
Evolution from BCS to Berezinskii-Kosterlitz-Thouless Superfluidity
in One-Dimensional Optical Lattices

M. Iskin1 and C.A. R. Sá de Melo2
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We analyze the finite temperature phase diagram of fermion mixtures in one-dimensional optical

lattices as a function of interaction strength. At low temperatures, the system evolves from an anisotropic

three-dimensional Bardeen-Cooper-Schrieffer (BCS) superfluid to an effectively two-dimensional

Berezinskii-Kosterlitz-Thouless (BKT) superfluid as the interaction strength increases. We calculate the

critical temperature as a function of interaction strength, and identify the region where the dimensional

crossover occurs for a specified optical lattice potential. Finally, we show that the dominant vortex

excitations near the critical temperature evolve from multiplane elliptical vortex loops in the three-

dimensional regime to planar vortex-antivortex pairs in the two-dimensional regime, and we propose a

detection scheme for these excitations.
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Ultracold atoms in optical lattices are ideal systems to
simulate and study novel and exotic condensed matter
phases. Remarkable success has been achieved experimen-
tally with bosonic atoms loaded into three-dimensional
(3D) optical lattices, where superfluid and Mott-insulator
phases have been observed [1]. In addition, experimental
evidence for superfluid and possibly insulating phases were
found for fermionic atoms (6Li) in 3D optical lattices [2].
Compared with the purely homogeneous or trapped sys-
tems, optical lattices offer additional flexibilities and an
unprecedented degree of control such that their physical
properties can be studied as a function of onsite atom-atom
interactions, tunneling amplitudes between adjacent sites,
atom filling fractions and lattice dimensionality. For in-
stance, in strictly two-dimensional (2D) systems the super-
fluid transition for bosons and fermions is of the BKT type
[3,4]. This phase is characterized by the existence of bound
vortex-antivortex pairs below the critical temperature
TBKT, and evidence for it was recently reported in nearly
2D Bose gases confined to one-dimensional (1D) optical
lattices [5]. Thus, it is very likely that one of the next
research frontiers for experiments with fermions in optical
lattices is also the investigation of such a transition.

For bosons or fermions, it is possible to study not only
3D and 2D superfluids as two separate limits, but also the
entire evolution from 3D to 2D by tuning the tunneling
amplitudes [6,7]. However, fermions offer the additional
advantage that their interactions can also be tuned using
Feshbach resonances without having to worry about the
collapse of the condensate, as it is the case for bosons.
Furthermore, the phase diagram of fermions in optical
lattices also shows superfluid-to-insulator transitions [8–
10] like bosons do. Anticipating experiments, here we
study the dimensional crossover from an anisotropic-3D
BCS superfluid to an effectively 2D BKT superfluid as a
function of interaction strength. We show that vortex ex-

citations near the critical temperature change from ellip-
tical multiplane vortex loops in the anisotropic-3D BCS
regime to planar vortex-antivortex pairs in the 2D BKT
regime. Finally, we propose an experiment for the detec-
tion of vortex excitations.
To describe fermion mixtures in 1D optical lattices, we

start with the Hamiltonian (@ ¼ kB ¼ 1)

H ¼ X
k;�

�ka
y
k;�ak;� � g

X
k;k0;q

��
k�k0byk;qbk0;q; (1)

where the operator ayk;� creates a fermion with pseudospin

� which labels the hyperfine state of atoms. The operator

byk;q ¼ aykþq=2;"a
y
�kþq=2;# creates fermion pairs with center-

of-mass momentum q and relative momentum 2k, while
g > 0 and �k are the strength and symmetry of the attrac-
tive interaction between fermions, respectively. Here,
�k ¼ �k �� with the kinetic energy �k ¼ k2?=ð2mÞ þ
2tz½1� cosðkzdzÞ� and the chemical potential �, where
dz is the lattice spacing along the z direction.
The saddle-point action for this Hamiltonian

is S0ð��
0;�0Þ ¼ �j�0j2=gþ ð1=MÞPkf�ð�k � EkÞ þ

2 ln½ð1þXkÞ=2�g, where � ¼ 1=T is the inverse tempera-

ture, M is the number of lattice sites along ẑ, Ek ¼ ð�2
k þ

j�kj2Þ1=2 is the quasiparticle energy, Xk ¼ tanhð�Ek=2Þ,
and �k ¼ �0�k is the saddle-point order parameter. The
stationary condition @S0=@�

