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Dimer-atom scattering between two identical fermions and a third particle
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We use the diagrammatic T -matrix approach to analyze the three-body scattering problem between two
identical fermions and a third particle (which could be a different species of fermion or a boson). We calculate
the s-wave dimer-atom scattering length for all mass ratios, and our results exactly match the results of Petrov.
In particular, we list the exact dimer-atom scattering lengths for all available two-species Fermi-Fermi and
Bose-Fermi mixtures. In addition, unlike that of the equal-mass-particles case where the three-body scattering
T matrix decays monotonically as a function of the outgoing momentum, we show that, after an initial rapid
drop, this function changes sign and becomes negative at large momenta and then decays slowly to zero when
the mass ratio of the fermions to the third particle is higher than a critical value (around 6.5). As the mass ratio
gets higher, modulations of the T matrix become more apparent with multiple sign changes, related to the “fall
of a particle to the center” phenomenon and to the emergence of three-body Efimov bound states.
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I. INTRODUCTION

The dimer-atom scattering process was first solved by
Skorniakov and Ter-Martirosian in 1956 [1], in the context of
three-nucleon scattering, that is, in which a two-body bound
state between a neutron and a proton (called a deuteron)
is scattering with a neutron. They considered equal-mass
particles, and they found that while the Born approximation
gives aDA = 8aAB/3 for the scattering length between an AB

dimer and an A atom, where aAB is the two-body scattering
length between A and B particles, the exact result turns out
to be aDA ≈ 1.18aAB [1]. This problem has recently been
analyzed with the diagrammatic T -matrix approach [2,3], in
the context of cold quantum gases (see also [4] in a different
context), and the result is in perfect agreement with the
earlier results. In the same context, the three-body scattering
problem has also been generalized to unequal-mass particles
and analyzed both in real space through solving the three-body
Schrödinger equation [5] and in momentum space through the
diagrammatic T -matrix approach [6], with perfect agreement
in between for all mass ratios.

When the mass ratio of the heavy particles to the light
one is below 13.61, it is also well established that the
three-body scattering problem is universal and that the
dimer-atom scattering length is proportional to the two-body
scattering length aAB (just like the equal-mass case) with the
proportionality factor depending only on the masses of the
constituent particles [5]. However, since three-body Efimov
bound states emerge for larger mass ratios [7–9], this problem
is not universal, and an additional parameter coming from
the short-range (or large-momentum) three-body physics is
needed for an accurate description.

Here, we use the diagrammatic T -matrix approach to ana-
lyze the three-body scattering problem between two identical
fermions and a third particle. Our results are relevant to
the quantum phases of two-species Fermi-Fermi [10–15] and
Bose-Fermi [16–19] mixtures of atomic gases in the molecular
limit. The paper is organized as follows. After deriving the
Skorniakov and Ter-Martirosian integral equation generalized
for unequal-mass particles in Sec. II A, we numerically

solve the resultant equation for all mass ratios in Sec. II B,
and we list the exact dimer-atom scattering lengths for all
available two-species Fermi-Fermi and Bose-Fermi mixtures
in Sec. II C. A brief summary of our conclusions is given
in Sec. III.

II. THREE-BODY PROBLEM

In this paper, we are interested in the three-body (dimer-
atom) s-wave scattering between two identical fermions
(referred to as A-type particles) and a third particle (referred
to as a B-type particle, which could be a different species of
fermion or a boson). In particular, we consider a zero-range
attractive interaction between A and B particles, and we
assume there is a weakly bound resonance between them
with the binding energy εb < 0, so that we want to study
the scattering between this bound state (referred to as an AB

dimer) and the remaining A fermion.

A. Dimer-atom scattering T matrix

A detailed description of the diagrammatic T -matrix
approach for the dimer-atom scattering process can be found
in the literature for equal-mass particles [2–4], and here we
give details of our calculation [6] for the case of unequal-mass
particles.

