact, in the
limit when {t↑,t↓} → 0, it can be shown that the transition is
from the Mott insulator to a paired-superfluid phase for all
U↑↓ < 0 [12].

A. Mean-field theory

In the single-species Bose-Hubbard model, the standard
mean-field theory, where the boson creation and annihila-
tion operators are approximated by their expectation values,
e.g., bi,σ = 〈bi,σ 〉 + δbi,σ , has proved to be very useful in
understanding the qualitative features of the Mott-insulator–
single-species-superfluid phase transition [5]. This is simply
because the transition is driven by the first-order hopping
effects. However, the Mott-insulator–paired-superfluid tran-
sition is driven by the second-order hopping effects, and
therefore, the standard mean-field theory is not sufficient. This
difficulty could be overcome by restricting the Hamiltonian
to the subspace of paired particles, and including the second-
order hopping effects through second-order perturbation the-
ory [6–8,11].

For the Hamiltonian given in Eq. (1), we have recently
calculated the two-particle and two-hole excitation energies
(i.e., energy costs for adding and removing two particles,
respectively) up to third order in the hoppings. Assuming
{Uσσ ,|U↑↓|,2Uσσ + U↑↓} � tσ , the two-particle excitation
energy was found to be [12]

Ep = U↑↓(n↑ + n↓ + 1) +
∑

σ

(Uσσnσ − µσ )

+
∑

σ

[
(nσ + 1)2

U↑↓
− nσ (nσ + 2)

2Uσσ + U↑↓
+ 2nσ (nσ + 1)

Uσσ

]
zt2

σ

+ 2(n↑ + 1)(n↓ + 1)

U↑↓
zt↑t↓, (2)
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where z = 2d is the coordination number. Similarly, the two-
hole excitation energy was found to be [12]

Eh = −U↑↓(n↑ + n↓ − 1) −
∑

σ

[Uσσ (nσ − 1) − µσ ]

+
∑

σ

[
n2

σ

U↑↓
−

(
n2

σ − 1
)

2Uσσ + U↑↓
+ 2nσ (nσ + 1)

Uσσ

]
zt2

σ

+ 2n↑n↓
U↑↓

zt↑t↓, (3)

The accuracy of Eqs. (2) and (3) are checked via exact small-
cluster (two-site) calculations. In addition, in the limit when
t↑ = t↓ = t , U↑↑ = U↓↓ = U0, U↑↓ = U ′, n↑ = n↓ = n0,
µ↑ = µ↓ = µ, and z = 2 (or d = 1), Eq. (3) is in complete
agreement with Eq. (3) of Ref. [10], providing an independent
check of the algebra. We note that, unlike the usual Bose-
Hubbard model where tσ scales as 1/d when d → ∞, here tσ
must scale as 1/

√
d when d → ∞.

Given the two-particle and two-hole excitation energies,
the mean-field phase boundary for the Mott-insulator–paired-
superfluid transition is determined by (see Ref. [11] for a
similar calculation)

1 = cp

Ep + cp
+ ch

Eh + ch
, (4)

where cp = −2(n↑ + 1)(n↓ + 1)zt↑t↓/U↑↓ and ch = −2n↑n↓
zt↑t↓/U↑↓. We note that, in the limit when t↑ =
t↓ = J , U↑↑ = U↓↓ = U , U↑↓ = W ≈ −U , n↑ = n↓ = m,
and µ↑ = µ↓ = µ, Eq. (4) reduces to Eq. (5) of Ref. [11]
(after setting UNN = 0 there). However, the terms that are
proportional to t↑t↓ are not included in their definitions of the
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FIG. 1. (Color online) The Mott-insulator–paired-superfluid
phase transition boundaries are shown for the first lobe, i.e., n↑ =
n↓ = 1, when t↑ = t↓. In (a) U↑↓ = −0.95U↑↑, and in (b) U↓↓ = U↑↑.
Note that the red curves correspond to the same data in both
figures.

two-particle and two-hole excitation energies. Solving Eq. (4)
for µ↑ + µ↓, we obtain

µ↑ + µ↓ = 1
2 [ap − ah ± √

(ap + ah)2 − 4cpch], (5)

where ap = Ep + µ↑ + µ↓, ah = Eh − µ↑ − µ↓, and ± signs
correspond to the two-particle and two-hole branches, re-
spectively. Equation (5) is the mean-field expression for the
Mott-insulator–paired-superfluid transition boundary, and it is
the main result of this paper.

