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Trapped p-wave superfluids: A local-density approach

M. Iskin and C. J. Williams
Joint Quantum Institute, National Institute of Standards and Technology, and University of Maryland, Gaithersburg,
Maryland 20899-8423, USA
(Received 25 January 2008; published 16 April 2008)

The local-density approximation is used to study the ground state superfluid properties of harmonically
trapped p-wave Fermi gases as a function of fermion-fermion attraction strength. While the density distribution
is bimodal on the weakly attracting BCS side, it becomes unimodal with increasing attraction and saturates
towards the Bose-Einstein condensate (BEC) side. This nonmonotonic evolution is related to the topological
gapless-to-gapped phase transition, and may be observed via radio-frequency spectroscopy since quasiparticle
transfer current requires a finite threshold only on the BEC side.
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Recent experiments measuring momentum distribution,
collective modes, order parameter, quantized vortices, etc.
have provided strong evidence for observation of a super-
fluid phase in two-component cold atomic mixtures, interact-
ing with short-range attractive s-wave interactions [1-6].
These experiments have also shown evidence that the ground
state of these s-wave mixtures evolves smoothly from a
paired Bardeen-Cooper-Schrieffer (BCS) superfluid to a mo-
lecular Bose-Einstein condensate (BEC) as the attractive in-
teraction varies from weak to strong values, marking the first
demonstration of theoretically predicted BCS-BEC crossover
[7-9].

On the other hand, there has also been substantial experi-
mental progress studying p-wave interactions to observe trip-
let superfluidity [10-14]. However, controlling the p-wave
interactions is proving much more difficult due to the narrow
nature of p-wave Feshbach resonances as well as to the more
dramatic two- and also three-body losses [10-14]. These ex-
periments still motivated considerable theoretical interest
predicting quantum and topological phase transitions
[15-20]. More recently, p-wave molecules have been pro-
duced and their two-body properties have been studied [21],
opening the possibility of studying many-body properties of
p-wave superfluids in the near future.

In this Rapid Communication, unlike the previous works
on homogenous systems [15-20], we study the ground state
superfluid properties of harmonically trapped p-wave Fermi
gases as a function of fermion-fermion attraction strength.
Our main results are as follows. While we find that the den-
sity distribution is bimodal on the weakly attracting BCS
side where the local chemical potentials are positive every-
where inside the trap, it becomes unimodal with increasing
attraction and saturates towards the BEC side where the local
chemical potentials become negative. This nonmonotonic
evolution is related to the topological gapless-to-gapped
phase transition occurring in p-wave superfluids, and is in
sharp contrast with the s-wave case where the superfluid
phase is always gapped leading to a smooth crossover.
Lastly, we propose that the phase transition found in the
p-wave case may be observed via radio-frequency spectros-
copy since quasiparticle transfer current requires a finite
threshold only on the BEC side, which is in sharp contrast
with the crossover physics found in the s-wave case where a
finite threshold is required throughout BCS-BEC evolution.
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Local-density (LD) approach. To obtain these results, we
consider a harmonic trapping potential, separate the relative
motion from the center-of-mass one, and use LD approxima-
tion to describe the latter. In this approximation, the system
is treated as locally homogenous at every position inside the
trap, and it is valid as long as the number of fermions is large
which is typically satisfied in cold atomic systems [22]. In
order to describe the pairing correlations occurring in the
relative coordinates, we use the BCS mean field (MF) for-
malism and neglect fluctuations. The MF description is
qualitatively valid throughout BCS-BEC evolution only at
the low temperatures considered here [7-9], and it has been
extensively applied to cold atomic systems describing quali-
tatively the experimental observations.

Therefore we start with the following local MF Hamil-
tonian (in units of i=kz=1)

A 2
H(r)=2, E(rK)ay ay o+ M
k,o

-2 [A((r,k)ahaik,l +H.c.], (1)
k

where €=0 (£=1) corresponds to s-wave (p-wave) systems,
aIw creates a pseudospin o fermion with momentum k, and
&(r,k)=€(k)—u,(r) is the dispersion with e(k)=k>/(2M)
and we(r)=pue—V(r). While the global chemical potential fe,
fixes the total number of fermions, the local chemical poten-
tial w(r) includes the trapping potential V(r)=Mw3r*/2. In
Eq. (1), Ae(r,k)=A,(r)["¢(K) is the local MF order parameter
where A (r)=g2yI¢(k){a_y ;ax ) describes the spatial de-
pendence, such that g>0 is the strengh of the attractive
fermion-fermion interactions and (---) implies a thermal
average. I',(k) determines the symmetry of the order
parameter given by I'((K)=W,(k)Z, N, Y gym(l;) where
Wo(k)=k‘ko/ (k?+k5) D2 describes the momentum depen-
dence [16,19]. Here, k0~R51 sets the momentum scale
where Ry, is the interaction range in real space.

