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The attractive Fermi-Hubbard Hamiltonian is solved via the Bogoliubov-de Gennes formalism to analyze the
ground state phases of population imbalanced fermion mixtures in harmonically trapped two-dimensional
optical lattices. In the low density limit the superfluid order parameter modulates in the radial direction towards
the trap edges to accommodate the unpaired fermions that are pushed away from the trap center with a single
peak in their density. However, in the high density limit while the order parameter modulates in the radial
direction towards the trap center for low imbalance, it also modulates towards the trap edges with increasing
imbalance until the superfluid to normal phase transition occurs beyond a critical imbalance. This leads to a
single peak in the density of unpaired fermions for low and high imbalance, but leads to double peaks for
intermediate imbalance.
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The phase diagram of dilute population-imbalanced fer-
mion mixtures has been recently studied showing superfluid
to normal phase transition with increasing imbalance as well
as a phase separation between paired and unpaired fermions
�1–4�. These recent works are extentions of the earlier works
on dilute population balanced mixtures where a crossover
from Bardeen-Cooper-Schrieffer �BCS� to Bose-Einstein
condensation �BEC� type superfluidity is observed as a func-
tion of the attractive fermion-fermion interaction strength
�5–9�.

Arguably understanding the phase diagram of fermion
mixtures in optical lattices is one of the next frontiers in cold
atoms research because of their great tunability. In addition
to the particle populations and the particle-particle interac-
tion strengths, one can also precisely control the particle tun-
nelings, the lattice dimensionality, and the lattice geometry.
For instance experimental evidence for the superfluid and the
insulating phases of population balanced mixtures have been
recently reported in trapped optical lattices �10�, after over-
coming some earlier difficulties �11–14�. This recent work
has also opened the possibility of studying many-body prop-
erties of population imbalanced mixtures in optical lattices.

Earlier theoretical works on population imbalanced fer-
mion mixtures in optical lattices were limited to homogenous
systems �15,16�, and they showed rich phase diagrams in-
volving BCS type nonmodulating and Fulde-Ferrell-Larkin-
Ovchinnikov �FFLO� type spatially modulating superfluid
phases in addition to insulating and normal phases. Further-
more the phase diagram of population-imbalanced mixtures
in harmonically trapped optical lattices has been recently dis-
cussed within the semiclassical local density approximation
�LDA� �17�. However it has been previously shown that the
LDA type methods are not sufficient to describe even the
dilute population imbalanced mixtures without an optical lat-
tice �18,19�. In this Rapid Communication, we therefore ana-
lyze the ground state phases of fermion mixtures in harmoni-
cally trapped two-dimensional optical lattices via using the
fully quantum mechanical Bogoliubov-de Gennes �BdG�
method where the trapping potential is included exactly at
the mean-field level.

Our main results are as follows. In the low density limit

the superfluid order parameter modulates in the radial direc-
tion towards the trap edges to accommodate the unpaired
fermions that are pushed away from the trap center with a
single peak in their density. These findings are in good agree-
ment with the recent theoretical �18–20� and experimental
�1–4� findings on dilute population imbalanced mixtures
without an optical lattice. However, in the high density limit
while the order parameter modulates in the radial direction
towards the trap center for low imbalance, it also modulates
towards the trap edges with increasing imbalance until the
superfluid to normal phase transition occurs beyond a critical
imbalance. This leads to a single peak in the density of un-
paired fermions for low and high imbalance but leads to
double peaks for intermediate imbalance.

BdG formalism. To achieve these results we solve the
Fermi-Hubbard Hamiltonian

HFH = − �
i,j,�

ti,j,�ai,�
† aj,� − �

i,�
��� − Vi,��ai,�

† ai,�

− �
i,j

Ui,jaj,↑
† aj,↑ai,↓

† ai,↓, �1�

where ai,�
† �ai,�� creates �annihilates� a pseudospin � fermion

at lattice site i, ti,j,� and Ui,j �0 are the particle-particle tun-
neling and the density-density interaction matrix elements,
�� is the chemical potential, and Vi,�=���ri�2 /2 is the trap-
ping potential at position ri with ��=m���

2 such that the
trapping potential is centered at the origin. Here the label �
identifies ↑ or ↓ fermions and allows � fermions to have
equal or unequal masses controlled by ti,j,� and/or to have
equal or unequal populations controlled by ��.