�
0 ¼ 0 leads to

1=g ¼ ð1=MÞX
k

j�kj2Xk=ð2EkÞ: (2)

We may eliminate g in favor of the binding energy �b < 0
of two fermions in the lattice potential via 1=g ¼
ð1=MÞPkj�kj2=ð2�k � �bÞ. For s-wave interactions with
range R0 � k�1

0 , we take �k ¼ 1 for k < k0 and zero

otherwise, leading to
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�b ¼ 4tz � ð2t2z=�0Þ expð1=GÞ � 2�0 expð�1=GÞ; (3)

where G ¼ mAg=ð4�Þ is the dimensionless interaction
strength, A is the area in the (x, y) plane and �0 ¼
k20=ð2mÞ. Notice that two-body bound states in vacuum

only exist beyond a critical interaction strength Gc ¼
1= lnð�0=tzÞ for finite tz, while they always exist for arbi-
trarily small G in the 2D limit where tz ! 0.

Equation (2) has to be solved self-consistently with the
number equation N0 ¼ �@S0=ð�@�Þ, leading to

N0 ¼
X
k

ð1� �kXk=EkÞ: (4)

Solutions to Eqs. (2) and (4) constitute an approximate
description of the system only when amplitude and phase
fluctuations of the order parameter are small, which is the
case only at low temperatures, although quantum fluctua-
tions play a role. However, fluctuations are extremely
important close to the critical temperature Tc.

The derivation of the fluctuation action is accomplished
by writing the order parameter as �ðqÞ ¼ j�0j�q;0 þ �ðqÞ
with �ðqÞ ¼ j�ðqÞjei	ðqÞ, where j�ðqÞj is the amplitude and
	ðqÞ is the phase of the fluctuations. Near Tc, j�0j van-
ishes, and the fluctuation action reduces to Sflð��; �Þ ¼
�
P

q�
�ðqÞL�1ðqÞ�ðqÞ þ ð�b=2ÞPqj�ðqÞj4, where the

quadratic term is

L�1ðqÞ ¼ 1

g
� 1

2M

X
k

Xq=2þk þ Xq=2�k

�q=2þk þ �q=2�k � iv‘

j�kj2; (5)

and the quartic term is b ¼ P
k½Xk=ð4�3

kÞ � �Yk=ð8�2
kÞ�

with Xk ¼ tanhð��k=2Þ and Yk ¼ sech2ð��k=2Þ.
The analytic continuation iv‘ ! !þ i� where � ! 0,

and a long wavelength and low frequency expansion leads
to L�1ðqÞ ¼ aþP

ijqicijqj � d!. The momentum and

frequency independent coefficient is a ¼ 1=g�
ð1=MÞPkXkj�kj2=ð2�kÞ; the tensor for low momentum

cij ¼ P
k½�2 _�i

k
_�j
kXkYk=ð8�kÞ þ Xk

€�ij
k=ð4�2

kÞ�j�kj2 is di-
agonal for s-wave symmetry having the form cij ¼ ci�ij

and c? � cx ¼ cy � cz. Here, _�i
k ¼ @�k=@ki, €�ij

k ¼
@2�k=ð@ki@kjÞ, and �ij is the Kronecker delta. Fi-

nally, the coefficient for low frequency is d ¼
lim!!0

P
k Xk½1=ð4�2

kÞ þ i��ð2�k �!Þ=!�j�kj2, lead-
ing to L�1ðqÞ ¼ aþ c?q2? þ czq

2
z � d!.