We begin our analysis by describing the zero-temperature
diagrammatic representation for the dimer-atom scattering
T matrix T DA

k (p,p0) as illustrated in Fig. 1, where k and p
are the incoming and outgoing momenta, and ωA = k2/(2mA)
and ωD = k2/(2mD) are the frequencies for the incoming
A particle and AB dimer, respectively. Here, we set the
center-of-mass momentum of the dimer-atom system to zero,
and ε = ωA + ωB + εb is the total frequency, where εb =
−1/(mABa2

AB) < 0 is the binding energy of the two-body
bound state between A and B particles, and mD = mA +
mB and mAB = 2mBmA/mD are masses of the AB dimer
and twice the reduced mass of the A and B particles,
respectively.
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FIG. 1. Diagrammatic representation of the integral equation for
the three-body scattering T matrix T DA

k (p,p0) between an AB dimer
(with dimer D consisting of one fermionic particle A and a second
particle B) and a fermionic particle A. Particle B could be a different
species of fermion or a boson.

In Fig. 1, single lines represent retarded free propagators
for the A and B particles, given by

GA,B(k,ω) = 1

ω − ωA,B + µA,B + i0+ , (1)

where ωA,B = k2/(2mA,B) is the energy, and µA,B is the
chemical potential of the corresponding particle. Similarly,
double lines represent the retarded propagator for the AB

dimer, and in three dimensions it can be approximated by
a simple one-pole structure:

GD(k,ω) =
4π

mAB

1
aAB

− [mAB(ωD − ω − µA − µB − i0+)]1/2 ,

(2)

which reflects the presence of a two-body bound state between
A and B particles.

This dimer propagator is obtained from the resummation
of the AB polarization bubbles, leading to GD(k,ω) =
−g/[1 + g�AB(k,ω)], where g > 0 is the strength of the bare
interaction between A and B particles, and the AB polariza-
tion bubble is �AB(k,ω) = ∑

q,q0
GA(k + q,ω + q0)GB(−q,

− q0). At zero temperature,
∑

q,q0
≡ i

∫
dqdq0/(2π )4 in three

dimensions. Integration over the internal momentum q and

frequency q0 leads to �AB(k,ω) = �AB(0,0) + m
3/2
AB(ωD −

ω − µA − µB − i0+)1/2/(4π ), which in combination with
the definition of the two-body scattering length aAB =
mABT AB(0,0)/(4π ), and the two-body scattering T matrix
T AB(0,0) = −g/[1 + g�AB(0,0)], between A and B parti-
cles, give the final result described in Eq. (2).

In the following, we set µA = µB = 0 since we are
interested in the dimer-atom scattering in vacuum. However,
note that our diagrammatic calculation for the scattering
parameters of the three-body problem is exact, and they
are sufficient to describe ultracold quantum gases, since
experiments are always performed at low densities. The
calculation of scattering parameters in the presence of many
other particles (arbitrary density) is much more difficult, and
it is not discussed here. In addition, on the right-hand side of
Fig. 1, note that the first diagram represents a fermion exchange
process (i.e., first particle B breaks up with particle A and then
it forms a new AB dimer with the remaining A particle). This
is the simplest process contributing to dimer-atom scattering
(e.g., Born approximation), and all other (infinitely many)
possible processes are included in the second diagram.

In analytical form, the dimer-atom T matrix T DA
k (p,p0)

satisfies the following integral equation:

T DA
k (p,p0)

= −GB(k + p,ωD − ωA + εb + p0)

−
∑
q,q0

GD(q,ωD + εb + q0)GA(−q,ωA − q0)T DA
k (q,q0)

×GB(p + q,ωD − ωA + εb + p0 + q0). (3)

The minus signs on the right-hand side is due to Fermi-Dirac
statistics (i.e., exchanging a fermion brings a minus sign
unlike that of a boson). The integration over frequency q0

can be easily performed by closing the integration contour in
the upper half-plane, where both T DA

k (q,q0) and GD(q,ωD +
εb + q0) are analytic functions of q0, and only a simple
pole contribution comes from GA(−q,ωA − q0). Note that
this property of T DA

k (q,q0) is due to the form of Eq. (3)
itself. This integration sets q0 = (k2 − q2)/(2mA), and we set
p0 = (k2 − p2)/(2mA) in order to have the same frequency
dependence for the T matrix on both sides of Eq. (3). This
leads to

T DA
k (p) = mAB

p2 + mAB

mB
p · k + k2 − mABε

+
∑

q

4πT DA
k (q)(

q2 + mAB

mB
p · q + p2 − mABε

)[
1

aAB
− (

mAB

mDA
q2 − mABε

)1/2] , (4)

where we redefine the T matrix T DA
k (p) = T DA

k [p,(k2 −
p2)/(2mA)], and ε = k2/mDA + εb is the total energy
and mDA = 2mDmA/(mD + mA) is twice the reduced
mass of an AB dimer and an A particle. Since we
are interested in zero-range low-energy s-wave scatter-
ing, we first average out directions of the incoming
momentum k, and then of the outgoing momentum p,
leading to