In the mean-field approximation for the
superfluid phase, the Fermi-Hubbard Hamiltonian
reduces to H=−�i,j,�ti,j,�ai,�

† aj,�−�i,����−Vi,��ai,�
† ai,�

−�i,j��i,jaj,↓
† ai,↑

† +�
i,j
* ai,↑aj,↓− ��i,j�2 /Ui,j�, where the self-

consistent field �i,j =Ui,j�ai,↑aj,↓� is the superfluid order pa-
rameter and �¯� is a thermal average. The mean-field Hamil-
tonian can be diagonalized via the Bogoliubov-Valatin
transformation ai,�=�n�un,i,��n,�−s�vn,i,�

* �n,−�
† �, where �n,�

†

��n,�� creates �annihilates� a pseudospin � quasiparticle with
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the wave function un,i,� �vn,i,��, and s↑= +1 and s↓=−1. This
leads to the BdG equations

�
j
	Ti,j,↑ �i,j

�
i,j
* − T

i,j,↓
* 
�n,j,� = s�	n,��n,i,�, �2�

where Ti,j,�=−ti,j,�− ���−Vi,��
i,j is the diagonal element
and 
i,j is the Kronecker delta. Here 	n,��0 are the eigen-
values and �n,i,� are the eigenfunctions given by �n,i,↑

†

= �u
n,i,↑
* ,vn,i,↓

* � for the ↑ and �n,i,↓
†= �vn,i,↑ ,−un,i,↓� for the ↓

eigenvalues. Since solutions to the BdG equations are invari-
ant under the transformation vn,i,↑→u

n,i,↑
* , un,i,↓→−vn,i,↓

* , and
	n,↓→−	n,↑, it is sufficient to solve only for un,i�un,i,↑, vn,i
�vn,i,↓, and 	n�	n,↑ as long as we keep all the solutions with
positive and negative 	n.

In Eq. �2� the superfluid order parameter �i,j is given by
�i,j =−�nUi,jun,ivn,j

* f�	n� where f�x�=1 / �exp�x /T�+1� is the
Fermi function and T is the temperature. Notice that this
equation is free from the ultraviolet divergence and therefore
it does not explicitly involve any energy cutoff since the
lattice spacing provides an implicit cutoff. Equation �2� and
the order parameter equation have to be solved self-
consistently with the number equations 0�ni,�= �ai,�

† ai,��
�1 for the � fermions, where ni,↑=�n�un,i�2f�	n� and ni,↓
=�n�vn,i�2f�−	n� such that N�=�ini,� determines ��. In the
following we consider only attractive and onsite s-wave in-
teractions and set Ui,j =U0
i,j with U0�0. Notice that this
leads to �i,j =�i
i,j. Furthermore fermions are allowed to tun-
nel only to the nearest neighbor sites and thus ti,j,�= t�
i,j
1.

Ground state phases. We now analyze the ground state
phases of fermion mixtures with equal masses �m0=m↑
=m↓�, equal tunnelings �t0= t↑= t↓�, and equal trapping poten-
tials ��0=�↑=�↓�, but with unequal chemical potentials. The
theoretical parameters t0 and U0 can be expressed in terms of
the experimental parameters of the two-dimensional optical
lattice potential VL�x ,y�=VL�sin2��x /a�+sin2��y /a�� via the
relations �21� t0= �4Er /����VL /Er�3/4 exp�−2�VL /Er� and
U0=−�8�aFEr�VL /Er�3/4 /a. Here a is half of the laser wave-
length which corresponds to the lattice spacing, VL is the
depth of the optical lattice potential, Er=�2�2 / �2m0a2� is the
recoil energy, and aF is the two-body scattering length in
vacuum. The experimental parameters VL, a, and aF can be
tuned by varying the laser intensity, the laser wavelength,
and the externally applied magnetic field via using the Fes-
hbach resonances, respectively, which makes optical lattices
ideal systems to simulate the Fermi-Hubbard Hamiltonian.

For numerical purposes the superfluid order parameter is
assumed to be real ��i=�

i
*�. This is sufficient to describe the

nonmodulating and the spatially modulating superfluid
phases in addition to the normal and the band insulator
phases. We also take U0=3t0 and V0=�0a2 /2=0.02t0
as the strength of the weak onsite interactions and the
weak trapping potentials, respectively, and perform calcula-
tions on a two-dimensional square lattice with a length of
L=50a in both directions. The trap center is located at
rc��x=0a ,y=0a�. We want to emphasize that similar calcu-
lations also can be performed for three-dimensional optical
lattices. However, they are computationally much more de-

manding and we do not expect any qualitative difference
between our two-dimensional results and the three-
dimensional ones.

