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We theoretically analyze Fermi-Bose mixtures consisting of light fermions and heavy bosons that are loaded
into optical lattices �ignoring the trapping potential�. To describe such mixtures, we consider the Fermi-Bose
version of the Falicov-Kimball model on a periodic lattice. This model can be exactly mapped onto the spinless
Fermi-Fermi Falicov-Kimball model at zero temperature for all parameter space as long as the mixture is
thermodynamically stable. We employ dynamical mean-field theory to investigate the evolution of the Fermi-
Bose Falicov-Kimball model at higher temperatures. We calculate spectral moment sum rules for the retarded
Green’s function and self-energy, and use them to benchmark the accuracy of our numerical calculations, as
well as to reduce the computational cost by exactly including the tails of infinite summations or products. We
show how the occupancy of the bosons, single-particle many-body density of states for the fermions, momen-
tum distribution, and the average kinetic energy evolve with temperature. We end by briefly discussing how to
experimentally realize the Fermi-Bose Falicov-Kimball model in ultracold atomic systems.
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I. INTRODUCTION

Experimental work in ultracold atomic systems in optical
lattices has been progressing rapidly. First generation experi-
ments focused primarily on single species systems, or mix-
tures of different isotopes of the same atomic species. Now,
experimental work is progressing into the realm of mixtures
of different species of atoms. Since these atomic species of-
ten have significantly different masses, one immediately ex-
pects such systems to respond differently than isotopic mix-
tures. In addition, if light alkali-metal atoms such as Li or K
are used, or if one uses alkaline-earth-metal atoms such as Sr
or rare-earth metals such as Yb, then one has the prospect for
modifying the particle statistics from Fermi-Dirac to Bose by
simply changing the isotope employed in the experiment.

In this work, we focus on Fermi-Bose mixtures where the
bosonic atoms are the heavy atoms �which is typically the
experimental situation if Li or K is the light fermion and Rb,
Cs, Sr, or Yb is the heavy boson�. While much work on
Fermi-Bose mixtures has focused on either how the presence
of the fermions modifies the Bose-Einstein condensation
�BEC� of the bosons, or how the presence of the bosons
modifies the interactions of the fermions �e.g., by allowing
phonons� �1�, our work here focuses on the opposite situation
where the heavy bosons are so heavy that we can ignore the
quantum-mechanical effects of their kinetic energy, and
hence they never condense into a BEC. Instead, at low tem-
perature, the mixture either phase separates or forms static
density wave patterns, which can be quite complex. We be-
lieve such a situation arises when the tunneling amplitude of
the heavy bosons on the optical lattice is more than an order
of magnitude smaller than the tunneling amplitude of the
light fermions. This typically occurs when the lattice depth is
deep �more than 10 to 15 recoil energies of the Rb for a
K-Rb mixture� and the system is well represented by a
single-band model �2�. In this situation, experiments are
likely to be run at temperatures significantly higher than the
BEC temperature, and it is more likely that static density

waves would form instead of superfluidity �in other words,
we are examining how the fermions modify the Mott-
insulating state of the bosons, which occurs when the boson-
boson repulsion is much larger than the boson tunneling am-
plitude �3��. Long-range effective boson-boson interactions
are generated via the interactions with the mobile fermions.
This realm is not so well known within the atomic physics
community, although similar models have been widely stud-
ied within the condensed-matter physics community, as we
describe below.

Recently, mixtures of fermionic 40K and bosonic 87Rb
atoms have been first studied at fixed interspecies interaction
strengths by two different experimental groups �4,5�, and
later with tunable interactions �6�, where a shift of the
bosonic superfluid to Mott insulator transition has been ob-
served due to the interspecies coupling �irrespective of its
sign but with significant asymmetry�. There are several the-
oretical proposals to explain this effect �7–11�. Motivated by
these experiments, here we study such light-Fermi–heavy-
Bose mixtures with the Fermi-Bose version of the Falicov-
Kimball �FK� model �14–16�, the Fermi-Fermi version of
which has been widely discussed in the condensed-matter
literature �17,18�. In our case, the bosons have no quantum
dynamics of motion, but they can sample all possible heavy-
atom configurations in an annealed statistical-mechanical
sense.

Our main results are as follows. First, we examine the
symmetries of the Hamiltonian, and show that the Fermi-
Bose FK model can be mapped exactly onto the spinless
Fermi-Fermi FK model at zero temperature for all parameter
space as long as the mixture is thermodynamically stable.
Since this mapping is only approximate at low temperatures
and it fails at high temperatures, we develop dynamical
mean-field theory �DMFT� �19� �which becomes exact in in-
finite dimensions� to investigate the effects of temperature
and how the Fermi-Bose system evolves into an effective
Fermi-Fermi system. In addition, we calculate spectral mo-
ment sum rules for the retarded Green’s function and self-
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energy, and use them to check the accuracy of our numerical
calculations, as well as to reduce the computational cost
�20–23�. We also present typical numerical results for the
Fermi-Bose FK model including the occupancy of the
bosons, single-particle many-body density of states �DOS�
for the fermions, momentum distribution, and the average
kinetic energy. The DOS has significant temperature depen-
dence as the system evolves from high to low temperatures.
For example, in the insulating regime, where the magnitude
of the boson-fermion interaction is much larger than the
magnitude of the fermion tunneling amplitude, many “upper
Hubbard bands” exist at high temperature, with the weights
of each band determined by the probability that the bosons
multiply occupy a lattice site. These bands then evolve to
just one upper and one lower Hubbard band at low tempera-
ture.

