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The ground-state phase diagram of Fermi-Fermi mixtures in optical lattices is analyzed as a function of
interaction strength, population imbalance, filling fraction, and tunneling parameters. It is shown that popula-
tion imbalanced Fermi-Fermi mixtures reduce to strongly interacting Bose-Fermi mixtures in the molecular
limit, in sharp contrast to homogeneous or harmonically trapped systems, where the resulting Bose-Fermi
mixture is weakly interacting. Furthermore, insulating phases are found in optical lattices of Fermi-Fermi
mixtures in addition to the standard phase-separated or coexisting superfluid–excess-fermion phases found in
homogeneous systems. The insulating states can be a molecular Bose-Mott insulator �BMI�, a Fermi-Pauli
insulator �FPI�, a phase-separated BMI-FPI mixture, or a Bose-Fermi checkerboard.
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I. INTRODUCTION

In recent experiments, superfluidity of ultracold 6Li Fermi
atoms with population imbalance was investigated in Gauss-
ian traps from the Bardeen-Cooper-Schrieffer �BCS� to the
Bose-Einstein condensation �BEC� limit �1–4�. In contrast to
the crossover physics found in population balanced systems
�5–8�, a phase transition from superfluid to normal phase as
well as a phase separation between paired and unpaired fer-
mions were observed �9–11�. More recently, experimental
evidence for superfluid and insulating phases was also re-
ported with ultracold 6Li atoms in optical lattices without
population imbalance �12�. This was achieved after overcom-
ing some earlier difficulties in producing Fermi superfluids
from an atomic Fermi gas or from molecules of Fermi atoms
in optical lattices �13–17�.

Before and after the experiments, the possibility of inter-
esting phases in population imbalanced ultracold fermions
has attracted intense theoretical interest �9–11,18–28�. These
works were focused on homogeneous or harmonically
trapped Fermi superfluids, where the number of external con-
trol parameters is limited. For instance, in addition to the
population imbalance P and the scattering parameter as, sev-
eral other experimental parameters can also be controlled in
optical lattices such as the tunneling matrix element t� be-
tween adjacent lattice sites, the on-site atom-atom interac-
tions g, the filling fraction F, the lattice dimensionality D,
and the tunneling anisotropy �= t↓ / t↑ �30�. Therefore, optical
lattices may permit a systematic investigation of phase dia-
grams and correlation effects in Fermi systems as a function
of g, P, F, D, and �, which has not been possible in any
other atomic, nuclear, and/or condensed-matter systems.

Arguably, one-species or two-species fermions loaded
into optical lattices are one of the next frontiers in ultracold
atom research because of their greater tunability. The prob-
lem of one-species population balanced fermions in lattices
has already been studied in the BCS and BEC limits
�6,31,32�, while recent works on population and/or mass im-
balanced Fermi-Fermi mixtures in lattices were limited only
to the BCS regime �33,34�. In this paper, we extend our

previous work describing balanced fermions and their
s-wave and p-wave superfluid phases in optical lattices �32�,
and we extend our recent paper describing superfluid and
insulating phases of Fermi-Fermi mixtures in optical lattices
�35�. We discuss specifically the population balanced and
imbalanced Fermi-Fermi mixtures of one species �e.g., 6Li or
40K only� and two species �e.g., 6Li and 40K; 6Li and 87Sr; or
40K and 87Sr� as a function of g, P, and F for fixed values of
� in optical lattices and throughout the BCS to BEC evolu-
tion. We also pay special attention to the emergence of insu-
lating phases in the strong attraction �molecular� limit. The
existence of insulating phases in optical lattices should be
contrasted with their absence in homogeneous or harmoni-
cally trapped systems �10,11,23,28�. Furthermore, the present
extension to two-species mixtures is timely due to very re-
cent experimental work on 6Li and 40K mixtures �36,37� in
harmonic traps, which have opened the possibility of trap-
ping these mixtures in optical lattices as well.

Our main results are as follows. Using an attractive
Fermi-Hubbard Hamiltonian to describe one-species or two-
species mixtures, we obtain the ground-state phase diagram
containing normal, phase-separated, and coexisting
superfluid-excess fermions, and insulating regions. We show
that population imbalanced Fermi-Fermi mixtures reduce to
strongly interacting �repulsive� Bose-Fermi mixtures in the
molecular limit, in sharp contrast with homogenous systems,
where the resulting Bose-Fermi mixtures are weakly interact-
ing �19,23,28,29�. This result is a direct manifestation of the
Pauli exclusion principle in the lattice case, since each Bose
molecule consists of two fermions, and more than one iden-
tical fermion on the same lattice site is not allowed for
single-band systems. This effect together with the Hartree
energy shift lead to a filling-dependent condensate fraction
and to sound velocities that do not approach zero in the
strong attraction limit, in contrast with the homogeneous
case �28�. Lastly, several insulating phases appear in the mo-
lecular limit depending on the filling fraction and population
imbalance. For instance, we find a molecular Bose-Mott in-
sulator �superfluid� when the molecular filling fraction is
equal to �less than� 1 for a population balanced gas where the

PHYSICAL REVIEW A 78, 013607 �2008�

1050-2947/2008/78�1�/013607�12� ©2008 The American Physical Society013607-1

http://dx.doi.org/10.1103/PhysRevA.78.013607


fermion filling fractions are identical. When the filling frac-
tion of one type of fermion is 1 and the filling fraction of the
other is 1/2 �corresponding to molecular boson and excess
fermion filling fractions of 1/2�, we also find either a phase-
separated state consisting of a Fermi-Pauli insulator �FPI� of
the excess fermions and a molecular Bose-Mott insulator
�BMI� or a Bose-Fermi checkerboard �BFC� phase depend-
ing on the tunneling anisotropy �.

The rest of the paper is organized as follows. After intro-
ducing the Hamiltonian in Sec. II, first we derive the saddle
point self-consistency equations, and then we analyze the
saddle point phase diagrams at zero temperature in Sec. III.
In Sec. IV, we discuss Gaussian fluctuations at zero tempera-
ture to obtain the low-energy collective excitations, and near
the critical temperature to derive the time-dependent
Ginzburg-Landau �TDGL� equations. In Sec. V, we derive an
effective Bose-Fermi action in the strong attraction limit, and
we describe the emergence of insulating BMI, BFC, and
separated BMI-FPI phases, and in Sec. VI we suggest some
experiments to detect these insulating phases. A brief sum-
mary of our conclusions is given in Sec. VII. Lastly, in Ap-
pendixes A and B, we present the elements of the inverse
fluctuation matrix and their low-frequency and long-
wavelength expansion coefficients at zero and finite tempera-
tures, respectively.