A natural next step is to attempt a phase-only description
of the transition to the superfluid state for arbitrary inter-
action G. However, it is imperative to establish first the
region of validity for such phase-only description. For this
purpose, we investigate next the importance of amplitude
and phase fluctuations of the order parameter as a func-
tion of G. So let us consider initially only amplitude
fluctuations by ignoring phase fluctuations in the strong
attraction regime (G � 1) corresponding to �< 0 and
j�j � j�bj=2 � tz, where L�1ðqÞ ¼ mA=ð4�j�bjÞ�
½iv‘ �!BðqÞ þ 2�B� to lowest order of q and v‘, with
!BðqÞ ¼ q2?=ð2mB;?Þ þ 2tB;z½1� cosðqzdzÞ�. After the

rescaling �ðqÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mA=ð4�j�bjÞ

p
�ðqÞ, the quadratic term

of Sfl describes noninteracting bosons with dispersion
!BðqÞ, mass mB;? ¼ 2m in the (x, y) plane, tunneling

amplitude tB;z ¼ 2t2z=j�bj along the ẑ, and chemical poten-

tial �B ¼ 2�� �b. Since the quartic term of Sfl is small,
the resulting Bose gas is weakly repulsive (gB;? ¼ 4�=m
is a constant within our theory), leading to a dominant
contribution to the number equation

Nfl ¼ 2
X
q

nB½!BðqÞ � ~�B�: (6)

Here, nBðxÞ ¼ 1=ðe�x � 1Þ is the Bose distribution and
~�B ¼ �B � VH < 0 includes the Hartree shift VH.
For G � 1, Eq. (6) leads to Bose-Einstein condensation

of tightly bound fermion pairs at q ¼ 0 with Tc ¼
2�2D= lnðTc=tB;zÞ, where �2D ¼ k22D=ð2mÞ is a character-

istic energy of fermions in 2D. Here, k2D is a 2D momen-
tum defined through the 2D density n2D ¼ k22D=ð2�Þ. We
also define an effective 3D density n3D ¼ n2D=dz, where
n3D ¼ k33D=ð3�2Þ, and k3D is the 3D momentum. Notice

that, �2D ¼ 2k3Ddz�3D=ð3�Þ, where �3D ¼ k23D=ð2mÞ is a
characteristic energy in 3D.
For fixed tz, Eq. (6) shows that Tc is a decreasing

function of G. This is most easily seen for a dilute system
where 2tB;z½1� cosðqzdzÞ� � q2z=ð2mB;zÞ, such that

mB;z ¼ 1=ð2tB;zd2zÞ is the effective mass along the ẑ. In

this case, Eq. (6) gives Tc � 0:218ð2m=mB;zÞ1=3�3D, which
reduces to the 3D continuum result Tc ¼ 0:218�F [11]
when mB;z ¼ 2m and �3D � �F. However, Tc ! 0 asymp-

totically when tB;z ! 0 or mB;z ! 1, which occurs when

the binding energy becomes very large (j�bj � tz). This
limit is clearly unphysical and shows that amplitude fluc-
tuations alone (from the Gaussian theory) cannot recover
the BKT transition of tightly bound fermion pairs in the 2D
limit, as can be seen in Fig. 1.
To recover the BKT physics in the G � 1 limit where

the paired fermions live in 2D planes, we return to the
derivation of the fluctuation action Sfl with tz ¼ 0, and
include the effects of phase fluctuations as well. Taking the

order parameter as �ðxÞ ¼ ½j�0j þ j
ðxÞj�ei	ðxÞ, where
j
ðxÞj corresponds to the amplitude fluctuations and 	ðxÞ
is the phase of the order parameter such that j�0j �
j
ðxÞj, we obtain the phase-only action Sflð	Þ ¼
ð�=2ÞPq½�0ðTÞv2

‘ þ qi�ijðTÞqj�	ðqÞ	ð�qÞ. Here, the co-

efficient �0ðTÞ¼ ð1=4ÞPk½j�kj2Xk=E
3
kþ��2

kYk=ð2E2
kÞ�

is the atomic compressibility where Yk ¼ sech2ð�Ek=2Þ,
and the phase stiffness �ijðTÞ ¼ n�ij=ð4mÞ �
�
P

kkikjYk=ð8m2AÞ is diagonal for the s-wave symmetry:

�ijðTÞ ¼ �0ðTÞ�ij.