The remainder of this manuscript is organized as follows.
In Sec. II, we first introduce the Hamiltonian for the Fermi-
Bose version of the FK model, and then discuss its symme-
tries. In Sec. III, we develop the DMFT for this model,
where we also discuss spectral moment sum rules for the
retarded Green’s function and self-energy. The numerical re-
sults obtained from the DMFT are discussed in Sec. IV, and
a brief summary and conclusions are presented in Sec. V.

II. LIGHT FERMION–HEAVY BOSON MIXTURES

We analyze Fermi-Bose mixtures consisting of light fer-
mions and heavy bosons that are loaded into optical lattices.
We consider the limiting case such that the band mass of
bosons Mb is much greater than that of fermions �Mb�Mf�.
In this case, the tunneling term for the bosons tb is much
smaller than that of the fermions �tb� tf�, and we may set
tb=0 in the quantum-mechanical Hamiltonian that describes
the system �12�. Such mixtures could be experimentally re-
alized in ultracold atomic systems. For instance, a 40K-87Rb
mixture with Mb�2.2Mf, a 6Li-41K mixture with Mb
�6.8Mf, or a 6Li-133Cs mixture with Mb�22.2Mf are good
candidates for the applicability of this Hamiltonian �13�.
Hence, even with a mass difference of 2, one can get a sig-
nificant difference in the hopping. In addition, one could also
create species-dependent optical lattices for different iso-
topes of the same atom such that the bosonic isotope is lo-
calized but the fermionic one is not, which might be most
relevant for isotopic mixtures of Sr or Yb �in other words, it
is not the masses per se that need to be different, but it is the
tunneling amplitudes when in an optical lattice that need to
be quite different�. It is important to emphasize that, al-
though we consider the limit of localized bosons, the prob-
lem at hand is still a strongly correlated many-body problem
since the bosons and fermions are coupled by the interaction
and we take annealed statistical averages over all heavy-atom
configurations.

A. Fermi-Bose Falicov-Kimball (FK) model

With such systems in mind, we analyze the following
Hamiltonian to describe the light-fermion–heavy-boson mix-
tures �14–16�

H = − tf�
�i,j�

�f i
†f j + f j

†f i� +
Ubb

2 �
i

bi
†bi�bi

†bi − 1�

+ Ubf�
i

bi
†bif i

†f i − � f�
i

f i
†f i − �b�

i

bi
†bi, �1�

where f i
† �f i� is the creation �annihilation� operator for an

itinerant spinless fermion at site i, and bi
† �bi� is the corre-

sponding operator for a localized boson at site i. The fermi-
onic operators satisfy the usual canonical anticommutation
relations 	f i , f j

†
=�ij where �ij is the Kronecker delta func-
tion, the bosonic operators satisfy the usual canonical com-
mutation relations �bi ,bj

†�=�ij, and the fermionic and
bosonic operators all mutually commute. The first term is the
kinetic energy of the fermions with tf denoting the nearest-
neighbor tunneling. The second and third terms are the on-
site density-density interactions between the bosons them-
selves, and between the bosons and fermions, respectively.
The on-site fermion-fermion interaction is not allowed be-
cause of the Pauli exclusion principle, i.e., Uf f →�. The last
two terms involve the chemical potentials of the fermions
�� f� and bosons ��b�, that are employed to adjust the filling
of the corresponding particles to the desired values.

The model Hamiltonian given in Eq. �1� then corresponds
to the Fermi-Bose version of the FK model, the Fermi-Fermi
version of which has been studied extensively in the
condensed-matter literature �17,18�. At low temperatures, the
Fermi-Fermi version of the model is known to possess sig-
nificant regions of density wave order with complicated pat-
terns �17�, and also has a strong tendency to phase separate
when the light-fermion–heavy-fermion interaction is large
and repulsive �24�. It is also known that the heavy fermions
cannot generate an effective retarded light-fermion–light-
fermion attraction leading to superconductivity as a conse-
quence of Anderson’s theorem �25�. Within the DMFT con-
text, essentially all response functions �both static and
dynamical� and all kinds of transport have been evaluated for
the system �18�. We show below that many of these low
temperature properties are shared by the Fermi-Bose FK
model, but at higher temperatures, the behavior is quite dif-
ferent.

B. Symmetries of the Hamiltonian

This Hamiltonian possesses partial particle-hole symme-
tries for the fermions and bosons. These symmetries hold on
a bipartite lattice where it is possible to divide the entire
lattice into two sublattices A and B such that the fermionic
tunneling only connects different sublattices. When the
particle-hole transformation is applied to the fermions, i.e.,
f i

†→ f i
h�−1�p�i� and f i→ �f i

h�†�−1�p�i� with p�i�=0 for i�A and
p�i�=1 for i�B, then, up to a numerical shift, it can be
shown that the Hamiltonian that is expressed in terms of the
hole operators for the fermions maps onto the starting Hamil-
tonian with � f →−� f, Ubf →−Ubf, and �b→�b−Ubf. In the
canonical ensemble, this means that the energies are simply
related by E�� f ,�b ,Ubf��E�1−� f ,�b ,−Ubf�, where � f and
�b are the fillings for fermions and bosons, respectively. We
notice that this mapping for the fermions holds at any tem-
perature T, unlike that for the bosons, discussed next.
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When the particle-hole transformation is applied to the
bosons, i.e., bi

