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We use the Bogoliubov–de Gennes formalism to analyze the effects of rotation on the ground-state phases of
harmonically trapped Fermi gases, under the assumption that quantized vortices are not excited. We find that
the rotation breaks Cooper pairs that are located near the trap edge, and that this leads to a phase separation
between the nonrotating superfluid �fully paired� atoms located around the trap center and the rigidly rotating
normal �nonpaired� atoms located toward the trap edge, with a coexistence �partially paired� region in between.
Furthermore, we show that the superfluid phase that occurs in the coexistence region is characterized by a
gapless excitation spectrum, and that it is distinct from the gapped phase that occurs near the trap center.
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With the ultimate success of techniques for trapping and
cooling atomic gases developed and improved gradually
since the 1980s, atomic Fermi gases have emerged as unique
testing grounds for many theories of exotic matter in nature,
allowing for the creation of complex yet very accessible and
controllable many-body quantum systems. For instance, evo-
lution from the weakly attracting Bardeen-Cooper-Schrieffer
�BCS� limit to the weakly repulsive molecular Bose-Einstein
condensation �BEC� has been observed in a series of remark-
able experiments. The ground-state phases of such atomic
Fermi gases have since been the subject of intense theoretical
and experimental research worldwide �1,2�.

To verify the superfluid ground state of atomic Fermi
gases, it is essential to analyze their response to rotation. For
instance, it has been theoretically predicted that sufficiently
fast rotation of superfluid Fermi gases excites quantized vor-
tices in the form of hexagonal vortex lattices �3–5�. Such
vortex lattices have recently been observed for both
population-balanced �6� and -imbalanced �7� systems. These
vortex experiments have not only complemented previously
found signatures, but also provided the ultimate evidence to
support the superfluid nature of the ground state.

Recently, the effects of rotation on the ground-state
phases of harmonically trapped Fermi gases have been theo-
retically studied at unitarity, under the assumption that quan-
tized vortices are not excited �8� �see also Ref. �9��. It has
been argued that the rotation causes a complete phase sepa-
ration between a nonrotating superfluid core and a rigidly
rotating normal gas, with a discontinuous density at the in-
terface. Subsequently, this problem has been analyzed using
the mean-field BCS framework within the semiclassical
local-density approximation �LDA� �10�. In addition to the
superfluid and normal regions, a coexistence region is found,
the possibility of which was not considered in Ref. �8�.

In this paper, we go beyond the semiclassical LDA and
develop a quantum-mechanical Bogoliubov–de Gennes
�BdG� formalism to analyze the effects of rotation on the
ground-state phases of harmonically trapped Fermi gases.
We discuss both population-balanced and -imbalanced mix-
tures throughout the BCS-BEC evolution. Our main results
�see Fig. 1� are in qualitative agreement with those of Ref.
�10�. We find that the rotation breaks Cooper pairs that are
located near the trap edge, and that this leads to a phase

separation between the nonrotating superfluid �fully paired�
atoms located around the trap center and the rigidly rotating
normal �nonpaired� atoms located toward the trap edge, with
a coexisting �partially paired� region in between. This leads
to a continuous density and superfluid order parameter as a
function of radial distance. Furthermore, we show that the
superfluid phase that occurs in the coexistence region is char-
acterized by a gapless excitation spectrum, and that it is dis-
tinct from the gapped phase that occurs near the trap center.

We obtain these results by solving the mean-field BdG
equations in the rotating frame �in units of �=kB=1�,

�K↑�r� − �Lz ��r�

���r� − K↓
��r� + �Lz

���u��r�
v��r� � = ���u��r�

v��r� � ,

�1�

where K��r�=−�2 /2M −���r�, � is the rotation frequency
around the z axis of the trapping potential, Lz is the z com-
ponent of the angular momentum operator, and the off-
diagonal self-consistency field ��r�=g��↑�r��↓�r�� is the lo-
cal superfluid order parameter. Here, �	
↑ ,↓� labels the