This leads to the BKT transition temperature [3,4]

TBKT ¼ ��0ðTBKTÞ=2; (7)

which needs to be solved self-consistently with Eqs. (2)
and (4) in order to determine TBKT, j�0j and � as a
function of G. Equations (2), (4), and (7) contain correc-
tions due to amplitude and phase fluctuations. Notice that
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in the weak attraction regime (G & 1), TBKT is identical to
the BCS pairing temperature T0, indicating that fluctua-
tions are not so important for the determination of the
critical temperature. Here, TBKT increases with G as

TBKT ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2Dj�bj

p
=�, where 
 � 0:577 is the Euler’s

constant and �b ¼ �2�0 expð�1=GÞ is the binding energy
in 2D. However, in the strong attraction regime (G � 1),
TBKT 	 T0 and phase fluctuations completely control the
critical temperature. Notice that TBKT saturates to TBKT ¼
�2D=8 which can be seen in Fig. 1, where �2D � �F is the
2D Fermi energy.

For finite tz, it can be seen in Fig. 1 that the critical
temperature starts deviating substantially from T0 for G>
25, indicating that the phase fluctuation dominated regime
is reached. As shown next, it is in this regime that a cross-
over from anisotropic 3D to 2D behavior occurs. To estab-
lish this crossover, we compare the critical temperature
Tc;Gauss obtained from the Gaussian theory with the critical

temperature TBKT for the BKT transition in the strict 2D
limit. When G � 1, the condition Tc;Gauss ¼ TBKT leads to

tz;c¼�ð3=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2Dj�bj=�

p
=32, where �ðxÞ is the zeta

function.
We can relate tz to the depth V0 of the 1D optical

latttice potential VðrÞ ¼ V0sin
2ð�z=dzÞ, where tz ¼

ð4Er=
ffiffiffiffi
�

p Þ�3=4 expð�2
ffiffiffiffi
�

p Þ. Here, � ¼ V0=Er, where

Er ¼ �2=ð2md2zÞ is the recoil energy. Our choice for tz �
0:043�2D in Fig. 1 corresponds to � � 25. In Fig. 2, we
show the characteristic tz;c and V0;c lines which separate

the anisotropic 3D from the 2D regime. When G is fixed,
the 2D regime may be reached from the anisotropic 3D
regime with increasing V0 or decreasing tz. While for fixed
V0 or tz, the 2D regime may be reached from the aniso-

tropic 3D regime by increasing G.
We can also relate G to the experimentally relevant

s-wave scattering length as, which in a single-band de-
scription is approximately given by [12]

1

as
¼ 1

ac
þ 1ffiffiffiffiffiffiffi

2�
p

�
ln

�
1þ j�bj

4tz
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�bj
2tz

þ �2b
16t2z

s �
; (8)

where ac ¼ � ffiffiffiffiffiffiffi
2�

p
�= ln½0:915d2zEr=ð�3�2tzÞ�< 0 corre-

sponds to our Gc and it is the minimal scattering length
above which a two-body bound state exists, and �b is given

in Eq. (3). Here, � ¼ dz expð1=4
ffiffiffiffi
�

p Þ=ð��1=4Þ, leading to
dz=ac � �18 for � � 25. Notice that in 3D systems, a
bound state exists only for positive values of the scattering
length, i.e. 1=ac ! 0�. Using Eq. (8) and the parameters of
Fig. 1, we find that the valuesG ¼ ð0:043; 0:062; 0:1; 1; 40Þ
correspond to dz=as ¼ ð�18:48; 0; 16:08; 39:96; 42:56Þ.
Therefore, the dimensional crossover occurs on the posi-
tive side of the Feshbach resonance for these parameters.
So far we showed that the phase-fluctuation dominated

regime occurs for G> 25, and that a crossover between
anisotropic-3D to 2D superfluidity occurs for G � 1. We
may gain further insight into this crossover by rewriting Sfl
with tz � 0 in real space and time such that Sflð��; �Þ ¼
ð1=VÞR dtdr?dzLflð��; �Þ, where Lflð��; �Þ ¼ ��ðxÞ�
ðO� cz@

