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After deriving the isothermal Hellmann-Feynman theorem (IHFT) that is suitable for mixed states in a
canonical ensemble, we use this theorem to obtain the isothermal magnetic-field sweep theorems for the free,
average, and trapping energies and for the entropy, specific heat, pressure, and atomic compressibility of strongly
correlated ultracold quantum gases. In particular, we apply the sweep theorems to two-component Fermi gases
in the weakly interacting Bardeen-Cooper-Schrieffer and Bose-Einstein condensate limits, showing that the
temperature dependence of the contact parameter can be determined by varying either the entropy or specific heat
with respect to the scattering length. We also use the IHFT to obtain the virial theorem in a canonical ensemble
and discuss its implications for quantum gases.
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I. INTRODUCTION

Dilute samples of ultracold quantum gases are well
described by zero-range interactions, a consequence of which
is the existence of some universal relations that govern the
behavior of these systems [1]. The first examples of such
relations were originally derived by solving the many-body
Schrödinger equation [2–4], and they relate energy and
pressure of the system to a single parameter that comes
from the short-range physics. What makes these relations
remarkable is that they hold for any finite-energy state of the
system; it does not matter whether the system is few- or many-
body, superfluid or normal, weakly or strongly interacting, in
equilibrium or nonequilibrium, or at zero or finite temperature.
These universal relations have more recently been rederived
using many other approaches, including the quantum-field-
theoretical techniques [1,5–9], and have also been verified via
numerical few-body calculations [10].

There is one common element in these universal relations:
they all involve a single parameter called the contact. In the
case of two-component Fermi gases, the contact parameter is
given by the coefficient of the 1/k4 tail of the momentum
distribution, and therefore, it measures the number of fermion
pairs with small separations. It has been found that the
contact parameter also appears in many other short-range
(high-momentum) or short-time (high-frequency) properties
of the system [11–16]. This parameter has recently been
measured in an ultracold 40K gas via the measurements of
the high-momentum tail of the momentum distribution and
of the high-frequency tail of the radio-frequency signal [17]
and has also been measured in an ultracold 6Li gas via
the measurements of the static structure factor [18]. The
measured temperature and scattering length dependence of
the contact parameter compare well with the theoretical
predictions [19,20].

In particular, the so-called adiabatic-sweep theorem for the
energy [3], which has recently been experimentally verified
[17], relates the contact to the change in total energy of the
system when the atom-atom scattering length a is changed
adiabatically, i.e., with zero heat transfer. In atomic systems,
the value of a can be tuned at will from very large and negative
to very large and positive values because of the presence of
magnetically induced Feshbach resonances, and an adiabatic

(constant entropy) sweep is accomplished by changing the
bias magnetic field over a time scale longer than the relaxation
time [17].

Motivated by these earlier works, here we generalize a
number of these universal relations to finite temperatures, and
the rest of the paper is organized as follows. In Sec. II, we
derive the isothermal Hellmann-Feynman theorem (IHFT) that
is suitable for mixed states in a canonical ensemble. Then, we
use this theorem in Sec. III to obtain the isothermal (constant
temperature) sweep theorems (IST) for the free, average, and
trapping energies and for the entropy, specific heat, pressure,
and atomic compressibility of strongly correlated ultracold
Fermi gases. We also use the IHFT to derive the virial theorem
in a canonical ensemble in Sec. IV. A brief summary of our
conclusions is given in Sec. V.

II. HELLMANN-FEYNMAN THEOREMS

For our purpose, we need to derive the Hellmann-Feynman
theorem (HFT) suitable for a canonical ensemble of a fixed
number N of identical particles that are in thermal equilibrium
with a heat reservoir, which is discussed next.

A. HFT for pure states

For any stationary normalized eigenvector |ψn(λ)〉 with the
corresponding eigenvalue En(λ) of a Hamiltonian H (λ), i.e.,
〈ψn|ψn〉 = 1 and En = 〈ψn|H |ψn〉, the usual HFT states that

∂En

∂λ
=

〈
ψn

∣∣∣∣∂H

∂λ

∣∣∣∣ψn

〉
, (1)

where λ is an arbitrary real parameter, explicitly appearing in
H . This well-known theorem has proved to be very useful
in many fields ranging from quantum chemistry, quantum
statistics, and many-body physics to molecular physics, with
many applications.