ΩΩ = 0 is finite

Superfluid Normal Coexistence

FIG. 1. �Color online� Schematic diagrams showing that the
entire trapped system is a superfluid in the absence of rotation ��
=0; left figure�. However, rotation leads to a phase separation ��
�0; right figure� between the nonrotating superfluid atoms located
around the trap center �yellow �light gray� region� and the rigidly
rotating normal atoms located toward the trap edge �black region�,
with a coexisting region in between �red �dark gray� region�.
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trapped hyperfine states, M is the mass, ���r�=��−V�r� is
the local chemical potential, �� is the global chemical poten-
tial, V�r�=M	2r2 /2 is the trapping potential which is as-
sumed to be spherically symmetric, 	 is the trapping fre-
quency, g
0 is the strength of the zero-ranged attractive
interactions between ↑ and ↓ atoms, and �¯� is a thermal
average. The quasiparticle wave functions u��r� and v��r�
are related to the particle annihilation operator ���r� via the
Bogoliubov-Valatin transformation ���r�=���u�,��r���,�
−s�v�,�

� �r���,−�
† �, where ��,�

† and ��,� are the quasiparticle
creation and annihilation operators, respectively, and s↑
= +1 and s↓=−1. Since the BdG equations are invariant un-
der the transformation v�,↑�r�→u�,↑

� �r�, u�,↓�r�→−v�,↓
� �r�,

and ��,↓→−��,↑, it is sufficient to solve only for u��r�
	u�,↑�r�, v��r�	v�,↓�r�, and ��	��,↑ as long as we keep all
of the solutions with positive and negative eigenvalues.

We assume ��r�=−g��u��r�v�
��r�f���� is real without

losing generality, where f�x�=1 / �exp�x /T�+1� is the Fermi
function and T is the temperature. Furthermore, we can relate
g to the two-body scattering length aF via 1 /g=−M /4�aF
+Mkc�r� /2�2, where kc

2�r�=2M��c+��r�� and ��r�= ��↑�r�
+�↓�r�� /2. Here, �c is the energy cutoff to be specified be-
low, and our results depend weakly on the particular value of
�c provided that it is chosen to be sufficiently high. The
order-parameter equation has to be solved self-consistently
with the number equation N�=
drn��r�, where n��r�
= ���

†�r����r�� is the local density of fermions, leading to
n↑�r�=���u��r��2f���� and n↓�r�=���v��r��2f�−���.

Next, we expand u��r� and v��r� in the complete basis
of the harmonic trapping potential eigenfunctions given
by K��r�
n,�,m�r�=�n,�

� 
n,�,m�r�, where �n,�
� =	�2n+�+3 /2�

−�� is the eigenvalue and 
n,�,m�r�=Rn,��r�Y�,m��r ,�r� is
the eigenfunction. Here, n is the radial quantum number, and
� and m are the orbital angular momentum and its projection,
respectively. The angular part Y�,m��r ,�r� is a spherical har-
monic and the radial part is Rn,��r�=�2�M	�3/4�n ! / �n+�

+1 /2�!�1/2e−r̄2/2r̄�Ln
�+1/2�r̄2�, where r̄=�M	r is dimensionless

and Li
j�x� is an associated Laguerre polynomial.

We choose Lz=−i� /��r and �	
� ,m ,��, leading
to u�,m,��r�=�nc�,m,�,n
n,�,m�r� and v�,m,��r�
=�nd�,m,�,n
n,�,m�r�. This expansion reduces the BdG equa-
tions to a 2�n�+1��2�n�+1� matrix eigenvalue problem for
a given 
� ,m� state,

�
n�
�K↑,�

n,n� − m��n,n� ��
n,n�

��
n�,n − K↓,�

n,n� − m��n,n�
��c�,m,�,n�

d�,m,�,n�
�

= ��,m,��c�,m,�,n

d�,m,�,n
� . �2�

Here, n�= �nc−�� /2 is the maximal radial quantum number
and nc is the radial quantum number cutoff, such that we
include only the single-particle states with 	�2n+�+3 /2�
��c=	�nc+3 /2�. In Eq. �2�, the diagonal matrix element

is K�,�
n,n�=�n,�

� �n,n�, where �i,j is the Kronecker delta,

and the off-diagonal matrix element is ��
n,n�

�
r2dr��r�Rn,��r�Rn�,��r�. Although ��r� becomes axially

symmetric when ��0, it is convenient to define ��r�
=
d�r��r� /4�, leading to

��r� = −
g

4�
�

�,m,�,n,n�

R̃�,m,�,n
↑ �r�R̃�,m,�,n�

↓ �r�f���,m,�� , �3�

where we introduced R̃�,m,�,n
↑ �r�=c�,m,�,nRn,��r� and

R̃�,m,�,n
↓ �r�=d�,m,�,nRn,��r�. Similarly, we define n��r�

=
d�rn��r� /4�, leading to

n��r� =
1

4�
�

�,m,�,n,n�

R̃�,m,�,n
� �r�R̃�,m,�,n�

� �r�f�s���,m,�� . �4�

Lastly, N� reduces to N↑=��,m,�,nc�,m,�,n
2 f���,m,�� and N↓

=��,m,�,nd�,m,�,n
2 f�−��,m,��. When �→0, the eigenfunction

coefficients c�,m,�,n and d�,m,�,n and the eigenvalues ��,m,� be-
come independent of m, and Eqs. �2�–�4� reduce to the usual
ones, see, e.g., Refs. �11–14�. Therefore, due to the coupling
between different m states, the rotating case is numerically
much more involved compared to the nonrotating case.