2
zÞ�ðxÞ þ bj�ðxÞj4=2 is the Lagrangian. Here, V

is the volume, �ðxÞ � �ðr?; z; tÞ is the fluctuation field and
O ¼ a� c?r2

? � id@t. Upon discretization z ¼ ndz, Sfl
reduces to the Lawrence-Doniach (LD) action
SLDð��

n; �nÞ ¼ ½1=ðMAÞ�Pn

R
dtdr?LLDð��

n; �nÞ, where

L LDð��
n; �nÞ ¼ ��

nO�n þ cz
d2z

j�nþ1 � �nj2 þ b

2
j�nj4 (9)

is the LD Lagrangian [13]. Here, the local field �n �
�ðr?; z ¼ ndz; tÞ describes the order parameter in each
plane labeled by index n. Writing a ¼ a0�ðTÞ with �ðTÞ ¼
ðT � TcÞ=Tc, scaling the field c n ¼

ffiffiffiffiffiffiffiffiffiffiffi
b=a0

p
�n, and defin-

ing the correlation lengths �2
0;?¼c?=a0 and �2

0;z ¼ cz=a0,

and the characteristic time �0 ¼ �d=a0 leads to the

scaled action ~LLDðc �
n; c nÞ ¼ c �

ni�0@tc n þ �ðTÞjc nj2 þ
�2
0;?jr?c nj2 þ �2

0;zjc nþ1 � c nj2=d2z þ jc nj4=2, which

describes the system near Tc. Here, ~LLDðc �
n;c nÞ¼

ðb=a20ÞLLDð��
n;�nÞ. Furthermore, taking c n¼

jc njexpði	nÞ in the LD action, such that jc nj ¼ �0 is
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FIG. 2. Characteristic (a) tunneling amplitude tz;c (in units of
�2D); and (b) optical lattice depth V0;c (in units of Er) versusG ¼
mAg=ð4�Þ showing the anisotropic-3D to 2D crossover. The
parameters are the same as in Fig. 1.

 0

 0.1

 0.2

 0.3

 20  30  40

T

G

Normal
(Unpaired)

Normal
(Paired)

S u p e r f l u i d

T0

 0

 0.1

 0.2

 0.3

 20  30  40

T

G

FIG. 1 (color online). Phase diagram of temperature T (in units
of �2D) versus G ¼ mAg=ð4�Þ with interaction range k0 � 2�
104k2D for which Gc � 0:043, tunneling tz � 0:043�2D, lattice
spacing dz � 0:43 �m, and planar density n2D � 2:5�
107 cm�2, such that k2Ddz � 0:55. T0 is the saddle-point tem-
perature scale.

PRL 103, 165301 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

16 OCTOBER 2009

165301-3



independent of position and time, leads to the phase-only
anisotropic-3D XY model with the dimensionless
Hamiltonian

~H XYðr?;nÞ¼K?jd?r?	nj2�2Kzcosð	nþ1�	nÞþC;

where K? ¼ ð�0;?�0=d?Þ2, Kz ¼ ð�0;z�0=dzÞ2 and d? �
k�1
2D , and C is a constant. The dimension-full Hamiltonian
is ~HXYðr?; nÞ ¼ ðb=a20ÞHXYðr?; nÞ.

It is very important to emphasize that the anisotropic 3D
XY model just derived is very different from the standard
anisotropic 3D XY model discussed in the context of
high-Tc superconductors [14,15]. In that context, the co-
efficients K? and Kz of the model are studied only for
weak attractive interactions (BCS limit) and discussed only
as a function of the hopping parameter tz. In our case, the
anisotropic 3D XY model is derived for fixed tz and inves-
tigated as a function of interaction from the weak to strong
attraction regimes.