In particular, the HFT has recently been used to derive a
number of exact relations for strongly correlated systems with
short-range interactions, in the context of ultracold quantum
gases [5,6,21]. Since this theorem applies only for pure
states, these exact relations strictly hold at zero temperature
for any change or equivalently at finite temperatures for an
adiabatic change. In order to generalize these relations to
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finite temperatures, here we derive the IHFT for a canonical
ensemble of a fixed number of identical particles that are in
thermal equilibrium with a heat reservoir.

B. IHFT for mixed states in a canonical ensemble

For this purpose, we assume the temperature T is fixed
and the Hamiltonian H is a function of some arbitrary real
parameter λ. There are two complimentary ways to obtain the
isothermal HFT in a canonical ensemble.

The simplest way follows from the definition of the
statistical Helmholtz free energy F , i.e., F = −T ln Z in a
unit of kB = 1 here and throughout, where Z = Tr(e−H/T ) is
the canonical partition function of the system. Then, it is easy
to show that (see also [22,23])

∂F

∂λ
=

〈
∂H

∂λ

〉
, (2)

where the ensemble average of any operator is defined by
〈A〉 = Tr(ρA) and ρ = e−H/T /Z is the density operator in
the canonical ensemble. We recall that the derivatives with
respect to λ are evaluated at fixed T here and throughout.
In addition, using the definitions of the thermodynamic free
energy, average energy, and entropy, i.e., F = E − T S, E =
〈H 〉, and S = −Tr(ρ ln ρ) = −∂F/∂T , respectively, Eq. (2)
can be written as

∂E

∂λ
=

(
1 − T

∂

∂T

)〈
∂H

∂λ

〉
. (3)

This is the isothermal HFT for mixed states in a canonical
ensemble, and it will play a central role in the rest of this
paper.

An alternative way of deriving Eq. (3) is as follows. We
start directly from the definition of E, i.e. E = Tr(ρH ), and
evaluate the derivative to obtain

∂E

∂λ
=

〈(
1 + E − H

T

)
∂H

∂λ

〉
. (4)

In the intermediate steps, we used Tr(∂e−H/T /∂λ) =
−(1/T )Tr(e−H/T ∂H/∂λ) and Tr(H∂e−H/T /∂λ) = −(1/T )
Tr(He−H/T ∂H/∂λ), both of which can be derived by writ-
ing Tr(A) = ∑

n〈ψn|A|ψn〉, where |ψn〉 is the normalized
eigenvector and En is the corresponding eigenvalue of H . In
addition, we used ∂e−En/T /∂λ = 〈ψn|∂e−H/T /∂λ|ψn〉, which
can be obtained from the usual HFT given in Eq. (1). For fixed
T , starting from the definition 〈A〉 = Tr(ρA), it is easy to show
for the observables that commute with H , i.e., [H,A] = 0, that
∂〈A〉/∂T = 〈(H − E)A〉/T 2. Therefore, Eqs. (3) and (4) are
equivalent.

Having derived the IHFT for a canonical ensemble, next
we use this theorem to obtain a number of exact relations for
strongly correlated ultracold quantum gases, which is the main
purpose of this paper.

III. ISOTHERMAL-SWEEP THEOREMS

In this section, we use the IHFT given in Eq. (3) to derive
the IST for the free, average, and trapping energies and for the
entropy, specific heat, pressure, and atomic compressibility in
a canonical ensemble.

A. IST for free, average, and trapping energies

As a first application of the IHFT, we consider the
Hamiltonian that describes two-component Fermi gases in an
external potential Uσ (r):

H =
∑

σ

∫
d3rψ†

σ (r)

[
− h̄2∇2

2mσ

+ Uσ (r)

]
ψσ (r)

− g

∫
d3rψ†

↑(r)ψ†
↓(r)ψ↓(r)ψ↑(r), (5)

where ψ†
σ (r) creates a pseudospin-σ fermion with mass mσ

and g � 0 is the strength of the short-range interaction. In
the following discussions, the numbers of ↑ and ↓ fermions
need not be equal. As usual, the theoretical parameter g can be
written in terms of the experimentally more relevant scatter-
ing length a via 1/g = −MV/(4πh̄2a) + (M/h̄2)

∑
k(1/k2),

where M = 2m↑m↓/(m↑ + m↓) is twice the reduced mass of ↑
and ↓ fermions and V is the volume. This equation gives g =
−4π2h̄2a/(MV π − 2MV akc), where kc is the momentum-
space cutoff used to evaluate the ultraviolet divergent sum
over k.