II. LATTICE HAMILTONIAN

To describe mixtures of fermions loaded into optical lat-
tices, we start with the following continuum Hamiltonian in
real space:

HC = �
�
� dr��

†�r��−
�2

2m�

+ V��r� − ������r�

−� dr� dr�n̂↑�r�U�r,r��n̂↓�r�� , �1�

where the ��
†�r� ����r�� field operator creates �annihilates� a

fermion at position r with a pseudospin �, mass m�, and
chemical potential ��. Here, V��r� is the optical lattice po-
tential, n̂��r�=��

†�r����r� is the density operator, and
U�r ,r�� describes the density-density interaction between
fermions. We allow fermions to be of different species
through m�, and to have different populations controlled by
independent ��, where the pseudospin � labels the trapped
hyperfine states of a given species of fermions, or labels
different types of fermions in a two-species mixture.
The optical lattice potential has the form V��r�
=V0,�� j=	x,y,z
sin2��rj�, where V0,� is proportional to the laser
intensity, �=2� /� is the wavelength of the laser such that
ac=� /2 is the size of the lattice spacing, and rj corresponds
to the jth component of r. This potential describes a cubic
optical lattice since the amplitude and the period of the po-
tential is the same in all three orthogonal directions. Further-
more, we assume short-range interactions and set U�r ,r��
=U��r−r��, where U	0 is the strength of the attractive in-
teractions.

For this Hamiltonian, the single-particle eigenfunctions
are Bloch wave functions, leading to a set of Wannier func-

tions that are localized on the individual lattice sites �38�.
Therefore, we expand the creation and annihilation field op-
erators in the basis set of these Wannier functions W��r
−ri� of the lowest-energy states of the optical potential near
their minima, such that ���r�=�iW��r−ri�ai,� and ��

†�r�
=�iW�

��r−ri�ai,�
† , where the ai,�

† �ai,�� site operator creates
�annihilates� a fermion at lattice site i with a pseudospin �.
Here, ri is the position of the lattice site i. Multibands are
important when the interaction energy involved in the system
is comparable to the excitation energies to the higher bands,
and these effects can be easily incorporated into our theory.
Notice that, for a complete set of Wannier functions such
that �iW��r−ri�W�

��r�−ri�=��r−r��, the field operators
����r� ,���

† �r���=��,����r−r�� as well as site operators
�ai,� ,aj,��

† �=��,���i,j obey the Fermi anticommutation rules,
where ��r� is the delta function and �i,j is the Kronecker
delta.

This expansion reduces the continuum Hamiltonian given
in Eq. �1� to a site Hamiltonian,

HS = − �
i,j,�

t�
i,jn̂i,j;� − �

i,�
��n̂i,i;� − �

i,j,k,l
n̂i,j;↑Ui,j;k,ln̂k,l;↓,

�2�

where t�
i,j =−�drW�

��r−ri��−�2 / �2m��+V��r��W��r−rj� is
the tunneling amplitude between sites i and j, Ui,j;k,l
=U�drW↑

��r−ri�W↑�r−rj�W↓
��r−rk�W↓�r−rl� is the ele-

ments of strength of attractive density-density interactions
between sites 	i , j
 and 	k , l
, and n̂i,j;�=ai,�

† aj,�. In this paper,
we allow tunneling and interactions up to the nearest-
neighbors, and choose t�

i,j = t��i,j
1 and Ui,j;k,l=g�i,j� j,k�k,l
+h�i,j� j,k
1�k,l, respectively. Here, g	0 and h	0 are
strengths of the on-site and nearest-neighbor interactions, re-
spectively. This reduces the general site Hamiltonian given
in Eq. �2� to a nearest-neighbor site Hamiltonian,

HS
NN = − �

�i,j
,�
t�n̂i,j;� − �

i,�
��n̂i,i;� − g�

i

n̂i,i;↑n̂i,i;↓

− h�
�i,j


n̂i,i;↑n̂j,j;↓, �3�

where �i , j
 restricts sums to nearest neighbors only such that
j= i
1. This is the nearest-neighbor Fermi-Hubbard Hamil-
tonian for a simple-cubic lattice.

Finally, we Fourier transform the site operators to the mo-
mentum space ones, such that ai,�= �1 /�M��kak,�e−ik·ri and
ai,�

† = �1 /�M��kak,�
† eik·ri, where M is the number of lattice

sites, and the ak,�
† �ak,�� operator creates �annihilates� a fer-

mion at momentum k with a pseudospin �. This leads to the
general momentum space Hamiltonian,

HM = �
k,�

��k,� − ���n̂k,k;�

− �
k1+k3=k2+k4

n̂k1,k2;↑U�k1 − k2�n̂k3,k4;↓, �4�

where �k,�=−2t�� j=	x,y,z
cos�kjac� is the nearest-neighbor
tight-binding dispersion, kj is the jth component of k, and ac
is the lattice spacing. Here, n̂k,k�;�=ak,�

† ak�,�, and we
used ��i,j
e

ik·�ri−rj�=2� j=	x,y,z
cos�kjac�. Therefore, in order to
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achieve the momentum-space Hamiltonian given in Eq. �4�
from the real-space Hamiltonian given in Eq. �1�, we per-
formed ���r�= �1 /�M��i,kak,�W��r−ri�e−ik·ri and ��

†�r�
= �1 /�M��i,kak,�

† W�
��r−ri�eik·ri, which corresponds to the to-

tal transformation from the real-space field operators to the
momentum-space ones.

The second term in Eq. �4� U�k−k��
= �1 /M��i,jUi,i;j,je

�k−k��·�ri−rj� is the Fourier transform of
the interaction term and is given by U�k−k��=g
+2h� j=	x,y,z
cos��kj −kj��ac�. In momentum space, the
simplification comes from the separability of the interaction
potential, such that U�k−k��=g�s�k��s�k��
+h� j=	e,d,p
� j�k�� j�k��, where the sum over c corresponds to
different pairing symmetries. For a three-dimensional lattice,
we obtain the following components: �s�k�=1 for
the s-wave symmetry; �e�k�= �cos�kxac�+cos�kyac�
+cos�kzac�� /�2 for the extended s-wave symmetry; �d,1�k�
= �cos�kxac�+cos�kyac�−cos�kzac�� /�2, �d,2�k�= �cos�kxac�
−cos�kyac�+cos�kzac�� /�2, and �d,3�k�= �cos�kxac�
−cos�kyac�−cos�kzac�� /�2 for the d-wave symmetry; and
�p,1�k�=�2 sin�kxac�, �p,2�k�=�2 sin�kyac�, and �p,3�k�
=�2 sin�kzac� for the p-wave symmetry. Notice that symme-
trized and antisymmetrized combinations of cosines and
sines help to exploit the symmetry of the lattice.

In this paper, we consider only the case of local s-wave
interactions �g�0� and set the nearest-neighbor interaction
to zero �h=0�. This is motivated by the fact that only the
on-site interactions between two fermions are important
since for short-range forces the condition g
h is satisfied.
For longer-range �nonlocal� and/or higher-wave interactions,
the magnitude of h may be sufficiently large and should be
included. Thus, to describe mixtures of fermions loaded into
optical lattices and interacting via short-range forces, we use
the s-wave single-band Hamiltonian,

H = �
k,�

�k,�ak,�
† ak,� − g �

k,k�,q

bk,q
† bk�,q, �5�

with an on-site attractive interaction g	0. Here, ak,�
† is the

fermion creation and bk,q
† =ak+q/2,↑

† a−k+q/2,↓
† �s

��k� is the pair
creation operator. In addition, �k,�=�k,�− �̃� describes the
nearest-neighbor tight-binding dispersion, �k,�=2t��k with

�k = �
j=	x,y,z


�1 − cos�kjac�� , �6�

where �̃�=��−VH,� and VH,� is a possible Hartree energy
shift. Notice that we allow fermions to be of different species
through t�, and to have different populations controlled by
independent �̃�.