In this Rapid Communication, we assume A,(r) to be real,
and consider only the N\ y=1 and \; +;=0 symmetry. This
choice is motivated by recent experiments [11,14], where it
was found that the magnetic dipole-dipole interactions be-
tween valence electrons split p-wave Feshbach resonances

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.77.041607

M. ISKIN AND C. J. WILLIAMS

that belong to different m states. Thus m=0 and *1 reso-
nances may be tuned and studied independently if the split-
ting is large enough in comparison to the experimental reso-
lution. However, we emphasize that our discussion applies
qualitatively to other p-wave symmetries as well.

The local MF Hamiltonian can be solved by using stan-
dard techniques [16,19], leading to a set of nonlinear equa-
tions for Ay(r) and wu.(r). These equations are

MV {Wﬁ(k) 47T(k) hEg(r,k)] .
dradlt < 2ek) " 2E(rnk) 2T |
1 1 &(rk) E(r.k)
nelr) = V%{zzavmmm 2T}’ ®)

where a, is the experimentally relevant scattermg parameter
which regularizes g, E¢(r,k)=V §€(r k)+A (r,K) is the local
quasiparticle energy, 7 is the temperature, and V is the vol-
ume. In Eq. (3), ny(r) is the local density of fermions, and the
total number of fermions N is fixed by N=[drn,(r). Notice
that a, has units of length (volume) in the s-wave (p-wave)
case, and that our self-consistent solutions also describe the
single pseudospin p-wave systems (except for the o summa-
tions here and throughout), which are presented next.

BCS-BEC evolution in homogenous systems. To under-
stand the ground state properties of harmonically trapped
p-wave superfluids within the LD approach, it is very useful
to analyze first the homogenous s- and p-wave systems
where V(r)=0. Thus next we discuss the s-wave case where
A(K)=AWo(k) Yo o(K) with Y o(K)=1/\4m, and compare
these results with the p-wave case where A, (k)
=AW, (k)Y (k) with Y, o(k)=\3/(4m)cos(6,). In the nu-
merical calculations, while we mainly consider ky=100kg to
describe realistically the short-ranged atomic interactions,
some of the ky=10k results are also shown for comparison.

In Fig. 1(a), we show A, and u, at zero temperature
(T=0) for the s-wave case where the BCS-BEC evolution
range in 1/(kpay) is of order 1. Notice that A; grows
continuously without saturation with increasing attraction,
while u, decreases continuously from the Fermi energy
ep=k%:/(2M) on the BCS side to the half of the binding en-
ergy €,,/2=—1/(2Ma?) on the BEC side [9]. Here, kj
is the Fermi momentum which fixes the total density
n:EUk;/ (677%) of fermions. Thus we conclude that the evo-
lution of A, and wu, as a function of 1/(kpa,) is analytic
throughout, and BCS-BEC evolution is a smooth crossover
[7-9].

In Fig. 1(b), we show A, and u, at T=0 for the p-wave
case where the BCS-BEC evolutlon range in 1/(k0kpa,,) is of
order 1. Notice that A, is exponentially small but still finite
in the BCS limit When Mp=€p and it grows rapidly with
increasing attraction but almost saturates for large
1/ (koklz,-ap), while w, decreases continuously from €5 on the
BCS side to €, ,/2=~1/(Mkya,) on the BEC side. However,
both A, and w, are nonanalytic exactly when w,=0 at
1/ (kFaI,) ~(.45, which occurs on the BEC side of unitarity
(|a, |H ). We note that the nonanalyticity of u, is barely
seen in Fig. 1(b), and it is more explicit in derivatives of i,.

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 77, 041607(R) (2008)

1 ‘ : : ;12
us *
Of 18
ko=100 — —
(@ -1 =10
| 4
2 A
3 : 0
2 1 0 1 2
/(ke ag)

FIG. 1. We show (in units of €) the chemical potential w, (left
y axis) and the amplitude of the order parameter A, (right y axis)
for (a) s-wave systems as a function of 1/(kga,) and (b) p-wave
systems as a function of 1/(k0k§al,). Here, solid (dotted) lines cor-
respond to ko=100k (ko=10kf).

Thus in the p-wave case, BCS-BEC evolution is not a cross-
over, but a quantum phase transition occurs [15,17,19].