T DA
k (p) = mB

2pk
ln

(
p2 + mAB

mB
pk + k2 − mABε

p2 − mAB

mB
pk + k2 − mABε

)

+
∫ ∞

0

dq mB

mAB

q

πp
T DA

k (q)

1
aAB

−
(

mAB

mDA
q2 − mABε

)1/2

× ln

(
q2 + mAB

mB
pq + p2 − mABε

q2 − mAB

mB
pq + p2 − mABε

)
, (5)
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for three-dimensional systems, where T DA
k (p) = ∫

d�p∫
d�kT

DA
k (p)/(4π )2 is the angular-averaged T matrix.

To obtain the three-body (dimer-atom) s-wave scattering
length aDA, the total energy ε should be set to the binding
energy εb of the two-body bound state, in the limit of van-
ishing incoming and outgoing momentum and frequency [i.e.,
aDA = 2mDAT DA

0 (0)/m2
AB]. This motivates us to introduce

the dimer-atom scattering function aDA
k (p) for which the

integral equation becomes
mAB

mDA
aDA

0 (p)

1
aAB

+
(

mAB

mDA
p2 + 1

a2
AB

)1/2

= 1

p2 + 1
a2

AB

− mB

πpmAB

∫ ∞

0

dq

q

× ln

(
q2 + mAB

mB
qp + p2 + 1

a2
AB

q2 − mAB

mB
qp + p2 + 1

a2
AB

)
aDA

0 (q), (6)

in the limit when k → 0. Here, the dimer-atom scattering
length is aDA = aDA

0 (0), where

aDA
k (p) = mDA

m2
AB

[
1

aAB

+
(

mAB

mDA

p2 − mABε

)1/2
]

T DA
k (p)

(7)

gives the full momentum dependence of the dimer-atom
scattering function.

The integral equation shown in Eq. (6) and the scattering
function expression shown in Eq. (7) reduce to the
known results for the equal-mass-particles case [2,3] when
mA = mB = m. Since only the fermion exchange process
is taken into account in the Born approximation, neglecting
the second term on the right-hand side of Eq. (6) leads
to aDA = (2mDA/mAB)aAB , which is consistent with the
many-body results [20]. However, we need to include both
terms and solve the integral equation in order to find the exact
dimer-atom scattering length.

B. Dimer-atom scattering function

Next, we solve numerically the integral equation given
in Eq. (6) as a function of the mass ratio mA/mB of the
constituent particles of the dimer [21]. For this purpose,
it is convenient to change the upper integration limit to a
finite value by a change of variables: paAB = (1 − x)/(1 + x)
and qaAB = (1 − y)/(1 + y), where 1 � {x,y} � −1. The
resultant integral is calculated by using the Gaussian-Legendre
quadrature method, and using this discretization, we reduce the
integral equation to a matrix-eigenvalue problem.

The exact solutions and the Born approximation values
of aDA = aDA

0 (0) are shown in Fig. 2. When mA = mB ,
we find aDA ≈ 1.18aAB , which is in agreement with the
results previously found for equal-mass particles [1–3,5]. The
scattering length aDA increases (decreases) from this value
with increasing (decreasing) mass ratio, and aDA → aAB in
the limit of mA/mB → 0 as expected. These results exactly
match the few-body results of Petrov [5]. It is quite remarkable
that the diagrammatic T -matrix approach exactly recovers the
few-body results for all mass ratios, since the diagrammatic
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FIG. 2. (Color online) The exact scattering length aDA = aDA
0 (0)

between an AB dimer (with dimer D consisting of one fermionic
particle A and a second particle B) and a fermionic particle A as a
function of mass ratio mA/mB (solid red line) [21]. Particle B could be
a different species of fermion or a boson. Note that the disagreement
between the exact value and the Born approximation one (dashed line)
increases rapidly as the mass ratio increases as shown in the inset.

approach is performed in momentum space, while the few-
body approach is performed in real space [22]. Note that the
Born approximation values for aDA are not in agreement with
the exact values for any mass ratio and that the disagreement
increases rapidly with increasing mass ratio, but the general
qualitative trend is captured by the Born approximation as can
be seen in the inset of Fig. 2.