Furthermore, the momentum-space sums in Eq. �5� and
throughout this paper are evaluated as follows. For large and
translationally invariant systems considered here, we can use
a continuum approximation to sum over the discrete k levels,
and for a three-dimensional lattice write

�
k

F�kx,ky,kz� � �
−�/ac

�/ac dkxdkydkz

�2�/L�3 F�kx,ky,kz�

= M�
−�

� dk̃xdk̃ydk̃z

�2��3 F�k̃x, k̃y, k̃z� , �7�

where F�kx ,ky ,kz� is a generic function of kx, ky, and kz, L

=Mac is the size of the lattice, and k̃i=kiac is dimensionless.
This continuum approximation is valid for large systems
only where M 
1. Notice also that ac provides a natural
cutoff to the k-space integrations in the lattice case.

Unlike recent works on fermion pairing in optical lattices,
which were restricted to the BCS limit �33,34�, we discuss
next the evolution of superfluidity from the BCS to the BEC
regime �32� and the emergence of insulating phases �35�. We
ignore multiband effects since a single-band Hamiltonian
may be sufficient to describe the evolution from BCS to BEC
physics in optical lattices �39�. Multibands are important
when the fermion filling fraction is higher than 1 and/or the
optical lattice is not in the tight-binding regime, but these
effects can be easily incorporated into our theory.

III. SADDLE POINT APPROXIMATION

In this paper, we use the functional integral formalism
described in Refs. �7,8,23,28�. The general method follows
the same prescription as for the homogeneous case, and we
do not repeat the same analysis for the lattice case discussed
here. The main differences between the momentum-space
expressions for the homogeneous and the lattice case come
from the periodic dispersion relation for the lattice system, as
given in Eq. �6�.

A. Saddle point self-consistency equations

For the Hamiltonian given in Eq. �5�, the saddle point
order-parameter equation parallels that of the homogeneous
system �23,28�, and leads to

1

g
=

1

M
�
k

1 − f�Ek,1� − f�Ek,2�
2Ek,+

��s�k��2, �8�

where M is the number of lattice sites, f�x�=1 / �exp�x /T�
+1� is the Fermi function,

Ek,s = ��k,+
2 + ��k�2�1/2 + �s�k,− �9�

is the quasiparticle energy when �1=1 or the negative of the
quasihole energy when �2=−1, and Ek,
= �Ek,1
Ek,2� /2.
Here, �k=�0�s�k� is the order parameter and �k,
=�k,

− �̃
, where �k,
=2t
�k with t
= �t↑
 t↓� /2 and �̃


= ��̃↑
�̃↓� /2. Notice that the symmetry between quasiparti-
cles and quasiholes is broken when �k,−�0. The order-
parameter equation has to be solved self-consistently and
leads to number equations,

N↑ = �
k

��uk�2f�Ek,1� + �vk�2f�− Ek,2�� , �10�
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N↓ = �
k

��uk�2f�Ek,2� + �vk�2f�− Ek,1�� , �11�

which are derived in the same way as in the homogeneous
case �28�. Here, �uk�2= �1+�k,+ /Ek,+� /2 and �vk�2= �1
−�k,+ /Ek,+� /2. The number of �-type fermions per lattice
site is given by

0 � n� =
N�

M
� 1. �12�

Thus, when n↑�n↓, we need to solve all three self-
consistency equations, since population imbalance is
achieved when either Ek,1 or Ek,2 is negative in some regions
of momentum space, as discussed next.

B. Saddle point phase diagrams at zero temperature

To obtain ground-state phase diagrams, we solve Eqs. �8�,
�10�, and �11� as a function of interaction strength g, popu-
lation imbalance, and total filling fraction,

− 1 � P =
n↑ − n↓

n↑ + n↓
� 1, �13�

0 � F =
n↑ + n↓

2
� 1, �14�

respectively �35�, and consider two sets of tunneling ratios
�= t↓ / t↑. The case of �=1 is shown in Fig. 1, and the case of
�=0.15 is shown in Fig. 2. While �=1 corresponds to a

one-species �two-hyperfine-state� mixture such as 6Li or 40K,
�=0.15 corresponds to a two-species mixture �one-
hyperfine-state of each type of atom� such as 6Li and 40K;
6Li and 87Sr; or 40K and 87Sr.

Generally, lines AB �0�n↑�1; n↓=0� and ED �n↑
=0; 0�n↓�1� in Figs. 1 and 2 correspond to normal
�-type Fermi metal for all interactions, while points B �n↑
=1,n↓=0� and D �n↑=0,n↓=1� correspond to a Fermi-Pauli
�band� insulator since there is only one type of fermion in a
fully occupied band. Thus, the only option for additional
fermions �↑ in case B and ↓ in case D� is to fill higher-energy
bands if the optical potential supports it, otherwise the extra
fermions are not trapped. For the case in which no additional
bands are occupied, we label the corresponding phase dia-
gram regions as “Inaccessible” in Figs. 1�b� and 2�b�, since
either n↑	1 or n↓	1 in these regions. This phase boundary
between the “Normal” and the “Inaccessible” phase is given
by P=1 /F−1 for P	0, and P=1−1 /F for P�0.

The population balanced line AC ends at the special point
C, where n↑=n↓=1. This point is a Fermi-Pauli �band� insu-
lator for weak attraction since both fermion bands are fully
occupied. Furthermore, for very weak attraction, lines BC
�n↑=1,0�n↓�1� and CD �0�n↑�1,n↓=1� correspond es-
sentially to a fully polarized ferromagnetic metal �or half-
metal�, where only the type of fermions with filling fraction
less than 1 can move around.

In the phase diagrams shown in Figs. 1 and 2, we indicate
the regions of normal �N� phase where ��0�=0, and group
together the regions of coexistence of superfluidity and ex-
cess fermions �CSE� and/or phase separation �PS�, where
��0��0. When F�1, the phase diagrams are similar to the
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FIG. 1. Phase diagrams for a one-species �6Li or 40K� mixture
of two hyperfine states with �=1: �a� n↑ versus n↓ and �b� P versus
F for g=5t+ and 10t+. The normal regions �outside the “football”
boundaries� and coexistence of superfluidity with excess fermions
�CSE� and/or phase separation �PS� �inside the “football” bound-
aries� are indicated. The CSE/PS �normal� region expands �shrinks�
with increasing fermion attraction.
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FIG. 2. Phase diagrams for a two-species �6Li and 40K� mixture
of two hyperfine states with �=0.15: �a� n↑ versus n↓ and �b� P
versus F for g=5t+ and 10t+. The normal regions �outside the “foot-
ball” boundaries� and coexistence of superfluidity with excess fer-
mions �CSE� and/or phase separation �PS� �inside the “football”
boundaries� are indicated. The CSE/PS �normal� region expands
�shrinks� with increasing fermion attraction.
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homogenous case �10,11,23,28�, and the P versus F phase
diagram is symmetric for equal tunnelings, as shown in Fig.
1�b�, and is asymmetric for unequal tunnelings having a
smaller normal region when the lighter band mass fermions
are in excess as shown in Fig. 2�b�. Here, we do not discuss
separately the CSE and PS regions since they have already
been discussed in homogeneous and harmonically trapped
systems �10,11,23,28�, and have been experimentally ob-
served �1–4�, but we do make two remarks.