†→bi
h�−1�p�i� and bi→ �bi

h�†�−1�p�i�, then, up to
a numerical shift, it can also be shown that the Hamiltonian
that is expressed in terms of the hole operators for the bosons
maps onto the starting Hamiltonian with � f →� f +Ubf and
�b→�b+Ubb. In the canonical ensemble, this means that the
energies of many-body eigenstates are simply related by
E�� f ,�b ,Ubf��E�� f ,1+�b ,Ubf�. This is not enough to map
Green’s functions onto each other. The subtle issue is that the
particle states with nb=0,1 ,2 , . . . ,� map onto the hole states
nb

h�nb+1=1,2 ,3 , . . . ,�, hence we lose all information
about the weight of the nb

h=0 state when more than one nb
�0 state has a nonzero density; when only two states are
nonzero, the mapping above plus the relation between par-
ticle and hole densities allows us to find all of the bosonic
weights. This occurs exactly only at T=0 where at most two
states have nonzero weights. Hence the bosonic particle-hole
symmetry only occurs at T=0. This symmetry also holds in
the atomic �tb=0� limit of the Bose-Hubbard model at T=0,
where the energy for the particle excitations of the nbth state
is degenerate with that for the hole excitations of the �nb
+1�th state, but it does not hold when tb�0, because one can
no longer label the many-body eigenstates by the local boson
particle number.

The latter symmetry implies that there can be at most two
bosonic states that can be occupied at T=0. For instance,
nb= 	0,1
 states for 0��b�1; nb=1 state for �b=1; nb
= 	1,2
 states for 1��b�2; nb=2 state for �b=2; nb
= 	2,3
 states for 2��b�3; etc. This is similar to what hap-
pens in the spinless Fermi-Fermi FK model where there can
be at most two fermionic states for the heavy fermions due to
the Pauli exclusion principle. Therefore, the Fermi-Bose FK
model can be exactly mapped onto the well-studied spinless
Fermi-Fermi FK model for all parameter space at T=0 as
long as the mixture is thermodynamically stable. Since this
mapping is only approximate at low temperatures, and it fails
at high temperatures, we develop DMFT to investigate the
effects of temperature.

III. DYNAMICAL MEAN-FIELD THEORY

The DMFT for the Fermi-Fermi FK model is well estab-
lished in the literature �18,19�, and it can be easily general-
ized to the Fermi-Bose case that we consider here. For this
purpose, we notice that the bosons cannot undergo BEC
since there are a fixed number of localized bosons on each
lattice site and the local boson particle number is an operator
that commutes with the Hamiltonian. Then the impurity par-
tition function can be integrated analytically since the effec-
tive action is quadratic in the fermionic operators and de-
pends only on the local bosonic number operators. As a
result, similar to the Fermi-Fermi case, there are three main
equations that need to be solved self-consistently for the
Fermi-Bose FK model.

A. Imaginary-axis formalism

The first equation is the single-particle lattice Green’s
function for the fermions defined by the time-ordered prod-

uct G�	�=−�T	f i�	�f i
†�0�� in the imaginary time �0
	
��

representation, where T	 is the imaginary time ordering op-
erator, and �O��Tr	e−�HO
 /Z is the ensemble average with
Z=Tr	e−�H
 the partition function and �=1 /T the inverse
temperature. Here, the creation and annihilation operators are
in the imaginary-time Heisenberg representation O�	�
=eH	O�0�e−H	. In the Matsubara frequency representation,
G�i�n�=�0

�d	ei�n	G�	�, where �n= �2n+1�
 /� is the fermi-
onic Matsubara frequency, the Green’s function becomes

G�i�n� = �
nb=0

� wnb

G0
−1�i�n� − Ubfnb

, �2�

where wnb
=Znb

/Z �with Z=�nb=0
� Znb

� is the probability for
each site to be occupied exactly by nb=0,1 ,2 , . . . ,� bosons,
and G0

−1�i�n�= i�n+� f −��i�n� is the bare Green’s function
with ��i�n� the dynamical mean field. Here,

Znb
= e���bnb−Ubbnb�nb−1�/2�Z0�� f − Ubfnb� �3�

is the partition function for the nb state, where

Z0�� f� = 2e��f/2 

n=−�

�
i�n + � f − ��i�n�

i�n
�4�

is the fermionic partition function for Ubf =0. The prefactor
in Eq. �4� is added to give the correct noninteracting result
when ��i�n�=0. In the case of the spinless Fermi-Fermi FK
model, due to the Pauli exclusion principle, i.e., the heavy
fermion–heavy fermion interaction Ubb→�, only two states
�w0 and w1� can be occupied such that w1=1−w0 is the fill-
ing of localized fermions. Note these equations are similar to
the solution of the classical Holstein model �26�, but here the
boson states are discrete, while there they are continuous.

The partition functions also satisfy the well-known rela-
tions Z0�� f�=Det G0

−1�i�n� and Z=Det G−1�i�n�, so that the
bare Green’s function can be re-expressed as

G0
−1�i�n� = G−1�i�n� + �−1�i�n� , �5�

which is our second equation. This is Dyson’s equation
which relates the bare Green’s function to the self-energy
��i�n�, and can also be thought as the definition of the self-
energy.