In addition to n��r�, we want to calculate the local density
of normal �rotating� fermions n�,N�r�. For this purpose, we
use the local current density J��r�= �J��r��, where J��r�
= �1 / �2Mi�����

†�r�����r�−H.c.� is the quantum-mechanical
probability current operator and H.c. is the Hermitian conju-
gate. This leads to J↑�r�= �1 / �2Mi�����u�

��r��u��r�f����
−H.c.� and J↓�r�= �1 / �2Mi�����v��r��v�

��r�f�−���−H.c.�.
The current, similar to the classical case, can be written as
J��r�=n�,N�r�v�r�, where n�,N�r� is the local density and
v�r�=�ẑ�r is the local velocity of normal fermions corre-
sponding to a rigid-body rotation. Since the normal fermions
are expelled toward the trap edge, we approximate n�,N�r�
=
d�rn�,N�r� /4� as

n�,N�r� �
s�

4�M�r2 �
�,m,�,n,n�

mR̃�,m,�,n
� �r�R̃�,m,�,n�

� �r�f�s���,m,�� ,

�5�

such that J��r�=
d�rJ��r� /4���rn�,N�r�.
Having discussed the BdG formalism, next, we analyze

the ground-state �T=0� phases for both population-balanced
�N↑=N↓ or �↑=�↓� and -imbalanced �N↑�N↓ or �↑��↓�
Fermi gases. This is achieved by solving BdG equations
�2�–�4� self-consistently as a function of the dimensionless
parameter 1 /kFaF, where kF is the Fermi momentum defined
via the Fermi energy

�F = 	�nF +
3

2
� =

kF
2

2M
=

1

2
M	2rF

2 � 	�3N�1/3 �6�

and N=N↑+N↓= �nF+1��nF+2��nF+3� /3. Here, nF and rF
are the corresponding Fermi level and Thomas-Fermi radius,
respectively. In our numerical calculations, we choose nF
=15 and nc=65, which corresponds to a total of N=1632
fermions and �c�4�F, respectively. Here, it is important to
emphasize that we do not expect any qualitative change in
our results with higher values of nF and/or nc, except for
minor quantitative variations.

In Fig. 2, we consider a weakly interacting Fermi gas on
the BCS side with 1 /kFaF=−0.5, and show n��r� and ��r�
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for nonrotating ��=0� and rotating ��=0.5	� cases. When
N↑=N↓, the entire superfluid is robust for ��0.1	, without
any significant effect on n��r� or ��r�. However, for �
�0.1	, we find that ��r� depletes everywhere inside the trap
and especially around the trap edge, which can be seen in
Fig. 2 when �=0.5	. This behavior is similar to the LDA
result �10�, and it occurs due to the fact that it is easier to
break the Cooper pairs that are located toward the trap edge
in comparison to the ones that occupy the center. This is
because the centrifugal energy that the system gains first be-
comes high enough to break the Cooper pairs around the trap
edge �see below�. When N↑=3N↓, in addition to such an
effect, the spatial modulation of ��r� disappears in the rotat-
ing case as shown in Fig. 2�b�. The depletion of ��r� leads to
a decrease �increase� in n��r� around the trap center �edge�
due to the centrifugal force caused by the rotation. It also
leads to a phase separation between the nonrotating fully
paired superfluid �FPS� atoms located around the trap center
and the rigidly rotating normal �nonpaired� ones located to-
ward the trap edge, with a coexistence region in between,
which is in agreement with the LDA result �10�. We charac-
terize the FPS, coexistence, and normal phases by n��r�
�n�,N�r�=0, n��r��n�,N�r��0, and n��r�=n�,N�r��0, re-
spectively. Notice that ��r� decreases smoothly as a function

of r from the FPS to the normal region where it vanishes,
which is in contrast with the LDA result where ��r� is
nonanalytic at the transition �10�. Since ��r� is finite in the
coexistence region, this region corresponds to a partially
paired superfluid �PPS�, and it occupies a larger region com-
pared to the LDA results �10�. In addition, the trap center
becomes a PPS for ��0.5	 when 1 /kFaF=−0.5.