First, the lattice phase diagram is also different from the
homogenous systems in relation to the topological quantum
phase transitions discussed in Refs. �23,28�. These phases are
characterized by the number of zero-energy surfaces of Ek,1
and Ek,2 such that �I� Ek,1�2� has no zeros and Ek,2�1� has only
one, �II� Ek,1�2� has no zeros and Ek,2�1� has two zeros, and
�III� Ek,1�2� and Ek,2�1� have no zeros and are always positive
corresponding to the P=0 limit. The topological phases char-
acterized by the number �I and II� of simply connected zero-
energy surfaces of Ek,s may lie in the stable region of CSE,
unlike in the homogeneous case, where the topological phase
II always lies in the phase-separated region for all parameter
space �23,28�. Notice that we do not present a description of
generalized Fulde-Ferrell �FF� �40� or Larkin-Ovchinnikov
�LO� �41� states in our analysis of topological phases, since
we do not investigate pairing with finite center-of-mass mo-
mentum. However, we would like to point out that there is a
definite possibility of having generalized FF or LO phases
emerging over some region �usually small� between normal
and phase-separated states as in the homogeneous case �11�.

To understand the topology of the uniform superfluid
phase, we define B
= �̃↑ / �4t↑�
�̃↓ / �4t↓�. For the s-wave
symmetry considered, the zeros of Ek,s occur at real mo-
menta �k


=B+
 �B−
2 − ��0�2 / �4t↑t↓��1/2 provided that ��0�2

�4�B−�2t↑t↓ for B+�0 and ��0�2�−�̃↑�̃↓ for B+�0. The
transition from phase II to I occurs when �k

−→0, indicating a
change in topology in the lowest quasiparticle band. The
topology is of phase I if B+�0, and phase II is possible only
when B+	0, and therefore phase II �I� always appears in the
BCS �BEC� side of the phase diagram. In the particular case
in which t↑= t↓, the topology is of phase I if �̃+�0, and
phase II is possible only when �̃+	0.

Notice that �̃+ goes below the bottom of the particle
�hole� band as g increases, since the Cooper pairs are formed
from particles �holes� when F�0.5 �F	0.5� �32�. This leads
to a large and negative �positive� �̃+ for particle �hole� pairs
in the BEC limit, thus producing a uniform superfluid with
topological phase I �II�. Therefore, the topology of the entire
superfluid phase is expected to be of phase II for F�0.5.
However, when t↑= t↓, the boundary between phase II and
phase I lies around g�13t+ for F=0.1 and g�30t+ for F
=0.3.

Similar topological phase transitions in nonzero angular
momentum superfluids have been discussed previously in the
literature in connection with 3He p-wave phases �42� and
cuprate d-wave superconductors �43,44�, and more recently a
connection to ultracold fermions that exhibit p-wave Fesh-
bach resonances was made �45–50�. However, we would like
to emphasize that the topological transition discussed here is
unique, since it involves a stable s-wave superfluid, and may
be observed for the first time in future experiments.

Second, the phase diagram characterized by normal, su-
perfluid �CSE or PS�, and insulating regions may be explored
experimentally by tuning the ratio g / t+, total filling fraction
F, and population imbalance P as done in harmonic traps
�1–4�. We would like to emphasize that our saddle point
results provide a nonperturbative semiquantitative descrip-
tion of the normal-superfluid phase boundary for all cou-
plings and tell us that the system is either superfluid ���0�
�0� or normal ���0�=0�, but they fail to describe the insu-
lating phases. Thus, first, we analyze Gaussian fluctuations at
zero and finite temperatures, and then we show that insulat-
ing phases emerge from fluctuation effects beyond the saddle
point approximation.

IV. GAUSSIAN FLUCTUATIONS

In this section, we follow closely the formalism devel-
oped to deal with fluctuations for homogeneous superfluids
�7,8,23,28�. We determine the collective modes for Fermi
superfluids in optical lattices at zero temperature and the ef-
fective equation of motion near the critical temperature.

A. Gaussian fluctuations at zero temperature

Next, we analyze the zero-temperature Gaussian fluctua-
tions in the BCS and BEC limits for P=0, from which we
extract the low-frequency and long-wavelength collective
excitations. For the s-wave symmetry considered, the collec-
tive excitation spectrum is determined from the poles of the
fluctuation matrix in much the same way as in homogenous
systems. Thus, following Ref. �28�, we obtain the condition

det�A + C�q�2 − D�2 iB�

− iB� Q�q�2 − R�2 � = 0, �15�

where the expansion coefficients A, B, C, D, Q, and R are
given in Appendix A. There are amplitude and phase
branches for the collective excitations, but we focus only on
the lowest-energy Goldstone phase mode with dispersion
��q�=v�q�, where

v = � AQ

AR + B2�1/2
�16�

is the speed of sound. First, we discuss analytically the sound
velocity in the weak and strong attraction limits, and then we
calculate numerically the evolution in between these limits.

In the weak attraction �BCS� limit when 0��̃+�4Dt+,
the coefficient that couples phase and amplitude fields
vanishes �B=0�, and the phase and amplitude modes
are decoupled. We also obtain A=N��̃+�, C=Q /3
=N��̃+�vF

2 / �12D��0�2�, and D=R /3=N��̃+� / �12��0�2�,
where D is the number of dimensions. Here, N�x�
=�k���k,+−x� is the density of states and vF

2

=Nr��̃+� /N��̃+� is the Fermi velocity, where ��x� is the
delta function and Nr�x�=�k,i���i�k,↑�2− ��i�k,↓�2����k,+−x�
is an effective “kinetic” density of states. In addition, we find
��0�=2��2Dt+�2− ��̃+−2Dt+�2�1/2exp	−1 / �gN��̃+��
 for the
order parameter and �̃+=F /N��̃+� for the chemical poten-
tial.
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The calculation given above leads to v2=vF
2 /D, which

reduces to the Anderson-Bogoliubov relation when t↑= t↓. In
this limit, the sound velocity can also be written as v2

=vF,↑vF,↓ /D, where vF,�
2 =Nr,���̃�� /N���̃��. Here, N��x�

=�k���k,�−x� is the spin-dependent density of states, and
Nr,��x�=�k,i��i�k,��2���k,�−x�.

In the strong attraction �BEC� limit when �̃+�0 for F
�0.5 and �̃+	4Dt+ for F	0.5, the coefficient B�0 indi-
cates that the amplitude and phase fields are coupled. We
obtain A=4F�1−F� /g, B= �1−2F� /g2, D= �1−2F�2 /g3, Q
=2ac

2t↑t↓ /g3, and R=1 /g3, where we used ��0�=g�F�1
−F��1/2 for the order parameter and �̃+=−�g /2
+4Dt↑t↓ /g��1−2F�−2Dt+ for the average chemical poten-
tial. Notice that �+=�b /2−2Dt+−4Dt↑t↓�1−2F� /g, where
�b=−g is the binding energy defined by

1

g
= �

k

��s�k��2

2�k,+ − �b
, �17�

and VH=gF is the Hartree energy. Thus, we obtain v2

=8ac
2t↑t↓F�1−F�=v↑v↓ for the sound velocity, where v�

=2act�
�2F�1−F�. Notice that v has a �F dependence in the

dilute limit, which is consistent with the homogeneous result
where the sound velocity depends on the square-root of the
density. However, v saturates to a finite value as g increases,
which is in sharp contrast with the vanishing sound velocity
of homogeneous systems �8,28�.