The third equation is given by the lattice Hilbert trans-
form of the noninteracting DOS,

G�i�n� = �
−�

� d�����
i�n + � f − ��i�n� − �

, �6�

where G�i�n�=�kG�k , i�n� with G�k , i�n�=1 / �i�n+� f
−��i�n�−��k�� the momentum-resolved Green’s function,
and ����=�k���−��k��=e−�� / t��2

/ ��
t�� is the noninteracting
DOS for the infinite-dimensional hypercubic lattice with ��x�
the delta function and ��k�=−2tf�i=1

d cos�kia� the energy dis-
persion for the fermions. Here, we used the fact that the
tunneling tf scales with dimension d such that tf = t� /�4d
�27�. This equation can be rewritten in terms of the Faddeeva
function G�i�n�=−i�
e−�i�n + �f − ��i�n��2

erfc	−i��i�n+� f

−��i�n��
, where erfc�z�= �2 /�
��z
�dze−z2

is the complex
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complementary error function, and �=Sign	Im�i�n
−��i�n��
.

It is convenient to solve Eqs. �2�, �5�, and �6� self-
consistently by using an iterative approach �28�. For a fixed
set of Ubb, Ubf, and T, our strategy is as follows: �1� choose
initial values for � f and �b; �2� start with an initial value for
��i�n�, e.g., ��i�n�=0, and plug it into Eq. �6� to solve for
G�i�n�; �3� use G�i�n� and the initial ��i�n� in Eq. �5� to
obtain G0�i�n�; �4� plug G0�i�n� into Eq. �2� to solve for the
new G�i�n�; �5� use G0�i�n� and the new G�i�n� in Eq. �5�
to obtain a new ��i�n�; and �6� iterate steps �2�–�5� with the
new ��i�n� until the solution converges. Finally, we �7� ad-
just � f and �b until the desired � f = �f i

†f i� and �b= �bi
†bi� val-

ues are reached. Typically, the self-energy converges to eight
decimal points in less than twenty iterations �in a few sec-
onds� for each choice of � f and �b, and the entire procedure
takes less than a minute to obtain the particular values for � f
and �b.

B. Real-axis formalism

Once the chemical potentials � f and �b, and the occupa-
tion probabilities wnb

are calculated from the imaginary-axis
calculation, we can employ the analytic continuation of Eqs.
�2�, �5�, and �6� with i�n→�+ i0+, to calculate G��� and
���� on the real axis using a similar iterative approach.
Typically, the convergence is slower on the real axis than on
the imaginary one, especially near the correlation induced
band edges which leads to a number of poles in the self-
energy when Ubf is large enough. Therefore, it is important
to verify the consistency between the imaginary- and real-
axis calculations.

For instance, one of the stringent tests is the comparison
of the Green’s function that is calculated directly on the
imaginary axis by the algorithm described above to the spec-
tral representation for the imaginary-axis Green’s function
given by G�i�n�=−�1 /
�Im�−�

� d�G��� / �i�n−��, with the
Green’s function generated by the real-axis code appearing in
the integrand. We usually achieve more than four digits of
accuracy between the two calculations. Another test is the
comparison of the filling of the fermions that can be calcu-
lated directly on the imaginary axis via � f
= �1 /���n=−�

� G�i�n� to that found from the real axis with
� f =−�1 /
��−�

� d�F���Im G���, where F���=1 / �1+e��� is
the Fermi-Dirac distribution function.

One can also check the spectral moment sum rules for the
retarded Green’s function, and also for the retarded self-
energy �20–23�. These moments are integrals of powers of
frequency multiplied by the corresponding spectral function
and integrated over all frequency. For instance, the spectral
moments for the Green’s function are defined as �m

R =
−�1 /
��−�

� d��m Im G���. It can also be shown that �m
R

= �	�f i ,H�m , f i
†
�, where 	O1 ,O2
=O1O2+O2O1 is the anti-

commutator, and �O1 ,O2�m is the multiple commutation op-
erator such that �O1 ,O2�1= �O1 ,O2�=O1O2−O2O1;
�O1 ,O2�2= ��O1 ,O2� ,O2�; etc. Evaluating the commutators is
tedious but straightforward, and the results are

�0
R = 1, �7�

�1
R = − �� f − Ubf�b� , �8�

�2
R =

t�2

2
+ �� f − Ubf�b�2 + Ubf

2 ��bi
†bibi

†bi� − �b
2� , �9�

�3
R = −

3t�2

2
�� f − Ubf�b� − �� f − Ubf�b�3 − 3� fUbf

2

� ��bi
†bibi

†bi� − �b
2� + Ubf

3 ��bi
†bibi

†bibi
†bi� − �b

3� ,

�10�

where the operator averages �bi
†bibi

†bi¯� can be easily cal-
culated from the knowledge of wnb

as ��bi
†bi�k�=�nb=0

� wnb
nb

k,
and

�b = �
nb=0

�

wnb
nb �11�

is the filling of the bosons. Therefore, the accuracy of the
calculations can be further checked by comparing the real-
axis calculation of the moments �m

R by directly performing
the integrations over the real frequency to the exact results
given in Eqs. �7�–�10�.