In Fig. 3, we show the scattering function aDA
0 (p) as

a function of the outgoing momentum p for some mass
ratios mA/mB . When mA = mB , this is a monotonically
decreasing (positive) function of p with a long tail. However,
beyond some critical mass ratio, this behavior changes
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FIG. 3. (Color online) The scattering function aDA
0 (p) between

an AB dimer (with dimer D consisting of one fermionic particle A

and a second particle B) and a fermionic particle A as a function of the
outgoing momentum p for some mass ratios mA/mB [21]. Particle
B could be a different species of fermion or a boson. Here, all length
scales are in units of the two-body scattering length between A and
B particles, aAB , and in (b) we show ln[aDA

0 (p)].
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dramatically. For instance, when mA = 10mB , after an initial
rapid drop, the aDA

0 (p) function changes sign and becomes
negative at paAB ≈ 2.72. Beyond this critical momentum,
it reaches a minimum value and slowly decays to zero from
the negative side. As the mass ratio gets lower (higher),
aDA

0 (p) changes sign at higher (lower) momenta. For instance,
when mA = 6.64mB , corresponding to a three-body system
consisting of one 6Li atom and two 40K atoms, it changes
sign at least once at paAB ≈ 14.7 (but it changes sign at
least once at paAB ≈ 1.96 when mA = 13.61mB ). We find
clear sign changes when mA � 6.5mB , but we do not know
whether aDA

0 (p) changes sign for even lower mass ratios since
precision issues obscure the results.

Although our calculation is not reliable for mass ratios
above 13.61 [21], for illustration purposes, in Fig. 3(b), we
show ln[aDA

0 (p)] as a function of p when mA = 30mB . In this
case, the scattering function first changes sign and becomes
negative at paAB ≈ 1.25, but then it changes sign again and
becomes positive at paAB ≈ 6.2. Since the large-p behavior
of this function is again obscured by precision issues, as can
be seen in the figure, we could not resolve whether it has more
sign changes at larger p values. However, we mention that as
the mass ratio increases further to 100, aDA

0 (p) changes sign at
least four times, and the oscillating pattern becomes apparent.

This effect could be related to the “fall of a particle to the
center” phenomenon [9,23] and to the emergence of three-body
Efimov bound states [7,8], which are known to occur when the
mass ratio is large. When the heavy A particles are separated
from each other by a distance r � aAB (or equivalently
paAB � 1), it is known that an exchange of a light B

particle mediates an effective −C/(mAr2) attraction between
A particles. Here, the coefficient C ≈ 0.162mA/mB increases
with increasing mass ratio [7]. Since A particles are fermions,
this attraction competes with the Pauli repulsion, which
manifests itself as a centrifugal �(� + 1)/(mAr2) potential,
where � is the angular momentum. Therefore, when the masses
are comparable (C ≈ 0.162), the Pauli repulsion is about one
order of magnitude stronger than the mediated attraction.
When the mass ratio mA/mB reaches a critical value [i.e., when
C = �(� + 1)], the effective interaction (mediated attraction
plus centrifugal repulsion) between A particles vanishes. For
the lowest p-wave angular momentum channel � = 1, this
occurs when mA � 12.33mB .

Beyond this critical mass ratio, there is a second critical
mass ratio beyond which the effective attraction between A

particles is strong enough that the A particles stay in an
infinitely small region around each other (i.e., the remaining
A particle falls to the center of the attraction [23]). This
second critical mass ratio can be approximated by γc = 1/4 =
C − �(� + 1) [24]. For the lowest p-wave angular momentum
channel � = 1, this occurs when mA � 13.85mB . Note that,
since the B particle is already bound to one of the A particles,
“fall of a particle to the center” is related to emergence of
three-body Efimov bound states. More accurate calculations
show that the latter occurs when mA � 13.61mB [8,9].

Having presented the diagrammatic T -matrix approach for
the three-body (s-wave) dimer-atom scattering, for all mass
ratios mA/mB , next we discuss the relevance of our results
to the quantum phases of two-species Fermi-Fermi and Bose-
Fermi mixtures of atomic gases at ultracold temperatures.