We fix the total number of fermions N=N↑+N↓ to
N
270 �corresponding to �
0t0� in the low density and to
N
1570 �corresponding to �
5t0� in the high density case
where �= ��↑+�↓� /2, while we vary the population imbal-
ance P= �N↑−N↓� /N or equivalently 
�= ��↑−�↓� /2. For
these parameters it is important to notice that the trapping
potential provides a soft boundary leading to a finite system,
and therefore it simplifies the numerical calculations consid-
erably in comparison to infinite systems. Next we present
self-consistent solutions of Eq. �2� with the order parameter
and the number equations.

(I) Low density mixtures. In Fig. 1 we show the superfluid
order parameter �i and the population difference per lattice
site pi=ni,↑−ni,↓ for the low density case where N
270.
When U0=0 and N↑=N↓=N /2, the maximum filling of this
case corresponds to an almost half-filled band with
ni,�
0.5 at the trap center. For such low densities we expect
that our results for the trapped mixtures with an optical lat-
tice to recover the previously obtained results for the trapped
dilute mixtures without an optical lattice �18–20�. This oc-
curs when the interparticle separation becomes much longer
than a such that the particles do not feel the presence of a
lattice potential. However to understand the ground state
phases of population imbalanced mixtures, it is very illustra-
tive to first discuss the population balanced case.

For a weakly attracting population balanced mixture with
U0=3t0 and 
�=0, the order parameter �i is finite around
the trap center for distances �ri��15a, and therefore the
ground state corresponds to a BCS type superfluid. For
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FIG. 1. �Color online� We show �a� the order parameter �i �in
units of t0� and �b� the population difference pi=ni,↑−ni,↓ �per lat-
tice site� for the low density case as a function of distance x �in
units of a� from the trap center. Here y=0a.

M. ISKIN AND C. J. WILLIAMS PHYSICAL REVIEW A 78, 011603�R� �2008�

RAPID COMMUNICATIONS

011603-2



longer distances �ri��16a away from the trap center, �i
gradually decreases until it eventually vanishes when the
densities become very low ni,↑=ni,↓
0. These features can
be seen in Fig. 1�a�, and they are in good agreement with the
earlier experiments involving population balanced mixtures
without an optical lattice �5–9�.

In the case of population imbalanced mixtures, we find
that �i modulates in the radial direction towards the trap
edges to accommodate the unpaired fermions. However, �i
decreases with increasing population imbalance as shown in
Fig. 1�a�, and it vanishes entirely beyond a critical imbalance
signaling a transition from the superfluid to the normal
phase. These features can be seen in Fig. 1�a� where

�=0.4t0 and 
�=0.7t0 corresponding to P
0.12 and
P
0.34, respectively. Similar spatial modulations have been
recently found also in dilute population imbalanced mixtures
without an optical lattice �18–20�, however they have not yet
been observed in the current experiments �1–4�. In contrast
to our BdG results, the LDA type methods exclude the pos-
sibility of order parameter modulations and therefore they
fail to produce such a spatially modulated superfluid phase
which is one of the possible candidates for the ground state.

In the recent theoretical works on dilute population imbal-
anced mixtures without an optical lattice, such spatial modu-
lations have been suggested as signatures for the FFLO type
superfluidity by some authors �18,19� and as finite size ef-
fects by some others �20�. Here we remind the reader that the
FFLO type superfluidity is characterized by the formation of
Cooper pairs with nonzero center-of-mass momentum, in
contrast with the BCS type superfluidity where Cooper pairs
have zero center-of-mass momentum �22�. Therefore in two-
and three-dimensional systems it is an open question whether
these spatial modulations are related to the FFLO superflu-
idity or are simply finite size effects. However, we also re-
mind the reader that the exact ground state phase diagram of
one-dimensional systems have been recently calculated
�23–26� showing that the superfluid phase has FFLO struc-
ture in trapped as well as infinite systems.

In Fig. 1�b� we show that the unpaired fermions are
pushed away from the trap center towards the trap edges and
they have a maximum at the position where �i changes sign.
This is because spatially bound Andreev type states form
around the nodes of �i, and the occupation of these bound
states is different for ↑ and ↓ fermions �18�. Since �↑��↓
when N↑�N↓, the ↑ fermions mostly occupy these states
leading to the single peak structure. This feature is in good
agreement with the recent experiments on dilute population
imbalanced mixtures without an optical lattice �1–4�. How-
ever, in contrast with the trapped mixtures without an optical
lattice, both �i and pi have C4 symmetry which is consistent
with the underlying symmetry of the square lattice. Here we
notice that the LDA type methods always produce results
with rotational symmetry and therefore they are not strictly
applicable to optical lattices. Having shown that the ground
state phases of low density mixtures in optical lattices are
qualitatively similar to those of the dilute mixtures without
an optical lattice, next we discuss the high density mixtures.