Similarly, the spectral moment sum rules for the retarded
self-energy are defined as Cm

R =−�1 /
��−�
� d��m Im ����.

One can also calculate these moments by using Dyson’s
equation, and after some significant algebra, the results are

C0
R = Ubf

2 ��bi
†bibi

†bi� − �b
2� , �12�

C1
R = − Ubf

2 �� f + 2Ubf�b���bi
†bibi

†bi� − �b
2�

+ Ubf
3 ��bi

†bibi
†bibi

†bi� − �b
3� . �13�

In this way, the accuracy of the calculations can be again
benchmarked by comparing the real-axis integration of the
spectral moments Cm

R with the exact values given in Eqs. �12�
and �13�. In addition, we would like to mention that the large
frequency limit of the real-axis self-energy

��� → �� = Ubf�b �14�

provides another independent check of the numerics.
Typically, there are a number of poles in the self-energy

near the correlation induced band edges when Ubf is large
enough, and in order to guarantee the accuracy of the sum
rules that are calculated on the real axis by direct quadrature,
the pole contributions have to be included by hand as de-
scribed here. Using Eqs. �2� and �5� with i�n→�+ i0+, we
find that the locations �p of these poles are determined by
the transcendental equation

�
nb=0

� �wnb 

mb�nb

�

��p + � f − Ubfmb�� = 0. �15�

In a typical calculation, we restrict the bosonic occupancies
to be less than some maximal number of multiple boson
occupancy. Then the transcendental equation becomes a fi-
nite equation which is easy to solve directly. Using such a
procedure, the self-energy can then be written as ����
=�reg���+�pRp / ��−�p+ i0+�, where �reg��� is the regular
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piece, p sums over the finite number of poles that were found
to solve the truncated equation, and Rp is the residue of the
pole �p that is calculated next �only poles with positive resi-
due are included in the sum as described below�. Since the
pole contribution dominates the spectral functions near the
poles, one can expand Eq. �6� with i�n→�+ i0+ in powers
of �+� f −����, and obtain G����g1 / ��+� f −�����
+g3 / ��+� f −�����3+¯ where g1=�−�

� d�����=1 and g3
=�−�

� d������2= t�2 /2. Inserting this expansion into Eq. �5� to
obtain ���� near the poles, and after some algebra, leads to

Rp =

�
nb=0

�

�wnb
− �0nb

� 

mb�nb

�

��p + � f − Ubfmb�

��p + � f�−1 

q�p

��p − �q�

−

�
nb=0

�

wnb
�

nb��nb

�



mb�	nb,nb�


�

��p + � f − Ubfmb�

g3
−1 


q�p
��p − �q�

, �16�

where �ij is the Kronecker delta function. Only poles where
the residue Rp is positive correspond to real physical poles.
As a result, the pole contribution to the self-energy moment
Cm

R is �p�Rp��p�
m , where p� sums over the poles with positive

residues.
We recall that the spectral moment sum rules given in

Eqs. �7�–�10� and Eqs. �12� and �13� have exactly the same
form in the case of the Fermi-Fermi FK model �21–23�.
However, in that case ��bi

†bi�k�= �bi
†bi�=w1 for any k due to

the fermionic anticommutators. In addition, since wnb�2=0,
the pole equation given in Eq. �15� reduces considerably
leading to a single pole at �1=−� f +Ubf�1−w1�, for which
the residue equation given in Eq. �16� reduces to the well-
known result R1=w1�1−w1�Ubf

2 −g3 �29�.

C. Asymptotic behavior for large frequencies

There is another important application of the spectral mo-
ment sum rules given above. They can be used to evaluate
the high-frequency asymptotic behavior of the Green’s func-
tion, self-energy, and dynamical mean-field exactly. There-
fore, this knowledge can be used to reduce the number of
Matsubara frequencies that is needed to solve the imaginary-
axis equations �23�.

When the Matsubara frequency is high enough, it can be
shown that the Green’s function can be written as G�i�n�
=�m=0

� �m
R / �i�n�m+1, and similarly the self-energy can be

written as ��i�n�=����+�m=0
� Cm

R / �i�n�m+1, where ���� is a
real constant, and it is the large-frequency limit of the self-
energy. These expansions follow from the definition of the
spectral moment sum rules and the spectral formula for the
retarded Green’s function and self-energy. Inserting these ex-
pansions into Eq. �5�, and using the definition of G0

−1�i�n�
given below Eq. �2�, we obtain the asymptotic expansion of
the dynamical mean-field as ��i�n�= t�2 / �2�i�n��− t�2�� f
−Ubf�b� / �2�i�n�2�+¯. This asymptotic expansion along
with the expansion above allow us to treat the high-
frequency tails of some quantities as described next.