When F�0.5 �F	0.5�, making the identification that the
number of particle �hole� pairs per lattice site is nB=F �nB
=1−F�, we obtain UBB=2g�1−F� �UBB=2gF� as the repul-
sive particle �hole� boson-boson interaction such that the Bo-
goliubov relation vB

2 =UBBnB /mB is recovered. Here, we also
identified mB=g / �4ac

2t↑t↓� as the mass of the bound pairs to
be discussed in Sec. IV B. Therefore, in both low and high
filling fraction limits, we find that UBB�2g.

In Fig. 3, we show the sound velocity v for two- and
three-dimensional lattices as a function of F when t= t↑= t↓
and P=0. In the BCS limit shown for g=2t+, v is very dif-
ferent for two- and three-dimensional lattices due to van
Hove singularities present in their density of states �31,51�.
However, in the BEC limit shown for g=20t+, v saturates to

a finite value, which is identical for both two- and three-
dimensional lattices and reproduces the analytical results dis-
cussed above.

Before concluding this section, we discuss the fraction of
condensed pairs to understand further the saturation of sound
velocity in the BEC limit. In the absence of population �P
=0� and mass �t−=0� imbalance, the number of condensed
pairs per lattice site is given by �54�

nc =
1

M
�
k

��k�2

4Ek,+
2 tanh2��Ek,+

2
� , �18�

where ��k�=�k / �2Ek,+� is the ground-state pair wave func-
tion. At zero temperature, while the number of condensed
pairs nc=�N��̃+���0� /4 is very small in comparison to the
total number of fermions in the BCS limit, it increases as a
function of interaction strength and saturates in the BEC
limit to nc=F�1−F�, leading to the number of condensed
bosons per lattice site as nB,c=nB�1−nB�. Here, the number
of bosons per lattice site is nB=n /2=F. Therefore, in the
dilute limit when nB→0, almost all of the bosons are con-
densed such that nB,c→nB, however, in the dense limit when
nB→1, almost all of the bosons are noncondensed such that
nB,c�nB. Making the identification that the number of con-
densed bosons is nB,c=F�1−F�, we obtain UBB=2g as the
repulsive particle �hole� boson-boson interaction such that
the Bogoliubov relation vB

2 =UBBnB,c /mB is recovered.
Having discussed Gaussian fluctuations at zero tempera-

ture, we analyze next Gaussian fluctuations near the critical
temperature and derive the time-dependent Ginzburg-Landau
�TDGL� functional.

B. Gaussian fluctuations near the critical temperature

In this section, we present the results of finite-temperature
Gaussian fluctuations near the superfluid critical temperature
Tc. We define the field ��x� to be the fluctuation around the
order-parameter saddle point value ��0�=0, and use the same
procedure as in the homogeneous case �7,23,28� to obtain the
TDGL functional,

�a + b���x��2 − �
�i,j


ci,j

2
�2 − id

�

�t���x� = 0, �19�

in the position and time x= �r , t� representation. The expan-
sion coefficients a ,b ,ci,j and d are given in Appendix B.
Notice that ci,j =c�i,j is isotropic for the s-wave interactions
considered in this paper, where �i,j is the Kronecker delta.
Next, we discuss analytically the TDGL functional in the
weak and strong attraction limits.

In the weak attraction �BCS� limit when 0��̃��4Dt�, it
is difficult to derive analytical expressions in the presence of
population imbalance, and thus we limit our discussion only
to the P=0 limit. In this case, we obtain a=N��̃+�ln�T /Tc�
for the coefficient of the linear term in ��x�, b
=7N��̃+���3� / �8�2Tc

2� for the coefficient of the cubic
term, c=7Nt��̃+���3� / �4D�2Tc

2� for the coefficient of the
operator �2, and d=N��̃+��2Dt+− �̃+� / �2�̃+�4Dt+− �̃+��
+ i�N��̃+� / �8Tc� for the coefficient of the operator � /�t.
Here, Nt�x�=�k,i���i�k,↑�2+ ��i�k,↓�2����k,+−x� represents an

0

0.5
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1.5

0 0.25 0.5 0.75 1

v/
(t

+
a c

)
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3D WA
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FIG. 3. Sound velocity v �in units of t+ac� versus F in the weak
attraction �WA� limit for g=2t+ in two �hollow circles� and in three
�solid circles� dimensions, and in the strong attraction �SA� limit for
g=20t+ �dotted line� in both two and three dimensions. Here, t= t↑
= t↓ and P=0.
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effective “kinetic” density of states, and the parameter Tc
= �2 /����2Dt+�2− ��̃+−2Dt+�2�1/2exp	�−1 / �gN��̃+��
 is the
BCS critical temperature where �=0.577 is Euler’s constant,
�̃+=F /N��̃+�, and ��x� is the Riemann zeta function. Notice
that Tc is quite small for weak attractions, but increases with
growing values of g. In addition, notice that the imaginary
part of d is large, indicating that Cooper pairs have a finite
lifetime and that they decay into the continuum of two-
particle states.

In the strong attraction �BEC� limit when ��̃+����b��1
− pe� /2
2Dt+, we obtain a=a1+a2=−�2�̃+−�b�1
− pe�� / �g2�1− pe��+ pe / �g�1− pe�� for the coefficient of the
linear term in ��x�, b=b1+b2=2 / �g3�1− pe�2�
− ��pe /��̃e� / �g2�1− pe�� for the coefficient of the cubic term,
c=4ac

2t↑t↓ / �g3�1− pe�2� for the coefficient of the operator �2,
and d=1 / �g2�1− pe�� for the coefficient of the operator � /�t.
Here, �b=−g is the binding energy, e �−e� labels the excess
�nonexcess� type of fermions, and pe= �n↑−n↓� is the number
of unpaired fermions per lattice site. Notice that the imagi-
nary part of d vanishes in this limit, reflecting the presence of
long-lived bound states.