Following the recent work of Ref. [5], the contact parameter
C can be defined as〈

∂H

∂a

〉
= MVg2

4πh̄2a2

∫
d3r〈ψ†

↑(r)ψ†
↓(r)ψ↓(r)ψ↑(r)〉, (6)

= h̄2C

4πMa2
, (7)

where we used dg/da = −MVg2/(4πh̄2a2). Note that C is
an extensive quantity that depends on both a and T . This
definition guarantees [5] that the average energy E of the
system is of the desired form [2,8],

E −
∑

σ

〈Uσ 〉 =
∑
σ,k

h̄2k2

2mσ

[
nσ (k) − C

k4

]
+ h̄2C

4πMa
, (8)

where nσ (k) is the momentum distribution of σ fermions. As
emphasized in [2], this relation holds for any finite-energy
state of the system; it does not matter whether the system is
few- or many-body, superfluid or normal, weakly or strongly
interacting, in equilibrium or nonequilibrium, or at zero or
finite temperature. Combining Eq. (7) with the IHFT given in
Eqs. (2) and (3), we obtain

∂F

∂a
= h̄2C

4πMa2
, (9)

∂E

∂a
= h̄2

4πMa2

(
C − T

∂C

∂T

)
. (10)

Here the derivatives with respect to a are evaluated at fixed
T , and therefore, Eqs. (9) and (10) correspond to the IST
for the free and average energies, respectively. Compared to
the zero-temperature expression for any change or, equiv-
alently, the finite-temperature expression for an adiabatic
change, i.e., the adiabatic-sweep theorem for the energy
[1,3], the main difference in Eq. (10) is an extra T ∂C/∂T

term. Similarly, we can also calculate ∂F/∂kc = h̄2C/(2πM)
and ∂E/∂kc = [h̄2/(2πM)](C − T ∂C/∂T ), where we used
dg/dkc = −MVg2/(2π2h̄2).
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For homogenous systems (no external potential), the T

dependence of C has been recently calculated in the low-,
intermediate-, and high-T regimes as [19]

C = C0 + α1T
4(T � Tc < TF ), (11)

C = C0 + α2T
2(Tc < T � TF ), (12)

C = α3

T
(T � {TF ,Ta}), (13)

where, up to the leading orders in a, C0 = 4π2n2a2, α1 =
9
√

3π6n2a2/(40T 4
F ), and α2 = −4(7 ln 2 − 1)π3kF n2a3/

(5T 2
F ) in the Bardeen-Cooper-Schrieffer (BCS) limit; C0 =

2πn/a and α1 = 2π6√πkF /a(∂am/∂a)n/T 4
F in the Bose-

Einstein condensate (BEC) limit; and α3 = 8π2n2/M for
all couplings. Here kF is the Fermi momentum, Tc is the
critical temperature for superfluidity, TF = h̄2k2

F /(2M) is the
Fermi temperature, Ta = h̄2/(Ma2) is the binding energy
of two fermions, n = N/V = k3

F /(3π2) is the density of
fermions, am is the dimer-dimer scattering length between
Cooper molecules (e.g., am = 0.6a when m↑ = m↓), and the
weakly interacting BCS and BEC limits are characterized
by kF a → 0− and kF a → 0+, respectively. Note that our
definition of C is larger by a factor of 4π2 compared to
the definition of Ref. [19]. Note also that the expression for
intermediate-T regime, i.e., Eq. (12), is valid only in the BCS
limit and that C has a maximum at a particular T since
C0, α1, α2, and α3 are all positive constants with respect to
T . Using Eqs. (11)–(13) in Eq. (10), we find ∂E/∂a = h̄2

(C0 − 3α1T
4)/(4πMa2), ∂E/∂a = h̄2(C0 −α2T

2)/(4πMa2),
and ∂E/∂a = h̄2C/(2πMa2) for the low-, intermediate-, and
high-T regimes, respectively.

Note also that taking the derivative of the virial theorem
given in Eq. (29) with respect to a and using the IST for the
energy given in Eq. (10), we obtain

∂Etr

∂a
= h̄2

16πMa2

(
C + a

∂C

∂a
− 2T

∂C

∂T

)
, (14)

which corresponds to the IST for the trapping energy. Here

Etr = 1

2

〈
U + 1

2

N∑
i=1

ri · ∇riU

〉
(15)

is the effective trapping energy, which reduces to the trapping
energy 〈U 〉 in the case of harmonic trapping potentials.