In Fig. 3, we consider a strongly interacting Fermi gas at
unitarity with 1 /kFaF=0, and show n��r� and ��r� for non-
rotating ��=0� and rotating ��=0.7	� cases. The main ef-
fects of rotation are qualitatively similar to the weakly inter-
acting case. However, since the Cooper pairs become more
strongly bound as a function of the interaction strength, it
requires much faster � to break them. For instance, at uni-
tarity, the entire superfluid is robust for ��0.25	, and the
trap center stays as an FPS even for ��	 �not shown�.
Therefore, the effects of rotation become weaker as the in-
teraction strength increases, and both the PPS and the normal
regions eventually disappear in the molecular limit �not
shown�; i.e., rotation cannot break any Cooper pair in the
molecular limit.

Another important observable is the local angular
momentum defined by Lz,��r�= ���

†�r�Lz���r��. This
leads to Lz,↑�r�=−i��u�

��r��u��r� /��rf���� and Lz,↓�r�
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FIG. 2. �Color online� We compare the densities n��r� and the
superfluid order parameters ��r� for nonrotating ��=0� and rotat-
ing ��=0.5	� Fermi gases. Here, 1 /kFaF=−0.5, and N↑=N↓ in �a�
and N↑=3N↓ in �b�. We also show the density n�,N�r� of normal
fermions �squared-dotted line� for the rotating case.
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FIG. 3. �Color online� We compare the densities n��r� and the
superfluid order parameters ��r� for nonrotating ��=0� and rotat-
ing ��=0.7	� Fermi gases. Here, 1 /kFaF=0.0, and N↑=N↓ in �a�
and N↑=3N↓ in �b�. We also show the density n�,N�r� of normal
fermions �squared-dotted line� for the rotating case.
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=−i��v��r��v�
��r� /��rf�−���. Since the superfluid atoms

do not carry angular momentum, Lz,��r� is directly related to
the local density of normal fermions via Lz,��r�
=
d�rLz,��r� /4��M�r2n�,N�r�. Therefore, Lz,��r� can
be easily extracted from Figs. 2 and 3. For
completeness, the total angular momentum Lz,�
=
drLz,��r� becomes Lz,↑=��,m,�,n,n�mc�,m,�,n

2 f���,m,�� and
Lz,↓=−��,m,�,n,n�md�,m,�,n

2 f�−��,m,��, and it increases with in-
creasing �. We find that Lz,� becomes its rigid-body value
when � increases high enough so that ��r�→0 everywhere.
This is only possible in the strict BCS limit where 1 /kFaF
�0, since the trap center stays as an FPS around unitarity
even for ��	.

The microscopic mechanism responsible for the pair-
breaking effects can be understood analytically within the
semiclassical LDA; i.e., each component of the Fermi gas is
considered as locally homogenous at each position r with a
local chemical potential ���r�. In this approximation, the
local quasiparticle and quasihole excitation branches are
�10,15�

E1,2�p,r� =
�↑ − �↓

2
+ v�r� · p � E0�p,r� , �7�

where E0�p ,r�=����p�−��r��2+�2�r� is the usual spectrum
for nonrotating and population-balanced mixtures, v�r�
=�ẑ�r is the velocity, p is the momentum, and ��p�
= p2 /2M. In Fig. 4, we present three schematic diagrams
showing E1�p ,r� and E2�p ,r� as functions of p for fixed
values of r. At each r, the many-body ground-state wave
function fills up all of the states with negative energy, and
excitations correspond to removing a quasiparticle or a
quasihole from a filled state and adding it to the one that is
not filled. In order to show that these excitation spectra cor-
respond to three topologically distinct superfluid phases that
can be observed in atomic systems, next we discuss
E1,2�p ,r� in the z=0 plane such that r	�x ,y ,0�.