Through the rescaling ��x�=�d��x�, we obtain the equa-
tion of motion for a mixture of bound pairs �molecular
bosons� and unpaired �excess� fermions,

− �B��x� + �UBB���x��2 + UBFpe�x��ac
3��x� −

�2��x�
2mB

− i
���x�

�t
= 0, �20�

with boson chemical potential �B=−a1 /d=2�̃+−�b�1− pe�,
mass mB=d /c=g / �4ac

2t↑t↓�, and repulsive boson-boson UBB
=b1 /d2=2g and boson-fermion UBF=a2 / �dpe�=g interac-
tions. Notice that the repulsion UBB between bound pairs is
two times larger than the repulsion UBF between a bound pair
and a fermion, reflecting the Pauli exclusion principle. Fur-
thermore, UBB and UBF are strongly repulsive due to the
important role played by the Pauli exclusion principle in the
lattice �35�, in contrast to the homogeneous case
�7,19,23,28�, where UBB and UBF are weakly repulsive. This
procedure also yields pe�x�= �a2 / �dac

3�+b2���x��2 /d2� /UBF,
which is the spatial density of unpaired fermions,

pe�x� = pe − gac
3��pe/��e��1 − pe����x��2 � 0. �21�

The critical temperature in the case of zero population
imbalance can be obtained directly from the effective boson
mass mB, using the standard BEC condition TBEC
=2��nB /��3 /2��2/3 /mB leading to Tc� t↑t↓ /g, which de-
creases with growing attraction g. Here, ��x� is the Riemann
zeta function. Notice that Tc in the lattice case vanishes for
g→�, unlike the homogeneous case, which saturates at Tc
�0.218�F �6,7�, where �F is the Fermi energy. The decrease
of Tc with increasing g in the BEC regime, combined with
the increase of Tc with increasing g in the BCS regime, leads
to a maximum in between as already noted in the literature
�6,31�.

Further insight into the differences between the homoge-
neous and the lattice systems can be gained by comparing
the Ginzburg-Landau coherence length ��T�= �c / �2a��1/2,

which in the vicinity of Tc becomes ��T�=�GL�Tc / �Tc
−T��1/2. The prefactor of the coherence length is

�GL = � c

2Tc
� �a

�T
�−1�

T=Tc

1/2

, �22�

and is evaluated at Tc. While �GL
= �7Nt��̃+���3� / �8D�2Tc

2��1/2 is large in the weak attraction
limit in comparison to the lattice spacing ac, it decreases as a
function of interaction strength g and fixed filling F to �GL
=ac�t↑t↓ /F�1/2 /g when the strong attraction limit g / t+
1 is
reached, becoming smaller than the lattice spacing ac. The
latter result is valid for F�1, and making the identification
that the number of bosons per lattice site is nB=F, the mass
of the bosons is mB=g / �4ac

2t↑t↓�, and the repulsive boson-
boson interaction is UBB=2g, Eq. �22� recovers the Bogoliu-
bov relation �B,GL= �1 / �2mBUBBnB��1/2. However, this result
is in sharp contrast with the homogenous case �7�, where �GL
is large compared to interparticle spacing in both BCS and
BEC limits, and it has a minimum near �̃+�0.

Since the boson-boson and boson-fermion interactions are
strongly repulsive in the BEC limit �strong attraction regime
for fermions� due to the important role played by the Pauli
exclusion principle in the lattice �35�, it is necessary to in-
vestigate this further, as discussed next.

V. STRONG ATTRACTION (MOLECULAR) LIMIT

In the strong attraction limit, the system can be described
by an action containing molecular bosons and excess fermi-
ons �19,23,28,29�. The existence of an optical lattice pro-
duces different physics from the homogeneous case in the
strong attraction limit, because of the strong repulsive inter-
action between molecular bosons and excess fermions �35�.
The main effect of these strong effective interactions is the
emergence of insulating phases from the resulting Bose-
Fermi mixture of molecular bosons and excess fermions in a
lattice.

A. Effective lattice Bose-Fermi action

In the limit of strong attractions between fermions �g / t+

1�, we obtain an effective Bose-Fermi lattice action �35�,

SBF
eff = �

0

�

d���
i

�f i
†��f i + bi

†��bi� + HBF
eff� , �23�

where HBF
eff =KF+KB+HBF+HBB. Here, the kinetic part of the

excess fermions is

KF = − �F�
i

f i
†f i − tF�

�i,j

f i

†f j , �24�

the kinetic part of the molecular bosons is

KB = − �B�
i

bi
†bi − tB�

�i,j

bi

†bj , �25�

the interaction between molecular bosons and excess fermi-
ons is
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HBF = UBF�
i

f i
†f ibi

†bi + VBF�
�i,j


f i
†f ibj

†bj , �26�

and the interaction between two molecular bosons is

HBB = UBB�
i

bi
†bibi

†bi + VBB�
�i,j


bi
†bibj

†bj . �27�

The total number of fermions is fixed by the constraint
n=2nB+ pe, where nB=NB /M is the number of bosons per
lattice site. The important parameters of this effective Hamil-
tonian are the excess fermion transfer energy tF= te, the mo-
lecular boson transfer energy tB=2t↑t↓ /g, the boson-fermion
effective repulsion UBF=g, and the boson-boson effective
repulsion UBB=2g. Notice that on-site interactions UBB and
UBF become infinite �hard-core� when g→� as a manifesta-
tion of the Pauli exclusion principle. However, as we move
slightly away from the g→� limit, the bosons start to devi-
ate from pointlike to finite extent, and since the boson fields
bi

† in the effective action SBF
eff given in Eq. �23� are really

fields associated with the expectation value �ai,↓
† ai,↑

† 
 �where
ai,�

† are the original fermion creation operators�, there is
some loss of information about the fermionic character of the
underlying pair within the present implementation of the
saddle-point–fluctuation theory. This means that when g is
very large but finite, there is still a very small probability to
have more than one fermion pair per site. In a theory without
any approximations, the condition that there cannot be more
than one fermion of each species on a given site within a
single-band approximation should be strictly enforced. How-
ever, small violation of this condition is a minor drawback of
the approximations used �52�, since the effective Bose-Fermi
action is only valid for large g. In addition to on-site inter-
actions, there are weak and repulsive nearest-neighbor
boson-boson VBB� �t↑

2+ t↓
2� /g and boson-fermion VBF� te

2 /g
interactions. These repulsive interactions in optical lattices
lead to several insulating phases, depending on fermion fill-
ing fractions, as discussed next.

B. Emergence of insulating phases

When the fermion attraction is sufficiently strong, the
lines BC and CD must describe insulators, as molecular
bosons and excess fermions are strongly repulsive. In the
following analysis, we discuss only two high-symmetry
cases: �a� n↑=n↓=1; and �b� n↑=1 and n↓=1 /2, or n↑=1 /2
and n↓=1.

Case �a� is indicated as point C in Figs. 1, 2, and 4, where
n↑=n↓=1 such that pe=0. This symmetry point is a Fermi-
Pauli �band� insulator for weak attraction since both fermion
bands are fully occupied, and a Bose-Mott insulator �BMI� in
the strong attraction limit. There is exactly one molecular
boson �consisting of a pair of ↑ and ↓ fermions� at each
lattice site, which has a strong repulsive on-site interaction
with any additional molecular boson due to the Pauli exclu-
sion principle. Notice that this case is very similar to the
atomic BMI transition observed with one-species atomic
Bose systems �30�.

In case �a�, HBF
eff reduces to a molecular Bose-Hubbard

Hamiltonian with the molecular Bose filling fraction nB

=n /2=F, thus leading to a molecular BMI when nB=1 be-
yond a critical value of UBB. A schematic diagram of this
phase is shown in Fig. 5�b�. The critical value UBB

c needed to
attain the BMI phase can be estimated using the approach of
Ref. �53� leading to UBB

c =3�3+�8�tB, which in terms of the
underlying fermion parameters leads to gc=4.18�t↑t↓ for the
critical fermion interaction. This value of gc is just a lower
bound of the superfluid-to-insulator �SI� transition, since HBF

eff

is only valid in the g
 t+ limit. Some signatures of this SI
transition at gc have been observed in recent experiments
�12�.