C. Ultracold Fermi-Fermi and Bose-Fermi mixtures

It has been shown that [20,25] (see [26] for experimental
confirmation), in the strong-attraction or molecular limit,
two-species Fermi-Fermi mixtures with population imbalance
can be well described by effective Bose-Fermi models, where
fermion-fermion pairs behave as molecular bosons (dimers)
and interact weakly with each other and with the remaining
unpaired (excess) fermions. These simpler models only require
accurate scattering lengths between two molecular bosons
(dimer-dimer, i.e., aDD) and between a molecular boson and
an unpaired fermion (dimer-atom, i.e., aDA). Note that the
exact three- and four-body results in vacuum are sufficient
to describe ultracold atomic mixtures in the molecular limit,
since experiments are always performed at low densities.
Several fermionic atoms (6Li,40K,87Sr [27], and 171Yb [28])
are currently being investigated, and experimental methods for
studying two-species Fermi-Fermi mixtures are being devel-
oped in several groups (e.g., the 6Li-40K mixture [10–15]).
Thus, anticipating future experiments involving various other
mixtures, in Table I, we list the exact dimer-atom scattering
lengths for all possible mixtures.

Similarly, in the strong-attraction or molecular limit,
two-species Bose-Fermi mixtures (with more fermions than
bosons; otherwise see [29]) can be well described by effective
Fermi-Fermi models, where boson-fermion pairs can be
shown to behave as molecular fermions (dimers) and interact
weakly with the remaining unpaired fermions. These simpler
models again only require accurate scattering length between
a molecular fermion and an unpaired fermion (dimer-atom,
i.e., aDA). Experimental methods for studying two-species
Bose-Fermi mixtures are also being developed in several
groups [16–19], and in Table II, we list the exact dimer-atom
scattering lengths for all possible mixtures.

As was pointed out earlier, the three-body scattering prob-
lem is universal for mass ratios below 13.61, and therefore,
the dimer-atom scattering is proportional to the two-body

TABLE I. The exact scattering length aDA = aDA
0 (0) between a

bosonic AB dimer (consisting of one fermionic A atom and one
fermionic B atom) and a fermionic A atom is shown for a list of two-
species Fermi-Fermi mixtures. (When A and B atoms have exactly
the same mass, A and B labels refer to different spin states of the
same species.) Here, aDA is in units of the two-body scattering length
between A and B particles, aAB , and the mass ratios mA/mB are
shown inside the parentheses [21].

A

B 6Li 40K 87Sr 171Yb 173Yb

6Li 1.179 07 1.981 06 2.505 83 3.015 31 3.024 37
(1.000 00) (6.643 92) (14.4484) (28.4178) (28.7506)

40K 1.010 33 1.179 07 1.411 48 1.725 59 1.731 87
(0.150 51) (1.000 00) (2.174 68) (4.277 26) (4.327 35)

87Sr 1.002 51 1.063 37 1.179 07 1.373 74 1.377 99
(0.069 21) (0.459 84) (1.000 00) (1.966 85) (1.989 88)

171Yb 1.000 69 1.021 95 1.073 31 1.179 07 1.181 59
(0.035 19) (0.233 79) (0.508 43) (1.000 00) (1.011 71)

173Yb 1.000 67 1.021 53 1.072 09 1.176 57 1.179 07
(0.034 78) (0.231 09) (0.502 54) (0.988 42) (1.000 00)
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TABLE II. The exact scattering length aDA = aDA
0 (0) between

a fermionic AB dimer (consisting of one fermionic A atom and
one bosonic B atom) and a fermionic A atom is shown for a list
of two-species Bose-Fermi mixtures. Here, aDA is in units of the
two-body scattering length between A and B particles, aAB , and the
mass ratios mA/mB are shown inside the parentheses [21].

A

B 6Li 40K 87Sr 171Yb 173Yb

7Li 1.148 17 1.887 73 2.395 79 2.896 21 2.905 16
(0.857 34) (5.696 12) (12.3872) (24.3638) (24.6491)

23Na 1.026 642 1.330 55 1.660 74 2.051 82 2.059 26
(0.261 64) (1.738 34) (3.780 33) (7.435 32) (7.522 40)

39K 1.010 80 1.184 59 1.421 38 1.739 29 1.745 63
(0.154 38) (1.025 67) (2.230 51) (4.387 07) (4.438 44)

41K 1.009 88 1.173 71 1.401 81 1.712 13 1.718 35
(0.146 77) (0.975 16) (2.120 67) (4.171 03) (4.219 88)

84Sr 1.002 68 1.066 70 1.186 75 1.386 65 1.391 00
(0.071 68) (0.476 25) (1.035 70) (2.037 06) (2.060 91)