B. IST for entropy and specific heat

The IHFT can also be used to find other thermodynamic
relations. For instance, we obtain an entropy relation by taking
the derivative of S = (E + F )/T with respect to λ and using
Eqs. (2) and (3), leading to

∂S

∂λ
= − ∂

∂T

〈
∂H

∂λ

〉
. (16)

In addition, we obtain a specific-heat relation (at constant
volume) from CV = ∂E/∂T = T ∂S/∂T , leading to

∂CV

∂λ
= −T

∂2

∂T 2

〈
∂H

∂λ

〉
. (17)

In Eqs. (16) and (17) the derivatives with respect to λ are
evaluated at fixed T . We hope that these relations could

be tested with thermodynamic measurements in strongly
interacting Fermi gases [24].

For ultracold quantum gases described by the Hamiltonian
given in Eq. (5), we can use Eq. (7) in Eqs. (16) and (17),
leading to

∂S

∂a
= − h̄2

4πMa2

∂C

∂T
, (18)

∂CV

∂a
= − h̄2T

4πMa2

∂2C

∂T 2
. (19)

Here the derivatives with respect to a are evaluated at fixed
T , and therefore, Eqs. (18) and (19) correspond to the IST for
the entropy and specific heat, respectively. Equation (18) was
first derived in Ref. [19]. Using Eqs. (11)–(13) in Eqs. (18)
and (19), we find ∂S/∂a = −α1T

3/(πMa2) and ∂CV /∂a =
−3α1T

3/(πMa2) for the low T , ∂S/∂a = −α2T/(2πMa2)
and ∂CV /∂a = −α2T/(2πMa2) for the intermediate T , and
∂S/∂a = C/(4πMa2T ) and ∂CV /∂a = −C/(2πMa2T ) for
the high-T regimes. Therefore, since α1 and α2 are positive
constants, while ∂S/∂a is negative for low T , it becomes
positive at high T , indicating that ∂S/∂a vanishes at a
particular temperature above TF . Note also that ∂S/∂a ∝
∂CV /∂a in these regimes and that the T dependence of
C could be determined by varying either S or CV with
respect to a.

C. IST for pressure

For the Hamiltonian given in Eq. (5) but in the absence of
the potential term, i.e., a homogenous system where U (r) = 0,
the IHFT can be used to derive the IST for the pressure.

In general, via a dimensional analysis, the free energy F

can be written as F (η1, . . . ,ηr ) = (h̄2λ2/M)f (λη1, . . . ,ληr ),
where λ has the dimension of the inverse of a length, f is
a dimensionless function of its parameters, and ηj labels r

parameters (all with the dimension of a length) that F may
depend on for a given H . For homogenous ultracold quantum
gases, since F is a function of T , V , Nσ , and a, dimensional
analysis [6] requires that F must satisfy

2F = −
r∑

q=1

ηq

∂F

∂ηq

= −a
∂F

∂a
+ 2T

∂F

∂T
− 3V

∂F

∂V
. (20)

Using F = E − T S, S = −∂F/∂T , P = −∂F/∂V , and the
IST for the free energy given in Eq. (9), we obtain

P = 2E

3V
+ h̄2C

12πMaV
. (21)

Therefore, the universal pressure relation in a canonical
ensemble is of the same form as the zero-temperature one [1,3].

Taking the derivative of Eq. (21) with respect to a and using
the IST for the energy given in Eq. (10), we obtain

∂P

∂a
= h̄2

12πMa2V

(
C + a

∂C

∂a
− 2T

∂C

∂T

)
, (22)

which corresponds to the IST for the pressure. We re-
call that Eq. (22) is derived for a homogenous sys-
tem, and therefore, it is incorrect to compare it with
Eq. (14) and conclude that 3V ∂P/∂a = 4∂Etr/∂a for a
trapped system. Using Eqs. (11)–(13) in Eq. (22), we find
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∂P/∂a = h̄2(3C0 − 5α1T
4)/(12πMa2V ) in the BCS and

∂P/∂a = −5h̄2α1T
4/(8πMa2V ) in the BEC limit for the

low-T regime, ∂P/∂a = h̄2C0/(4πMa2V ) in the BCS limit
for the intermediate-T regime, and ∂P/∂a = h̄2C/(4πMa2V )
for the high-T regime. Therefore, since α1 is a positive
constant, while ∂P/∂a is positive in the BCS limit, it becomes
negative in the BEC limit in the low-T regime, indicating
that ∂P/∂a vanishes at a particular scattering length around
unitarity.