We would like to make some remarks on the validity HBF
eff

presented above, which assumes intrinsically that the mo-
lecular bosons are small in comparison to the lattice spacing.
A measure of the “smallness” of these molecular bosons is
the average size of the fermion pairs defined �for pe=0� by

�pair = � ���k��r2���k�

���k����k�
 �1/2

, �28�

where ��k�=�k / �2Ek,+� is the ground-state pair wave func-
tion. While �pair=vF / �4��0�� is large in the weak attraction
limit in comparison to the lattice spacing ac, �pair
=2�2Dac�1−2F�t+ /g in the strong attraction limit when
g / t+
1. These expressions are valid for low and high filling
fractions, F→0 and F→1, respectively. At g=gc, we obtain
�pair�1.17ac for t↑= t↓ and �pair�1.74ac for t↑=0.15t↓. No-
tice that larger values of g lead to molecular boson sizes that
are smaller than the lattice spacing, thus validating the effec-
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tive Bose-Fermi description derived above for g
 t+ to val-
ues of g close to gc. In the lattice case, the results above
suggest that even if the size of the bound pairs decreases as
t+ac /g with increasing g, the Pauli pressure prohibits two
bound pairs or a bound pair and an excess fermion to occupy
the same lattice site, in the single-band description discussed
here. This indicates that the bound pairs do not lose their
fermionic nature and cannot be thought of as structureless in
lattices, which should be contrasted with the homogeneous
case in which bound pairs become structureless with increas-
ing attraction.

Case �b� is indicated as crosses in Figs. 1, 2, and 4 at
points n↑=1,n↓=1 /2 or n↑=1 /2,n↓=1, where the molecular
boson filling fraction is nB=1 /2 and the excess fermion fill-
ing fraction is pe=1 /2. At these high symmetry points, mo-
lecular bosons and excess fermions tend to segregate, either
producing a domain-wall type of phase separation between a
molecular BMI region and a FPI region or a checkerboard
phase of alternating molecular bosons and excess fermions
�BFC� depending on the ratio VBB /VBF. A schematic diagram
of these two phases is shown in Fig. 6.

The checkerboard phase shown in Fig. 6�a� is favored
when VBB	2VBF. At the current level of approximation, we
find that when t↑= t↓, phase separation is always favored,
however when ↑ �↓� fermions are in excess, the checker-
board phase is favored when t↓	�3t↑ �t↓� t↑ /�3�. There-
fore, phase separation and checkerboard phases are achiev-
able if the tunneling ratio � can be controlled experimentally
in optical lattices. Notice that this checkerboard phase
present in the lattice case is completely absent in homoge-
neous or harmonically trapped systems �10,11,23,28,29�.

Thus, the strong attraction limit in optical lattices brings
additional physics not captured at the saddle point, and not
present in homogeneous or purely harmonically trapped sys-
tems. Having discussed the strong attraction �molecular�
limit and its possible phases, we comment next on their ex-
perimental detection.

VI. DETECTION OF INSULATING PHASES

The detection of all superfluid and insulating phases may
be possible using a combination of techniques including
time-of-flight measurements and Bragg scattering. The
phases proposed here in the molecular limit could be de-
tected either via the measurement of momentum distribution,
density-density correlations, or density Fourier transform.
For instance, the FPI, BMI, BFC, and phase separated BMI-
FPI do not exhibit phase-coherence peaks in their momen-

tum distribution, while the superfluid phase does. Therefore,
through momentum distribution measurements performed in
time of flight, one should be able to differentiate between
superfluid and insulating phases as has been possible for
Bose systems in optical lattices �30�. However, in order to
detect different insulating phases, it may also be necessary to
explore Fourier transforms of densities, or of density-density
correlation functions. This can be performed in situ without
turning off the optical lattice through the use of Bragg scat-
tering techniques using photons similar to the standard case
encountered in condensed-matter systems where x rays or
neutrons are used.

In the case of Bragg scattering, density-density correla-
tions can be probed experimentally and different insulating
phases may be distinguished. The relevant density-density
correlation functions to characterize the insulating phases are
CF,F�r ,r��= �nF�r�nF�r��
, which correlates the excess fermi-
ons, CB,B�r ,r��= �nB�r�nB�r��
, which correlates the molecu-
lar bosons, and CB,F�r ,r��= �nB�r�nF�r��
, which correlates
the molecular bosons and excess fermions. Defining the rela-
tive R=r−r� and the sum Rc= �r+r�� /2 of the coordinates,
we can write the correlation functions as C�,��R ,Rc�
= �n��Rc+R /2�n��Rc−R /2�
, where � and � are 	F ,B
.
This leads to the Fourier transform C̃�,��q ,qc�, where q is
the relative and qc is the sum of the momenta. For a trans-
lationally invariant system considered here, it is sufficient to

look only to qc=0, and define C̃�,��q�� C̃�,��q ,0�. There-
fore, for the FPI, BMI, and BFC insulating phases, correla-

tion functions have the generic form C̃�,��q�=�i,jexp�
−iq · �ri,�−rj,���, where ri,� and rj,� are the locations of �
and � particles.

In Bragg scattering, the differential cross section per unit
solid angle of an incident photon with wave vector q and a
scattered photon with final wave vector q� is d2� /d 
=2��Mq,q��

2. Here, the matrix element �Mq,q��
2

=���U�
��q�U��q�C̃�,��q� depends directly on the Fourier

transforms U�
��q� and U��q� of the scattering potentials

U��r�=�iU��r−ri,��, and on the correlation functions

C̃�,��q�, which are also called the structure functions. Appro-
priate choices of lasers can selectively probe dominant scat-
tering contributions from fermionic atoms or bosonic mol-
ecules, and single out individual correlation functions. For
instance, in the case of a two-dimensional system, the FPI
phase �shown in Fig. 5�a�� has a strong peak in the correla-

tion function C̃F,F�q� at q= �0,0�. Similarly, the BMI phase
�shown in Fig. 5�b�� has a strong peak in the correlation

function C̃B,B�q� at q= �0,0�. However, the BFC phase
�shown in Fig. 6�a�� has strong peaks in the correlation func-

tions C̃F,F�q� and C̃B,B�q� both at q= �0,0� and q
= 
 �� /ac , 
� /ac�, where ac is the optical lattice spacing,

while it has strong peaks in the correlation function C̃B,F�q�
at q= �0,0�.

The insulating FPI, BMI, and BFC phases are modified in
the presence of an overall harmonic trapping potential, since
the molecular bosons experience the harmonic potential
VB�r�= �m↑�↑

2+m↓�↓
2�r2 /2, and the excess fermions of type �

experience a different harmonic potential VF,��r�
=m���

2r2 /2. Provided that the harmonic potentials are not
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FIG. 6. �Color online� Schematic diagrams for the �a� Bose-
Fermi checkerboard �BFC� phase and �b� Bose-Mott insulator
�BMI� and Fermi-Pauli insulator �FPI� phase separation.
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too strong, the characteristic peak locations of the correlation
functions remain essentially the same, but additional broad-
ening due to the inhomogeneous nature of the trapping po-
tential occurs. However, when the harmonic potentials are
sufficiently large, important modifications of these phases are
present, including the emergence of complex shell structures.