85Rb 1.002 62 1.065 56 1.184 13 1.382 26 1.386 58
(0.070 84) (0.470 65) (1.023 52) (2.013 10) (2.036 68)

86Sr 1.002 56 1.064 45 1.181 57 1.377 96 1.382 25
(0.070 02) (0.465 19) (1.011 63) (1.989 73) (2.013 03)

87Rb 1.002 51 1.063 37 1.179 06 1.373 73 1.377 99
(0.069 21) (0.459 84) (0.999 99) (1.966 84) (1.989 87)

88Sr 1.002 45 1.062 32 1.176 62 1.369 61 1.373 82
(0.068 43) (0.454 62) (0.988 66) (1.944 54) (1.967 32)

133Cs 1.001 12 1.033 06 1.104 08 1.239 78 1.242 91
(0.045 26) (0.300 69) (0.653 91) (1.286 15) (1.301 21)

135Cs 1.001 09 1.032 28 1.102 00 1.235 81 1.238 90
(0.044 59) (0.296 24) (0.644 22) (1.267 08) (1.281 92)

168Yb 1.000 71 1.022 60 1.075 19 1.182 92 1.185 48
(0.035 82) (0.237 97) (0.517 52) (1.017 58) (1.029 80)

170Yb 1.000 70 1.022 17 1.073 93 1.180 34 1.182 97
(0.035 40) (0.235 17) (0.511 42) (1.005 89) (1.017 67)

172Yb 1.000 68 1.021 74 1.072 70 1.177 81 1.180 32
(0.034 98) (0.232 43) (0.505 47) (0.994 18) (1.005 83)

174Yb 1.000 67 1.021 32 1.071 50 1.175 34 1.177 83
(0.034 58) (0.229 76) (0.499 65) (0.982 74) (0.994 25)

176Yb 1.000 65 1.020 92 1.070 33 1.172 92 1.175 38
(0.034 19) (0.227 14) (0.493 96) (0.971 55) (0.982 92)

scattering length aAB with the proportionality factor depending
only on the masses of the constituent particles. However,
since three-body Efimov bound states emerge for larger mass
ratios [7,8], this problem is not universal (with an additional
parameter coming from the short-range three-body physics
being needed for an accurate description), and our analysis
does not include this nonuniversal effect [5,9]. In particular,

the 6Li-87Sr, 6Li-171Yb, and 6Li-173Yb Fermi-Fermi mixtures
and 7Li-171Yb, and 7Li-173Yb Bose-Fermi mixtures have mass
ratios that are above the critical ratio for the emergence of
three-body Efimov bound states.

III. CONCLUSIONS

In this paper, we used the diagrammatic T -matrix approach
to analyze the three-body scattering problem between two
identical fermions and a third particle. The third particle could
be a different species of fermion or a boson. We calculated the
exact s-wave dimer-atom scattering length for all mass ratios,
and our results exactly match the few-body results of Petrov
who obtained them by solving the three-body Schrödinger
equation [5]. It is quite remarkable that the diagrammatic
T -matrix approach exactly recovers the few-body results for all
mass ratios, since the diagrammatic approach is performed in
momentum space, while the few-body approach is performed
in real space [22].

We also discussed the relevance of our results to the
quantum phases of two-species Fermi-Fermi and Bose-Fermi
mixtures of atomic gases at ultracold temperatures. In par-
ticular, in the strong-attraction or molecular limit, these
mixtures can be well described by simpler effective models,
where paired atoms behave as dimers and interact weakly
with each other and with the remaining unpaired atoms.
These effective descriptions require only the scattering lengths
between two dimers and between a dimer and an unpaired
atom. Anticipating future experiments, we listed the exact
dimer-atom scattering lengths for all available two-species
Fermi-Fermi and Bose-Fermi mixtures.

In addition, we showed that, unlike that of the equal-mass-
particles case where the three-body scattering T matrix decays
monotonically as a function of the outgoing momentum, after
an initial rapid drop, this function changes sign and becomes
negative at large momenta and then decays slowly to zero
when the mass ratio of the fermions to the third particle is
higher than a critical value (around 6.5). As the mass ratio gets
higher, modulations of the T matrix become more apparent
with multiple sign changes. We argued that this effect could
be related to the “fall of a particle to the center” phenomenon
[9,23] and to the emergence of three-body Efimov bound states
[7,8].
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