This phase transition can be understood as follows. The
quasiparticle excitation spectrum E (k) is gapless when the
conditions A,(k)=0 and &,(k)=0 are both satisfied for some
k-space regions. While the second condition is satisfied for
both s- and p-wave symmetries on the BCS side where
Mme>>0, the first condition is only satisfied by the p-wave
order parameter. Therefore unlike the s-wave case, E,(k) is
gapless on the BCS side (u,>0) but it is gapped on the BEC
side (u,<0), leading to the phase transition discussed above
[7,15,19,23]. Having discussed the ground state of homog-
enous systems, next we analyze the trapped case.

BCS-BEC evolution in trapped systems. For this purpose,
similar to the analysis of homogenous systems, first we

discuss the s-wave case where As(r,k):As(r)WO(k)YO,O(l’;),
and compare these results with the p-wave case where
Ap(r,k)=Ap(r)W1(k)Y1,0(lA(). In the numerical calculations,
we again choose ky=100k; where kp=M wyrp is the global
Fermi momentum. Here, rp is the Thomas-Fermi radius de-
termined by V(rp)= €= kz/(2M) and fixes the total number
of fermions to N=3 kpr;/48.

Within the LD approximation, the density distribution of
trapped noninteracting (g=0 or a,—07) gas is ny(r)
=Egk%(r)/ (672), where ky(r) is the local Fermi momentum
determined by pu,=kr(r)/(2M)+V(r) with = €. Therefore
both ki(r) and n,(r) are highest at the center of the trap as
can be also seen in Figs. 2(a) and 2(b) when 1/(kpa,)=—
and 1/(k0k12¢a1,)=—00, respectively.

In the presence of weak attraction, while w, deviates from
€r, the density distribution is still well-described by the non-
interacting expression. For fixed N, n,(r) is expected to
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FIG. 2. (Color online) We show [in units of k;/ (27)?] the den-
sity distribution n,(r) for (a) s- and (b) p-wave systems as a func-
tion of the trap radius r (in units of ry). Here, we set ko=100k.

squeeze and increase towards the center of the trap since w,
decreases with increasing attraction. The squeezing effect of
the weak attractive interactions can be seen in Fig. 2(a) for
the s-wave and in Fig. 2(b) for the p-wave systems when
1/(kpag)==0.5 and 1/ (kokpa,)=—0.4, respectively.

However, weakly attracting p-wave superfluids have bi-
modal density distribution as shown in Fig. 2(b), which is in
sharp contrast with the unimodal s-wave distribution of Fig.
2(a). This difference can be understood from the homog-
enous results shown in Figs. 1(a) and 1(b) as follows. First,
since kp(r) decreases away from the center of the trap, the
local s- and p-wave scattering parameters 1/[kg(r)a,] and
l/[kok%(r)ap], respectively, increase as a function of r if a;
and a,, are fixed. Second, notice in Fig. 1(b) that A, increases
rapidly from exponentially small to larger values as a func-
tion of l/(kok%ap), unlike A; which increases smoothly as
shown in Fig. 2(a). These two observations combined show
that the almost noninteracting n,(r) distribution towards the
tail is due to finite but exponentially small A ,(r).

With increasing attraction towards unitarity, while the uni-
modal n(r) distribution smoothly squeezes further as shown
in Fig. 2(a) for 1/(kpa;)=0 and 0.5, the bimodal ,,(r) distri-
bution becomes unimodal and saturates as shown in Fig. 2(b)
for 1/ (kok%ap)=0 and 0.4. This difference can be understood
at best on the BEC side where strongly attracting fermion
pairs form weakly repulsive local molecules which can be
well-described by the Bogoliubov theory [9,19]. On this side,
the size of the s-wave molecules decreases to arbitrarily
small values as &z ;~a,>0 when kya,> 1, leading to arbi-
trarily weak molecule-molecule repulsion Ugp ;=2magg /M
where app =2a, within the Born approximation [9]. How-
ever, the size of the p-wave molecules saturates to small but
finite values as &z ,~ 1/k, when k?)ap> 1, leading also to a
weak but finite molecular repulsion Ugg,=2magg ,/M
where agg ,=9/ky [19]. Since our LD approximation recov-
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FIG. 3. Schematic diagrams showing (a) a fully gapless super-
fluid on the BCS side when w,(0=r=rp)>0, (b) a partially
gapped superfluid around unitarity when w,(0=r=r,)>0 but
y(r>r,) <0, and (c) a fully gapped superfluid on the BEC side
when w,(r=0) <0.

ers the Thomas-Fermi approximation for the resultant mol-
ecules in the BEC limit, n,(r) saturates rapidly for
1/(k0k§al,)>0 due to the presence of weak but finite mo-
lecular repulsion.