Let us take an energy cutoff �c which is much larger than
the bandwidth of the interacting DOS, and use the
asymptotic expansion to sum over the Matsubara frequencies
that are higher than �c. This also defines a cutoff nc for the
Matsubara frequencies, given by the closest one to �c but
lying below it, i.e., �nc

= �2nc+1�
 /���c. Inserting the
asymptotic expansions into Eq. �3�, we obtain

Znb
= 2 exp���� f − Ubfnb

2
+ �bnb −

Ubb

2
nb�nb − 1���

� 

n=0

nc �G0
−1�i�n� − Ubfnb

i�n
�2



n=nc+1

� �1 +
� f − Ubfnb

i�n

−
t�2

2�i�n�2 +
t�2�� f − Ubf�b�

2�i�n�3 �2

. �17�

Here, since the complex conjugate of i�n is equal to i�−n−1,
we take the negative Matsubara frequencies into account by
writing the absolute value squares in the products. To ap-
proximate the infinite products that have an infinite number
of terms, we first rewrite the infinite products as the expo-
nential of the sum of the logarithm of the individual terms.
Then, for temperatures much lower than the bandwidth of
the interacting DOS, we replace the sum by an integral, and
then convert the integral over frequency to an integral over
z=1 /�, leading to



n=nc+1

� �1 +
a

i�n
+

b

�i�n�2 +
c

�i�n�3�2

� exp� �

2

� �

0

1/�c dz

z2 ln��1 + bz2�2 + z2�a − cz2�2�� .

�18�

Here, a=� f −Ubfnb, b=−t�2 /2, and c= t�2�� f −Ubf�b� /2. As a
result, the use of asymptotic expressions for the Green’s
function, self-energy, and the dynamical mean field allow us
to reduce the computational effort considerably for the
imaginary-axis calculation by keeping �c small. Because the
DOS extends farther out in energy as T rises, one needs to
increase �c in order to achieve the same level of accuracy for
high T.

The asymptotic expansions can also be used to treat the
tails in the summation for the fermion filling, i.e., � f
= �1 /���n=−�

� G�i�n�, which leads to

� f =
�0

R

2
−

��1
R

4
+

�3�3
R

48

+
1

�
�

n=−nc

nc−1 �G�i�n� −
�0

R

i�n
−

�1
R

�i�n�2 −
�2

R

�i�n�3 −
�3

R

�i�n�4� .

�19�

Here, we use the standard representation of the Fermi-Dirac
distribution function F�x�= �1 /���n=−�

� 1 / �i�n−x� and its de-
rivatives with respect to x when x→0, to evaluate the coef-
ficients of the �1 /���n=−�

� 1 / �i�n�k type. Since the contribu-
tion from the summation �which needs to be evaluated
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numerically� vanishes rapidly for large �n, the filling can be
calculated quite accurately.

IV. NUMERICAL RESULTS

Having described the DMFT formalism for the Fermi-
Bose FK model, next we present some of our numerical re-
sults that are obtained by solving Eqs. �2�, �5�, and �6� self-
consistently for given fermion and boson fillings, � f and �b,
respectively. For this purpose, we choose a large energy cut-
off �c=200t�, and treat the tails of the high-frequency sum-
mations using the formalism described above. Since the sys-
tem is unstable for Ubb�0, and the Ubf �0 case can be
mapped onto the Ubf �0 case as discussed in Sec. II B, we
restrict our analysis to 	Ubb ,Ubf
�0 values. We remark here
that numerical solutions with wnb→��0 are unphysical, in-
dicating an instability in the system corresponding to a
bosonic collapse when Ubb�0.

A. Mapping onto the spinless Fermi-Fermi FK model

We argued in Sec. II B that the Fermi-Bose FK model can
be exactly mapped onto the well-studied spinless Fermi-
Fermi FK model for all parameter space at T=0 as long as
the mixture is thermodynamically stable. Here, we numeri-
cally show how the system evolves away from the Fermi-
Fermi behavior at higher temperatures.

In Fig. 1, we calculate the region where the total probabil-
ity of finding a boson in just two of the nb states is higher
than 99%. Therefore, below each line in all figures, the sys-
tem can be effectively mapped onto the spinless Fermi-Fermi
FK model. In Fig. 1�a�, we show temperature T vs boson-
boson repulsion Ubb mapping diagram for different boson
fillings �b when bosons and fermions are uncoupled, i.e.,
Ubf =0. As �b increases, it is seen that the mapping is pos-
sible only for lower T values at a given Ubb, and is possible
only for lower Ubb values at a given T. This is because it is
energetically more favorable to have an occupation of mul-
tiple nb states as a function of increasing T and/or decreasing
Ubb due to the Bose distribution function.

When Ubf �0, we show a T vs Ubb mapping diagram for
different Ubf in Fig. 1�b�, and a Ubf vs. Ubb mapping diagram
for different T in Fig. 1�c�. As Ubf increases, it is seen that
the mapping is possible for smaller and smaller parameter
space compared to the Ubf =0 limit. This is because the cou-
pling between bosons and fermions induces an attractive in-
teraction between bosons such that the effective boson-boson
repulsion Ubb

eff decreases by some amount that is proportional
to Ubf

2 to the lowest order in Ubf. Therefore, increasing Ubf
leads to an occupation of additional nb states as discussed
next.

B. Density of states for the fermions

In this subsection, we present our numerical results for the
probability wnb

of finding a boson in state nb, and the single-
particle many-body density of states �DOS� for the fermions,
to illustrate typical properties of the Fermi-Bose FK model.
The probabilities are shown in Fig. 2�a� as a function of T for
the first five boson occupancies when �b=1, � f =0.25, Ubb
= t�, and Ubf =1.7t�. It is seen that wnb

=�1nb
at T=0 which is

due to �b=�nb=0
� wnb

nb with �nb=0
� wnb

=1. However, the occu-
pation of the nb=1 state decreases at finite T, while that of
higher and higher nb states become finite with increasing T.