(II) High density mixtures. In Figs. 2 and 3 we show the
superfluid order parameter �i and the population difference
per lattice site pi for the high density case where N
1570.

When U0=0 and N↑=N↓=N /2, the maximum filling of this
case corresponds to a fully filled band with ni,�=1 near the
trap center. For such high densities the ground state phases
are very different from those of the low density systems as
can be seen in Figs. 2 and 3. To understand these ground
state phases of population imbalanced mixtures, it is again
very illustrative to first discuss the population balanced case.

For a weakly attracting population balanced mixture with
U0=3t0 and 
�=0, we find that �i=0 around the trap center
for distances �ri��4a. This signals the band insulator phase
characterized by a fully filled band where ni,↑=ni,↓=1. How-
ever since ni,↑=ni,↓�1 away from the trap center, �i be-
comes finite signaling a transition from the band insulator to
the superfluid phase. The maximum �i occurs around
�ri�
16a where ni,↑=ni,↓=0.5 corresponding to a half-filled
band. This is purely a density of states �Di� effect since
�i� t0e−1/�U0Di� and Di has a maximum exactly at half-filling
due to particle-hole symmetry of the Fermi-Hubbard Hamil-
tonian. For longer distances �ri��16a away from the trap
center, �i gradually decreases until it eventually vanishes for
�ri��22a where ni,↑=ni,↓
0. These features can be seen in
Fig. 3�a� and they are very different from those of the low
density case shown in Fig. 1�a�. In contrast to our BdG re-
sults, the LDA type methods fail to describe the band insu-

FIG. 2. �Color online� We show the order parameter �i �on the
left, in units of t0� and population difference pi=ni,↑−ni,↓ �on the
right, per lattice site� for the high density case on a two-dimensional
square lattice with 50a�50a sites. Here the chemical potentials are
such that �a�, �b� 
�=0.4t0; �c�, �d� 
�=0.5t0; �e�, �f� 
�=0.6t0;
and �g�, �h� 
�=0.7t0.
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lator region with unit filling because the density profiles do
not vary smoothly as a function of �ri�.

In the case of population imbalanced mixtures, we find
that �i modulates in the radial direction towards the trap
center for low imbalance as shown in Fig. 2�a� because �i is
a more slowly decreasing function of �ri� towards the trap
center than towards the trap edges when 
�=0. However, �i
also modulates towards the trap edges with increasing imbal-

ance as shown in Figs. 2�c�–2�e�. Characteristic features of
these spatial modulations are similar to those of the low den-
sity systems and they can be seen in Fig. 3�a� where

�=0.4t0, 
�=0.5t0, 
�=0.6t0, and 
�=0.7t0 correspond-
ing to P
0.017, P
0.058, P
0.090, and P
0.12, respec-
tively. Therefore high density mixtures in trapped optical lat-
tices are also good candidates for observation of such exotic
superfluid modulations. Further increasing the population
imbalance gradually decreases �i as shown in Fig. 3�a�, until
it vanishes entirely beyond a critical imbalance signaling a
transition from the superfluid to the normal phase.

In Figs. 2�b� and 3�b� we show for low imbalanced mix-
tures that the density of unpaired fermions has a single peak
at the position where �i changes sign. However since �i also
modulates towards the trap edges for intermediate imbal-
ance, the unpaired fermions have double peaks in their den-
sity as shown in Figs. 2�d�, 2�f�, and 3�b�. Furthermore, since
�i vanishes with further increase in imbalance, these two
peaks merge leading to a single peak which is shown in Figs.
2�h� and 3�b�. Notice that similar to the low density case
both �i and pi have C4 symmetry which is consistent with
the underlying symmetry of the square lattice.

To conclude we used the BdG method to analyze the
ground state phases of population imbalanced fermion mix-
tures in harmonically trapped optical lattices. First we
showed that the phase structure of low density mixtures in
optical lattices are qualitatively similar to those of the dilute
mixtures without an optical lattice. Then we discussed high
density mixtures and found qualitatively different results. In
both cases we found that the superfluid order parameter
modulates spatially but it is an open question whether these
modulations are related to the FFLO superfluidity or are sim-
ply finite size effects. Lastly we compared our BdG results
with the LDA ones and argued that the LDA type methods
are not sufficient to describe especially the high density mix-
tures in harmonically trapped optical lattices.
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FIG. 3. �Color online� We show �a� the order parameter �i �in
units of t0� and �b� the population difference pi=ni,↑−ni,↓ �per lat-
tice site� for the high density case as a function of distance x �in
units of a� from the trap center. Here y=0a.
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