D. IST for atomic compressibility

The isothermal atomic compressibility is defined as κT =
−V −1∂V/∂P, and it can be obtained by taking the derivative
of Eq. (21) with respect to V at constant T . Using Eq. (9) to
relate ∂C/∂V to P , P = −∂F/∂V , and E = F + T S together
with the Maxwell relation ∂S/∂V |T = ∂P/∂T |V , we obtain

3

κT

= 5P + a
∂P

∂a
− 2T

∂P

∂T
. (23)

This equation also follows from a dimensional analysis of the
pressure P , which is a function of T , V , Nσ , and a, similar to
the analysis that led to Eq. (20). The ∂P/∂a term is given by
Eq. (22), and the ∂P/∂T term can be obtained by taking the
derivative of Eq. (21) with respect to T , leading to

CV = 3V

2

∂P

∂T
− h̄2

8πMa2

∂C

∂T
, (24)

where CV = ∂E/∂T is the specific heat at constant V . Note
that this equation relates the specific heat to the pressure and
contact parameter. Using Eqs. (22) and (19) in Eq. (23), we
obtain

3

κT

= 5P − 4T

3V
CV + h̄2

12πMaV

(
C + a

∂C

∂a
− 4T

∂C

∂T

)
,

(25)

which relates the isothermal atomic compressibility to the
pressure, specific heat, and contact parameter. When C = 0,
Eq. (25) is satisfied for the ideal Fermi gases. The IST for the
atomic compressibility can be easily obtained by taking the
derivative of Eq. (25) with respect to a and using Eqs. (22)
and (19).

Note that since the compressibility is related to the density
fluctuations via the fluctuation-dissipation theorem, κT =
V T −1(〈N̂2〉 − 〈N̂〉2)/〈N̂〉2, where N̂ is the density operator,
it can be used to extract some thermodynamic information
in atomic systems. Although this was proposed in as early
as 2005 [25], it has recently been possible to extract this
information for two-component Fermi gases by measuring
the density fluctuations and atomic compressibility [26,27].
Combining Eq. (25) with the fluctuation-dissipation theorem
provides yet another universal relation that can be verified with
atomic systems. Note also that the isoentropic (or adiabatic)
compressibility κS is related to κT via κS/κT = CV /CP , where
CP is the specific heat at constant P . Since the specific heats are
also related to each other via CP = CV + T V κT (∂P/∂T )2,

using Eq. (24), we obtain

1

κS

= 1

κT

+ T V

CV

(
2CV

3V
+ h̄2

12πMaV

∂C

∂T

)2

, (26)

which relates κS to κT , CV , and C. In atomic systems, it is
easier to measure κS than κT , and Eq. (26) can be used to
extract the temperature dependence of C, given that κT can be
extracted from the fluctuation-dissipation theorem [26,27].

Having derived the IST for the free, average, and trapping
energies and for the entropy, specific heat, pressure, and atomic
compressibility in a canonical ensemble, next we derive the
virial theorem.

IV. VIRIAL THEOREM FOR TRAPPED SYSTEMS

In this section, we use the IHFT given in Eq. (3) to derive
the virial theorem [4,21,22,24] in a canonical ensemble. This
can be most easily achieved following the recent work on the
zero-temperature case [21].

A. Virial theorem in a canonical ensemble

For this purpose, consider a general Hamiltonian H =
K + I + U that describes N particles with arbitrary statistics
in arbitrary dimensions, where K is the kinetic energy, I

is the interaction, and U is an arbitrary external potential.
For ultracold quantum gases, the external potential is simply
U = ∑N

i=1 Ui(ri), where Ui(ri) has approximately harmonic
dependence on the position ri of the particles.