The occupancy of multiple nb states has a strong effect on
the many-body DOS for the fermions, i.e., A���=
−�1 /
�Im G�i�n→�+ i0+�, which is given by

A��� = −
1



Im�

−�

� d�����
� + � f − ���� − � + i0+ , �20�

where ���� is the noninteracting DOS for the infinite-
dimensional hypercubic lattice defined below Eq. �6�, and
the infinitesimal is needed only when Im ����=0. In Fig.
2�b�, there is a single Gaussian peak at T=0 corresponding to
nb=1 �which actually becomes a noninteracting system�, but
there are three peaks at T=0.1t� corresponding to nb=0, 1
and 2. In addition, two more peaks occur at T= t� corre-
sponding to nb=3 and 4. This is again because it is energeti-
cally more favorable to have an occupation of multiple nb
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FIG. 1. �Color online� Mapping diagrams show when the Fermi-Bose FK model can be mapped onto the spinless Fermi-Fermi FK model
as a function of boson-boson repulsion Ubb. In all figures, mapping boundaries separate the regions where total probability of finding a boson
in two of the nb states is higher than 99% �which occurs below each line�.

M. ISKIN AND J. K. FREERICKS PHYSICAL REVIEW A 80, 053623 �2009�

053623-6



states as a function of increasing T due to the bosonic char-
acter of the heavy atoms. We mention that while there is not
any pole in the self-energy when T=0, there are two physical
poles at �1�−0.348t� and �2�2.149t� with residues R1
�R2�0.166t� when T=0.1t�, and at �1�0.725t� and �2
�2.871t� with residues R1�0.419t� and R2�0.402t� when
T= t�. Notice that poles occur near the correlation induced
band edges.

We investigate the effects of Ubf on A��� in Fig. 2�c�,
where it is seen that increasing �decreasing� Ubf increases
�decreases� the number of peaks. This is again because the
coupling between the bosons and fermions induces an attrac-
tive interaction between bosons such that the effective
boson-boson repulsion decreases, which leads to an occupa-
tion of additional nb states. For instance, as shown in the
figure, there is a single peak when Ubf = t�, but there are three
of them when Ubf =1.7t�. In addition, the band gap between
different nb states increases with increasing Ubf. We again
mention that while there is not any pole in the self-energy
when Ubf = t�, there are two physical poles at �1�−0.348t�

and �2�2.149t� with residues R1�R2�0.166t� when Ubf
=1.7t�, and at �1�0.0605t� and �2�4.295t� with residues
R1�R2�1.759t� when Ubf =3t�. Notice again that poles oc-
cur near the correlation induced band edges.

Although the DOS for the fermions shows rich structures,
this is not yet a measurable quantity in ultracold atomic sys-
tems �it might be feasible with an appropriately designed
rf-frequency experiment that acts like a photoemission ex-
periment of the fermions �30�, but there one would be ob-
serving the DOS multiplied by the Fermi-Dirac distribution
function, the so-called lesser spectral function�. For this rea-
son, we next discuss the momentum distribution of the fer-
mions and bosons which could be easily measured in a time-
of-flight measurement.

C. Momentum distribution

The occupancy of multiple nb states has also significant
effect on the momentum distribution of the fermions, i.e.,
nmd�k�= �1 /���n=−�

� G�k , i�n�, which becomes

nmd�k� =
1

�
�

n=−�

�
1

i�n + � f − ��i�n� − ��k�
, �21�

where G�k , i�n� is the momentum-resolved Green’s function
and ��k�=−2tf�i=1

d cos�kia� is the energy dispersion for the
fermions defined below Eq. �6�. The momentum distribution
of the bosons is simply a constant given by the filling of the
bosons since they are localized with zero tunneling. To regu-
larize the frequency summation in our numerical calcula-
tions, we subtract �1 /���n=−�

� 1 / �i�n+� f −����−��k��, and
add F�−� f +����+��k�� in Eq. �21�, where F�x� is the
Fermi-Dirac distribution function.

Our numerical results for nmd�k� vs the fermion dispersion
��k� are shown in Fig. 3. As shown in Fig. 3�a�, nmd�k� is a
step function at T=0, and it broadens as a function of in-
creasing T, which is expected due to Fermi-Dirac statistics.
For a fixed T, the effects of Ubf on nmd�k� are shown in Fig.
3�b�, where it is seen that increasing Ubf also broadens
nmd�k� just like the temperature, which is the expected many-
body effect due to a finite lifetime of the fermionic excita-
tions. In the FK model, the fermions are usually not a Fermi
liquid �or more correctly a Fermi gas in our context� at T
=0, but for the case of integer boson fillings �b
=0,1 ,2 , . . . ,� �presented here� they are, because the system
evolves to an effective noninteracting system as T→0.

D. Average kinetic energy

Another important quantity that can be measured in ultra-
cold atomic systems is the average kinetic energy of the par-
ticles, which is given by ���k��=�k��k�nmd�k� for the fermi-
ons, and vanishes for the bosons since they are localized with
zero tunneling. Since the momentum distribution is mea-
sured directly in experiment, one can process the data to
determine the average kinetic energy in the lattice under the
assumption that the momentum distribution has not changed
significantly during the time-of-flight experiment. For our
calculations, we convert the summation over momentum to
an integral over energy. The resulting expression is
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FIG. 2. �Color online� �a� The probability wnb
of finding a boson in state nb is shown as a function of temperature T for the first five boson

occupancies. ��b�, �c�� The single-particle many-body density of states for the fermions A��� is shown as a function of frequency �.
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���k�� = �
−�

�

d������nmd��� , �22�

where ���� is the noninteracting DOS for the infinite-
dimensional hypercubic lattice defined below Eq. �6�.