First, we consider the population-balanced case where
�↑=�↓. In the FPS phase, the excitation spectrum is sym-
metric around the zero-energy axis, i.e., E1�p ,r�=−E2�p ,r�,
leading to a gapped spectrum as shown in Fig. 4�a�. How-
ever, in the rotating case, there is a local asymmetry between
the pairing states 
r ,p , ↑ ;r ,−p ,↓� and 
r ,−p , ↑ ;r ,p ,↓�.
When this asymmetry becomes sufficiently large, there exists
a momentum space region p−� p� p+ where E1�−p ,r��0
and E2�p ,r��0. This occurs for position space region r

�rT when the condition A�r�=2M�2r2���r�+M�2r2 /2�
−�2�r��0 is satisfied, where rT is defined through A�rT�
=0 and p�=2M���r�+M�2r2��2M�A�r�. Therefore, both
E1,2�p ,r� have two zeros at p= p�, and the excitation spec-
trum becomes gapless at these momenta. We characterize
this phase as the PPS, and its excitation spectrum is shown in
Fig. 4�b�.

For a weakly attracting gas, the condition A�r��0 can
only be satisfied near the trap edge when ��	, but it can
also be satisfied near the trap center when ��	. However,
in the strongly interacting limit where � is small yet positive,
this condition can only be satisfied for sufficiently small val-
ues of ��r� near the trap edge even when ��	. Finally, in
the molecular limit where � is negative, this condition can-
not be satisfied anywhere inside the trap, leading to a super-
fluid phase with a gapped excitation spectrum; i.e., the Coo-
per pairs are robust in the molecular limit. As one may
expect, the asymmetric pairing caused by the rotation does
not lead to a local population imbalance at any position r
since E1�−p ,r��0 when E2�p ,r��0 and vice versa. How-
ever, this asymmetry prevents the formation of Cooper pairs
in the phase-space region when both E1,2�p ,r��0 or both
E1,2�p ,r��0, and thus it is responsible for the creation of the
PPS and the normal phases.

We find that the local excitation spectrum changes from
gapped �FPS� to gapless �PPS� at position r=rT. In homog-
enous �infinite� systems such a change is classified as a to-
pological quantum phase transition �16�. Since this change
occurs in the momentum space, it does not leave any strong
signature in the momentum-averaged observables such as
��r� and n�r�. However, its direct consequences can be ob-
served via a recently developed position- and momentum-
resolved spectroscopy �17�. For instance, the local-density
distributions �15�

n↑,↓�p,r� = ũ2�p,r�f��E1,2�p,r�� + ṽ2�p,r�f��E2,1�p,r�� ,

are nonanalytic at p= p� when r�rT. Here, ũ2�p ,r�= 
1
+ ���p�−��r�� / �E0�p ,r��� /2 and ṽ2�p ,r�= 
1− ���p�
−��r�� / �E0�p ,r��� /2 are the usual coherence factors.

For PISs where �↑��↓, the excitation branches shift up-
ward �downward�, and one of them crosses zero-energy axis
when N↑
N↓ �N↑�N↓�, leading to a gapless excitation spec-
trum. This is expected since the excess fermions can only
exist in regions with both E1,2�p ,r��0 or both E1,2�p ,r�
�0. In the absence of rotation �15�, for a weakly attracting
PIS only one of the excitation branches has four zeros as
shown in Fig. 4�c� for the N↑
N↓ case. However, in the
strongly attracting limit, this branch has only two zeros �not
shown�. When the system is rotating, the excitation spectra
tilt similarly as that shown in Fig. 4�b� �not shown�. We
remark in passing that a similar quantum phase transition
with its experimental signatures has recently been discussed
in the context of trapped p-wave superfluids �18�.

To conclude, we used the BdG formalism to analyze the
effects of adiabatic rotation on the ground-state phases of
harmonically trapped Fermi gases. We found that the rotation
breaks Cooper pairs that are located near the trap edge, and
that this leads to a phase separation between the nonrotating

p

E (p,r)2

(a) FPS spectrum (b) PPS spectrum (c) PIS spectrum

E (p,r)2E (p,r)2

E (p,r)1 E (p,r)1

E (p,r)1

FIG. 4. �Color online� Schematic diagrams showing the excita-
tion spectrum of �a� a gapped FPS phase at r=0, �b� a gapless PPS
phase at r�rT, and �c� a gapless population-imbalanced superfluid
�PIS� phase at r=0 as a function of momentum p.
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superfluid �fully paired� atoms located around the trap center
and the rigidly rotating normal �nonpaired� atoms located
toward the trap edge with a coexistence �partially paired�
region in between. We also showed that the superfluid phase
that occurs in the coexistence region is characterized by a

gapless excitation spectrum, and that it is distinct from the
gapped phase that occurs near the trap center, revealing two
topologically distinct superfluid phases. An interesting exten-
sion of our work is to study emergence of dynamic instabili-
ties for fast enough rotation �8,19�.
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