In general, via a dimensional analysis, U can be written as
U (r1, . . . ,rN) = (h̄2λ2/M)u(λr1, . . . ,λrN), where λ has the
dimension of the inverse of a length and u is a dimensionless
function of its parameters. Therefore, we can use the IHFT
given in Eq. (3) to obtain λ∂E/∂λ = 4(1 − T ∂/∂T )Etr , where
Etr is the effective trapping energy defined in Eq. (15). In
addition, we can write the energy E, again via a dimensional
analysis, as E(
1, . . . ,
p) = (h̄2λ2/M)e(λ
1, . . . ,λ
p), where

q labels p parameters (all with the dimension of a length) that
E may depend on for a given H and e is a dimensionless
function of its parameters. Evaluating the derivative with
respect to λ for fixed values of 
q , we obtain λ∂E/∂λ =
2E + ∑p

q=1 
q∂E/∂
q. Then, the virial theorem is obtained
by combining these two analyses, leading to

E = 2

(
1 − T

∂

∂T

)
Etr − 1

2

p∑
q=1


q

∂E

∂
q

. (27)

Compared to the zero-temperature expression [21], the main
differences here are an extra T ∂/∂T term in front of the
potential terms and an extra 
q term associated with the
temperature.

B. Trapped quantum gases

In particular, for the ultracold quantum gases, which are
well described by the s-wave scattering length a, Eq. (27)
reduces to (1 − T ∂/∂T )(E − 2Etr ) = −(a/2)∂E/∂a. Note
that for finite kc, i.e., nonzero interaction range, there would
be an additional −(kc/2)∂E/∂kc = −h̄2Ckc/(4π2M) term on
the right-hand side of this equation. Furthermore, using the
IST for the average energy given in Eq. (10) for the last term,
the solution of the resultant differential equation [28] can be
written as

E = 2Etr − h̄2C

8πMa
+ κT , (28)
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where κ is a real constant independent of T . This is the most
general form of the virial theorem in a canonical ensemble.
Compared to the zero-temperature expression [4,5,21], the
main difference here is an extra κT term. In the unitarity
a → ±∞ limit, it was shown via a dimensional analysis that
the virial theorem in a canonical ensemble does not have the
last term [24], and hence, we know that κ vanishes in this limit,
i.e., κa→±∞ = 0. We suspect κ = 0 for all a; however, since
a nonzero κ is allowed in general, this possibility needs to be
clarified via other means.

Similar to the dimensional analysis that led to Eq. (20), it
can be shown that Eq. (28) follows from a dimensional analysis
of the average energy E supplied with Eq. (10). Note that E

is a function of T , Nσ , a, and the trapping frequency ω for a
trapped system. However, applying a dimensional analysis to
the free energy F of trapped systems, which is also a function
of T , Nσ , a, and ω, and using Eq. (9), we obtain Eq. (28)
with κ = 0 [29]. Therefore, we conclude that κ = 0 for all
parameter space, i.e.,

E = 2Etr − h̄2C

8πMa
, (29)

and that the virial theorem in a canonical ensemble is of the
same form as the zero-temperature one [4,5,21]. We recall that
taking the derivative of Eq. (29) with respect to a and using
the IST for the energy given in Eq. (10), we obtained the IST
for the trapping energy given in Eq. (14).

V. CONCLUSIONS

To conclude, first we derived the isothermal Hellmann-
Feynman theorem that is suitable for mixed states in a canoni-
cal ensemble. Then, we obtained the isothermal magnetic-field
sweep theorems for the free, average, and trapping energies

and for the entropy, specific heat, pressure, and atomic
compressibility of strongly correlated ultracold quantum
gases. We applied the sweep theorems to two-component
Fermi gases in the weakly interacting BCS and BEC limits
and showed that the temperature dependence of the contact
parameter could be determined by varying either the entropy
or specific heat with respect to the scattering length. We
also obtained the virial theorem in a canonical ensemble and
discussed its implications for quantum gases.

One of the major challenges for experiments with ultracold
quantum gases is the lack of a precise thermometry, and even
the measure of the temperature itself for strongly interacting
Fermi gases is a challenging problem [30]. On one hand, this
makes it more difficult to perform an isothermal (constant
temperature) magnetic-field sweep at ultracold temperatures,
compared to an adiabatic (constant entropy) sweep that is
routinely performed in atomic systems, while tuning the
scattering length. On the other hand, it is theoretically easier to
calculate thermodynamic quantities at constant temperature;
e.g., the calculation of isothermal atomic compressibility is
much easier than the isoentropic atomic compressibility in
the BCS-BEC crossover. Therefore, the isothermal Hellmann-
Feynman and sweep theorems that we discussed in this paper
are probably most useful for other theoretical or numerical
studies and possibly for some special experiments where the
thermometry is not an issue.
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