Our numerical results for ���k�� vs T are shown in Fig. 4.
When Ubf is small, e.g., Ubf = t�, it is seen that ���k�� in-
creases monotonically as a function of T. However, when
Ubf becomes large enough, see e.g., Ubf =1.7t�, it has a local
minimum at finite T after an initial increase for lower tem-
peratures. This minimum moves toward higher T as Ubf be-
comes larger, compare, e.g., Ubf =1.7t� case with that of

Ubf =3t�. The nonmonotonic behavior occurs only for large
enough Ubf values and is a consequence of the correlation
induced band gaps that are present in the many-body DOS,
as discussed in Sec. IV B. This may be one of the most direct
ways, with current available technology, to infer the changes
in the DOS as a function of T in experiment.

V. CONCLUSIONS

In this work, we analyzed Fermi-Bose mixtures consisting
of light fermions and heavy bosons that are loaded into op-
tical lattices. To describe such mixtures, we considered the
Fermi-Bose version of the FK model, the Fermi-Fermi ver-
sion of which has been widely discussed in the condensed-
matter literature. In our model, we assumed that the bosons
are localized such that their tunneling to other sites vanishes
�tb=0� but that the system can statistically sample all low
energy configurations of the heavy atoms. This perspective
makes sense in ultracold atomic experiments if the difference
in the tunneling amplitudes between the light fermions and
heavy bosons is large enough so that the quantum nature of
the bosons can be neglected, but they can reorganize their
positions to allow the system to sample different configura-
tions �31�. An alternative perspective is that once the optical
lattice has been introduced, the heavy bosons become frozen
into a specific configuration, that is randomly chosen from
the configurations that are energetically favorable in the
statistical-mechanical ensemble; as one repeats many experi-
ments and averages over the different configurations, one
would then reproduce the results of the FK model described
here �32�.

First, we discussed the symmetries of the Hamiltonian,
and showed that the Fermi-Bose FK model can be mapped
exactly onto the spinless Fermi-Fermi FK model at zero tem-
perature for all parameter space as long as the mixture is
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FIG. 3. �Color online� The momentum distribution of the fermi-
ons nmd�k� is shown as a function of the dispersion ��k�. The pa-
rameters used in these figures are the same as the ones used in Fig.
2.
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thermodynamically stable. Since this mapping is only ap-
proximate at low temperatures and fails at high temperatures,
we developed DMFT to investigate the effects of tempera-
ture �recall that the DMFT becomes exact in infinite dimen-
sions�. We also calculated spectral moment sum rules for the
retarded Green’s function and retarded self-energy, and used
them to check the accuracy of our numerical calculations, as
well as to reduce the computational cost. When bosons and
fermions are uncoupled �Ubf =0�, we showed that, as the bo-
son filling increases, the mapping is possible only for lower
T values at a given Ubb, and is possible only for lower Ubb
values at a given T. This is because it is energetically more
favorable to have occupation of multiple nb states as a func-
tion of increasing T and/or decreasing Ubb due to the Bose
statistics. As Ubf increases, we found that the mapping is
possible for smaller and smaller parameter space compared
to the Ubf =0 limit. This is because the coupling between
bosons and fermions induces an attractive interaction be-
tween bosons such that the effective boson-boson repulsion
Ubb

eff decreases by some amount that is proportional to Ubf
2 to

the lowest order in Ubf. Therefore, increasing Ubf leads to an
occupation of additional nb states.

We also presented typical numerical results for the Fermi-
Bose FK model including the occupancy of bosonic states,
single-particle many-body DOS for the fermions, experimen-
tally relevant momentum distribution, and the average ki-
netic energy. We found that the occupancy of multiple
bosonic states has a strong effect on the DOS for the fermi-
ons, leading to strong modulations as a function of fre-
quency. The number of peaks corresponds to the number of
bosonic states that are occupied, and it increases as a func-

tion of increasing T and/or Ubf. In addition, we showed that
increasing Ubf at a fixed T broadens the momentum distribu-
tion of the fermions, just like the effects of temperature by
itself. We also showed how the average kinetic energy
evolves with T and how one can infer changes to the DOS
via structure in the average kinetic energy.

We hope that some of these results could be experimen-
tally realized in ultracold atomic systems. We think, for in-
stance, K-Rb, Li-K, or Li-Cs mixtures are a good initial can-
didates for simulating the Bose-Fermi FK model. In addition,
one could also create species-dependent optical lattices for
different isotopes of the same atom such that the bosonic
isotope is localized but not the fermionic one.

Finally, if one recalls the local-density approximation as a
first approximation to the effects of the trap in a real experi-
mental system, we expect that the methods described here
could be quickly used to generate approximate results for
density distributions across the trap and for a variation of the
density of states or of the momentum distribution. Such re-
sults are beyond the scope of this work, but could be inves-
tigated if one is interested in directly modeling a specific
experiment that is described by the Fermi-Bose FK model.
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