B. Typical phase diagrams

In this section, we present typical phase diagrams in
the µ↑ + µ↓ versus

√
zt↑ plane, obtained directly from

Eq. (5). Similar to the usual Bose-Hubbard model, as hopping
increases from zero, the range of the chemical potential about
which the ground state is a Mott insulator decreases, and the
Mott-insulator phase disappears at a critical value of hopping,
beyond which the system becomes a paired superfluid.

For instance, in Fig. 1, we show the Mott-insulator–
paired-superfluid phase transition boundaries for the first lobe,
i.e., n↑ = n↓ = 1, when t↑ = t↓. In Fig. 1(a), where we set
U↑↓ = −0.95U↑↑, it is clearly seen that decreasing U↓↓ favors
the paired-superfluid phase, as intuitively expected. While in
Fig. 1(b), where we set U↓↓ = U↑↑, it is clearly seen that
decreasing the strength of U↑↓ favors the Mott-insulator phase
(see the explanation below). We also note a weak reentrant
quantum phase transition in both figures.

In addition, in Fig. 2, we show the Mott-insulator–paired-
superfluid phase transition boundaries for the first lobe, i.e.,
n↑ = n↓ = 1, when U↓↓ = U↑↑. In Fig. 2(a), where we set
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FIG. 2. (Color online) The Mott-insulator–paired-superfluid
phase transition boundaries are shown for the first lobe, i.e.,
n↑ = n↓ = 1, when U↓↓ = U↑↑. In (a) U↑↓ = −0.95U↑↑, and in
(b)

√
zt↓ = 0.01U↑↑. Note that the red curves correspond to the same

data in both figures.
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U↑↓ = −0.95U↑↑, it is clearly seen that increasing t↓ favors
the paired-superfluid phase, as intuitively expected. While in
Fig. 2(b), where we set

√
zt↓ = 0.01U↑↑, it is clearly seen that

decreasing the strength of U↑↓ again favors the Mott-insulator
phase. However, compared to Figs. 1(a) and 1(b), we note
that the reentrant quantum phase transition is much stronger
in these figures.

Our results are consistent with the expectation that for
small U↑↓, the location of the Mott-insulator tip increases
as a function of U↑↓, because the presence of a nonzero
U↑↓ is what allowed this state to form in the first place.
However, when the strength of U↑↓ is larger than some
critical value (approximately

√
U↑↑U↓↓/2), the location of the

tip decreases, and it eventually vanishes exactly when U 2
↑↓ =

U↑↑U↓↓, which may indicate an instability toward a collapse.
In addition, from Eq. (3), we expect a reentrant quantum
phase transition when −(2n↑n↓/U↑↓)zt↑t↓ − ∑

σ [n2
σ /U↑↓ −

(n2
σ − 1)/(2Uσσ + U↑↓) + 2nσ (nσ + 1)/Uσσ ]zt2

σ < 0, which
occurs beyond a critical U↑↓. When this expression is negative,
its value is most negative for the first Mott lobe (i.e., n↑ =
n↓ = 1), and therefore the effect is strongest there. However,
its value increases and eventually becomes positive as a
function of filling, and thus the reentrant behavior becomes
weaker as filling increases, and it eventually disappears beyond
a critical filling.

III. CONCLUSIONS

In this paper, by restricting the two-species Bose-Hubbard
Hamiltonian to the subspace of paired particles, and using
perturbation theory, we derived an analytic mean-field expres-
sion for the Mott-insulator–paired-superfluid phase transition
boundary. We found that for small U↑↓, the location of the
Mott-insulator tip increases as a function of U↑↓, because the
presence of a nonzero U↑↓ is what allowed this state to form in
the first place. However, when the strength of U↑↓ is larger than
some critical value (approximately

√
U↑↑U↓↓/2), the location

of the tip decreases, and it eventually vanishes exactly when
U 2

↑↓ = U↑↑U↓↓, which may indicate an instability toward
a collapse. Given that the interspecies interaction can be
fine tuned in ongoing experiments, e.g., 41K-87Rb [13,14] or
homonuclear [15] mixtures, via using Feshbach resonances,
we hope that our predictions could be tested with ultracold
atomic systems.
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