~HXY can be mapped onto the vortex-loop representation
[15] yielding the dual dimensionless Hamiltonian

~H D ¼ �
X
r�r0

½KzJ?ðrÞ 
 J?ðr0Þ þ K?JzðrÞ 
 Jzðr0Þ�UðRÞ;

where UðR ¼ r� r0Þ plays the role of an interaction po-
tential for the vortex-loop field JðrÞ ¼ ½J?ðrÞ; JzðrÞ�, and
satisfies the differential equation ðr2

? þ 
�2@2zÞUðRÞ ¼
�4��ðRÞ. Here, 
 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K?=Kz

p
is the anisotropy ratio

and �ðxÞ is the delta function. The dual transformation
maps closed supercurrent flows associated with the gra-
dients of the phase 	 onto the vortex-loop vector JðrÞ, in
the same way that the electric current flowing on a ring can
be mapped onto a magnetic field vector with the help of the
Biot-Savart law.

For large R ¼ ðR?; RzÞ, the vortex-loop interaction be-

haves as UðRÞ � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½R?=ð
d?Þ�2 þ ðRz=dzÞ2

q
, and leads

to equipotentials in the shape of ellipsoids ½R?=ð
d?Þ�2 þ
ðRz=dzÞ2 ¼ U�2

0 when UðRÞ ¼ U0. Elliptical vortex loops

corresponding to a nearly toroidal arrangement of the
supercurrent flow are the large scale excitations formed
by a continuous closed line having the same potential
between segments with r ¼ �r0. When 
 ! 1, the planes
along the ẑ decouple (2D BKT regime) and the vortex
loops reduce to planar vortex-antivortex pairs. For 2<

<1, the system is still nearly 2D, and the dominant
excitations are square vortex loops coupling two consecu-
tive planes and planar vortex loops. However, in the
anisotropic-3D regime when 
< 2, the dominant ex-
citations become multiplane elliptical vortex loops. In

the strong attraction regime (G�1), 
�ðdz=d?Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mB;z=mB;?

q
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2Dj�bj
p

=ð4�tzÞ�1, and the 2D BKT

limit is recovered since mB;z � mB;?. The anisotropic-

3D to 2D crossover occurs for 
 � 2, leading to tz;c �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2Dj�bj

p
=ð8�Þ, which is essentially the same result ob-

tained by equating the Gaussian and BKT critical
temperatures.
Since vortex loops are topological objects they preserve

their structure in time-of-flight, when the 1D optical lattice
along the ẑ is turned off to allow the expansion of the (x, y)
pancakes. After sufficient time-of-flight to ensure the over-
lap of pancakes, vortex loops should appear as dark rings in
columnar density images viewed along a direction parallel
to the (x, y) plane, since there are no atoms to absorb light
in their cores. At temperature T, the ratio of characteristic

in situ core size of vortex loops in the (x, y) plane �?ðTÞ ¼
�0;?j�ðTÞj�2=3 and along the z direction �zðTÞ ¼
�0;zj�ðTÞj�2=3 is �?ðTÞ=�zðTÞ � 0:91 for 
 ¼ 2 and

k2Ddz ¼ 2:2. Since typical values of �0;? � 0:5 �m,

then �?ðTÞ � 2:3 �m and �zðTÞ � 2:5 �m at tempera-
tures T ¼ 0:9Tc, and vortex loops extend to nearly six
planes for an optical lattice with dz � 0:43 �m. Smaller
values of 
 or larger values of k2Ddz enlarge �zðTÞ. For
parameters 
 ¼ 1:7, k2Ddz ¼ 5:0 and T ¼ 0:9Tc, the ratio
�?ðTÞ=�zðTÞ � 0:34 and �zðTÞ � 6:8 �m, such that vor-
tex loops extend to nearly 16 planes in optical lattices with
dz � 0:43 �m.
We analyzed the finite temperature phase diagram of

attractive fermion mixtures in 1D optical lattices. At low
temperatures, we found that a dimensional crossover from
an anisotropic-3D (BCS) to an effectively 2D (BKT) su-
perfluid occurs as a function of attraction strength even
though the tunneling amplitude is fixed. In addition, we
discussed that vortex excitations change from elliptical
multiplane vortex loops in the anisotropic-3D regime to
planar vortex-antivortex pairs in the 2D regime, and sug-
gested an experiment to detect their presence.
We thank the NSF (DMR-0709584) for support.
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