Lastly, the BMI-FPI phase-separated state is strongly
modified even in the presence of weak trapping potentials.
The single domain-wall density structure �shown in Fig.
6�b�� turns into a new density profile with a region where the
bosons tend to stay at the center of the trapping potential due
in part to their tighter confinement, and the excess fermions
are pushed out of the center by the strong Bose-Fermi repul-
sion. The fermions then surround the bosons, and standard in
situ radiofrequency measurements can detect the existence of
the BMI-FPI phase-separated state, as done recently with
population imbalanced fermion mixtures �1–4�.

Having commented briefly on the experimental detection
of the superfluid and insulating phases, we present our con-
clusions next.

VII. CONCLUSIONS

Using an attractive Fermi-Hubbard Hamiltonian to de-
scribe mixtures of one or two species of atoms in optical
lattices, we obtained the ground-state phase diagram of
Fermi-Fermi mixtures containing normal, phase-separated,
and coexisting superfluid-excess fermions, and insulating re-
gions. We discussed the cases of balanced and imbalanced
populations of Fermi-Fermi mixtures such as 6Li or 40K
only, and mixtures of 6Li and 40K, 6Li and 87Sr, or 40K and
87Sr. We showed that population imbalanced Fermi-Fermi
mixtures reduce to strongly interacting �repulsive� Bose-
Fermi mixtures in the molecular limit, in sharp contrast to
homogeneous systems in which the resulting Bose-Fermi
mixtures are weakly interacting. This result is a direct mani-
festation of the Pauli exclusion principle in the lattice case,
since each Bose molecule consists of two fermions, and
more than one identical fermion on the same lattice site is
not allowed, within a single-band description. This effect to-
gether with the Hartree energy shift lead to a filling-
dependent condensate fraction and to sound velocities that
do not approach zero, in contrast to the homogeneous case.

Furthermore, we showed that several insulating phases
appear in the strong attraction limit depending on filling frac-
tion and population imbalance. For instance, we found a mo-
lecular Bose-Mott insulator �superfluid� when the molecular
filling fraction is equal to �less than� 1 for a population bal-
anced system where the fermion filling fractions are identi-
cal. When the filling fraction of one type of fermion is 1 and
the filling fraction of the other is 1/2 �corresponding to mo-
lecular boson and excess fermion filling fractions of 1/2�, we
also found either a phase-separated state consisting of a
Fermi-Pauli insulator �FPI� of the excess fermions and a mo-
lecular Bose-Mott insulator �BMI� or a Bose-Fermi checker-
board �BFC� phase depending on the tunneling anisotropy
ratio.

All of these additional phases and the possibility of ob-
serving more exotic superfluid phases in optical lattices with

p-wave order parameters �32� make the physics of Fermi-
Fermi mixtures much richer than those of atomic bosons or
Bose-Fermi mixtures in optical lattices, and of harmonically
trapped fermions. Lastly, the molecular BMI phase discussed
here has been preliminarily observed in a very recent experi-
ment �12�, opening up the experimental exploration of the
rich phase diagram of fermion mixtures in optical lattices in
the near future.
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APPENDIX A: EXPANSION COEFFICIENTS
AT ZERO TEMPERATURE

In this appendix, we perform a small q and � expansion
of the effective action at zero temperature �T=0� �28�. In the
amplitude-phase basis, we obtain the expansion coefficients
necessary to calculate the collective modes, as discussed in
Sec. IV A. We calculate the coefficients only for the case of
s-wave pairing with zero population imbalance P=0, as extra
care is needed when P�0 due to Landau damping. In the
long-wavelength ��q�→0� and low-frequency ��→0� limits,
the condition 	� ,�q,+
�min	2Ek,+
 is used.

The coefficients necessary to obtain the diagonal
amplitude-amplitude matrix element are

A =
1

M
�
k

��0�2

2Ek,+
3 �A1�

corresponding to the �q=0,�=0� term,

C =
ac

2

M
�
k
�Ek,+

2 − 3��0�2

4Ek,+
5 �k,+t+ cos�kxac�

− ��Ek,+
2 − 10��0�2 +

10��0�4

Ek,+
2 �t+

2

+ �Ek,+
2 − ��0�2�t−

2� sin2�kxac�
2Ek,+

5 � �A2�

corresponding to the �q�2 term, and

D =
1

M
�
k

Ek,+
2 − ��0�2

8Ek,+
5 �A3�

corresponding to the �2 term.
The coefficients necessary to obtain the diagonal phase-

phase matrix element are

Q =
ac

2

M
�
k
� �k,+t+

4Ek,+
3 cos�kxac�

− ��Ek,+
2 − 3��0�2�t+

2 + Ek,+
2 t−

2�
sin2�kxac�

2Ek,+
5 � �A4�

corresponding to the �q�2 term, and
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R =
1

M
�
k

1

8Ek,+
3 �A5�

corresponding to the �2 term.
The coefficient necessary to obtain the off-diagonal ma-

trix element is

B =
1

M
�
k

�k,+

4Ek,+
3 �A6�

corresponding to the � term. These coefficients can be evalu-
ated analytically in the BCS and BEC limits, and are given in
Sec. IV A.

APPENDIX B: EXPANSION COEFFICIENTS
NEAR THE CRITICAL TEMPERATURE

In this appendix, we derive the coefficients a , b , ci,j,
and d of the time-dependent Ginzburg-Landau theory de-
scribed in Sec. IV B. We perform a small q and w expansion
of the effective action near the critical temperature �T�Tc�,
where we assume that the fluctuation field ��r , t� is a slowly
varying function of position r and time t �28�.

The zeroth-order coefficient is given by

a =
1

g
−

1

M
�
k

Xk,+

2�k,+
��s�k��2, �B1�

where Xk,
= �Xk,↑
Xk,↓� /2 and Xk,�=tanh���k,� /2�.

The second-order coefficient is given by

ci,j =
ac

2

M
�
k
��Xk,↑Yk,↑t↑

2 + Xk,↓Yk,↓t↓
2�sin�kiac�sin�kjac�

�2

8�k,+

+ �4t− sin�kiac�sin�kjac�C−

�k,+
− 2�i,j cos�kiac�C+� �

8�k,+

+ �2t+ cos�kiac��i,j −
4t−

2 sin�kiac�sin�kjac�
�k,+

� Xk,+

4�k,+
2 �

!��s�k��2, �B2�

where C
= �Yk,↑t↑
Yk,↓t↓� /2 and Yk,�=sech2���k,� /2�.
Here, �i,j is the Kronecker delta.

The fourth-order coefficient is given by

b =
1

M
�
k
� Xk,+

4�k,+
3 −

�Yk,+

8�k,+
2 ���s�k��4. �B3�

The time-dependent coefficient has real and imaginary
parts, and for the s-wave case it is given by

d = lim
�→0

�
k

Xk,+

M
� 1

4�k,+
2 + i

�

�
��2�k,+ − �����s�k��2,

�B4�

where ��x� is the delta function. These coefficients can be
evaluated analytically in the BCS and BEC limits, and are
given in Sec. IV B.
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