This nonmonotonic evolution of 7,(r) is also related to
the topological phase transition discussed above for the ho-
mogenous systems. In the trapped case, the local quasiparti-
cle excitation spectrum E(r,K) at position r is gapless when
the conditions Ay(r,k)=0 and &,(r,k)=0 are both satisfied
for some k-space regions. While these conditions are both
satisfied everywhere inside the trap leading to a fully gapless
superfluid on the BCS side, they are only satisfied around the
center of the trap close to unitarity leading to a partially
gapped superfluid. Further increasing the attraction towards
the BEC limit, the second condition is not satisfied, and the
entire superfluid becomes fully gapped. These phases are
schematically shown in Figs. 3(a)-3(c), respectively, and
next we discuss their experimental detection.

Radio-frequency (rf) spectroscopy. The gapless-to-gapped
phase transition discussed above may be observed in cold
atomic systems via, for instance, rf spectroscopy, where at-
oms are transferred from one hyperfine state to another gen-
erating a quasiparticle current [22,24-26]. This is analogous
to electrons tunneling from a superconducting to normal
metal, and it has been used in atomic systems to observe
pairing correlations in unpolarized [25] as well as polarized
[26] mixtures.

The local quasiparticle transfer current, within the LD ap-
proximation, is given by [22,24,27]

L(r,0) = 12 Ad K, &(r.K) = 0]FLE(r.K) - 0], (4)
k

where tp is the transfer amplitude, A,(k,x) is the spectral
function corresponding to the superfluid state, and F(x)
=1/[exp(x/T)+1] is the Fermi function. Here, w=w; — wy is
the effective detuning where w; and wy are rf laser
frequency and hyperfine splitting, respectively. We evaluate
Eq. (4) with the standard BCS spectral functions A(k, €)
=27T{u%(r,k)E[E—Eg(r,k)]+v%(r,k)5[e+E€(r,k)]}, where
up(r,k)=0.5[1+&(r,K)/ E¢(r,k)] and vi(r,k)
=0.5[1-§&,(r,K)/E,(r,k)] are coherence factors, and &(x) is
the delta function.

At T=0, the s-wave
evaluated analytically

current I (r,w) can be
leading to I(r,w)
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FIG. 4. (Color online) We show (in units of th?:/ 2) the quasi-
particle transfer current /,(w) for homogenous (a) s- and (b) p-wave
systems as a function of the effective detuning w (in units of €p).
Here, we set ko=100kg.

=prti[AS(r)/(47Tw)]2\f'C(r,w)@(w)H[C(r,w)], where  pg
=MVky/(27?) is the density of states, C(r,w)
=[w?=A%(r)/(4m)]/ (2w)+ u,(r), and A(x) is the theta func-
tion. Therefore, I(r,w) flows when the threshold
wth,s(r)Z—MS(r)+V’,u,?(r)+Af(r)/(47T)ZO is reached, which
reduces to w,h,s(r)zAi(r)/[&T,us(r)] in the BCS and
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w;,.5(r) = 2| uy(r)| in the BEC limit. Therefore w,, ((r) # 0 ev-
erywhere inside the trap throughout BCS-BEC evolution
[22,24-26]. These finite detuning thresholds can be also seen
in Fig. 4(a), where we show I (w) for homogenous systems.

The p-wave current / p(r, w) is difficult to evaluate analyti-
cally. However, unlike the s-wave case, we expect that
oy, ,(r) # 0 everywhere inside the trap only on the BEC side
beyond unitarity where E,(r,k) is gapped, and also that
oy, ,(r)=0 everywhere inside the trap on the BCS side where
E,(r.k) is gapless. The absence (presence) of finite thresh-
olds in gapless (gapped) superfluids can be seen in our ho-
mogenous results shown in Fig. 4(b). Notice that, while
w,h,,,:O for 1/ (kokfva,,)z—oo, —0.4, and 0, a finite threshold is
required for 1/(k0k%ap) =0.4. Based on these results, we hope
that spatially resolved rf spectroscopy measurements (similar
to [26]) may be used to identify all three phases proposed in
Fig. 3.

Conclusions. To summarize, we showed that while the
density distribution of p-wave systems is bimodal on the
weakly attracting BCS side, it saturates and becomes unimo-
dal with increasing attraction towards the BEC side. We dis-
cussed that this nonmonotonic evolution is related to the to-
pological gapless-to-gapped phase transition occurring in
p-wave superfluids, and is in sharp contrast with the s-wave
case where the superfluid phase is always gapped leading to
a smooth crossover. Lastly, we proposed that this phase tran-
sition may be observed via rf spectroscopy since quasiparti-
cle transfer current requires a finite threshold only on the
BEC side, which is in sharp contrast with the s-wave case
where a finite threshold is required throughout BCS-BEC
evolution.
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