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We analyze the ground-state phases of two-component ����↑ , ↓ �� population- and mass-balanced �N↑
=N↓ and m↑=m↓� but trap-imbalanced ��↑��↓� fermion mixtures as a function of interaction strength from the
weak attraction Bardeen-Cooper-Schrieffer �BCS� to the strong attraction Bose-Einstein condensation �BEC�
limit. In the BCS limit, we find that the unpolarized superfluid �UPS� fermions exist away from the central core
of the trapping potentials, and are surrounded by partially �-polarized normal �P�PN� fermions. As the
interactions increase towards unitarity, we find that the central P�PN core first transitions to a UPS, and then
expands towards the edges until the entire mixture becomes a UPS in the BEC limit.
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Ultracold atomic physics experiments with two-compo-
nent fermion mixtures have enabled the study of novel su-
perfluid and insulating phases which have not been possible
in other systems. For instance, the tuning of attractive
fermion-fermion interactions has permitted the ground state
of the system to evolve from a weak fermion attraction
Bardeen-Cooper-Schrieffer �BCS� limit of loosely bound and
largely overlapping Cooper pairs to a strong fermion attrac-
tion limit of tightly bound and small bosonic molecules that
undergo Bose-Einstein condensation �BEC� �1–6�. For mass-
and population-balanced mixtures, in agreement with the
early theoretical predictions �7�, these experiments have
shown that the BCS-BEC evolution is just a crossover.

Recently, the ground-state phase diagram of mass-bal-
anced but population-imbalanced fermion mixtures have
been theoretically analyzed showing that the BCS-BEC evo-
lution is not a crossover but quantum phase transitions occur
between normal and superfluid phases �8,9�. In addition,
phase separation between superfluid �paired� and normal �ex-
cess� fermions has been shown. Motivated by these predic-
tions, there have been several experiments with mass-bal-
anced but population-imbalanced fermion mixtures �10,11�,
leading to an intensive theoretical activity �12–19�. Since
exotic superfluid phases �i.e., Fulde-Ferrell and Larkin-
Ovchinnikov �FFLO� �20,21�� can be potentially realized,
imbalanced fermion mixtures are currently of interest to
many communities ranging from atomic and molecular to
condensed- and nuclear-matter physics. For instance, the
ground-state phase diagrams of mass- and population-imbal-
anced fermion mixtures have been recently analyzed show-
ing quantum and topological phase transitions �22–27�.

In this manuscript, we analyze the ground-state phases of
two-component ����↑ , ↓ �� population- and mass-balanced
�N↑=N↓ and m↑=m↓� but trap-imbalanced ��↑��↓� fermion
mixtures as a function of interaction strength, where �� is
the trapping frequency of � component. The ground state
involves very rich shell-structures consisting of unpolarized
superfluid �UPS� and unpolarized normal �UPN� as well as
partially �-polarized normal �P�PN� and fully �-polarized
normal �F�PN� fermions. Our results are schematically
shown in Fig. 1, and are as follows. In the BCS limit shown
in Fig. 1�b�, we find that the UPS fermions exist only away

from the central core of the trapping potentials, and are sur-
rounded by P�PN fermions. As the interactions increase to-
wards unitarity, we find that the central P�PN core first tran-
sitions to a UPS as shown in Fig. 1�c�, and then expands
towards the edges until the entire mixture becomes a UPS in
the BEC limit as shown in Fig. 1�d�.

Pairing Hamiltonian. To obtain these results, we start
with the Hamiltonian density �in units of �=kB=1�,

H�r� = �
�

��
†�r�K��r����r� − g�↑,↓

† �r��↑,↓�r� , �1�

where ��
†�r� creates a pseudospin-� fermion at position r,

and �↑,↓
† �r�=�↑

†�r��↓
†�r� is the pair creation operator. In Eq.

�1�, g�0 is the strengh of the attractive fermion-fermion
interactions, and we defined K��r�=−�2 / �2m��−���r�,
where ���r�=��−V��r� is the local chemical potential. The
global chemical potential �� fixes the density n�=N� /V of
each type of fermion independently, where N� is the number
of � fermions and V is the volume. The term V��r�
=m����,x

2 x2+��,y
2 y2+��,z

2 z2� /2 corresponds to the trapping
potential, which is assumed to be harmonic in space.

In the momentum space, within the local-density
�LD� approximation, the local mean-field �MF� Hamilton-
ian can be written as HQ�r�=�k,��k,��r�ak,�

† ak,�

−	Q�r��k�ak+Q/2,↑
† a−k+Q/2,↓

† +H.c.�+	Q
2 �r� /g, where Q is the

center-of-mass momentum of individual Cooper pairs, and
�k,��r�=
k,�−���r� with 
k,�= 	k	2 / �2m��. Here, 	Q�r� is the
local MF order parameter, which is assumed to be real with-
out loss of generality, and defined by 	Q�r�
=g�k
a−k+Q/2,↓ak+Q/2,↑�, where 
¯� implies a thermal aver-
age.

Self-consistency equations. The local MF Hamiltonian can
now be solved by using standard techniques �8,18,22�. The
order parameter 	Q�r� is determined by

MV

4�aF
= �

k
� 1

2
k
−

1 − f�Ek,Q,↑�r�� − f�Ek,Q,↓�r��
2Ek,Q�r� 
 , �2�

where 
k= �
k,↑+
k,↓� /2 is the average kinetic energy,
f�x�=1 / �exp�x /T�+1� is the Fermi function, and
Ek,Q�r�= ��k,Q

2 �r�+	Q
2 �r��1/2 with �k,Q�r�= ��k+Q/2,↑�r�
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+�−k+Q/2,↓�r�� /2. Here, Ek,Q,��r�=Ek,Q�r�+s���k+Q/2,↑�r�
−�−k+Q/2,↓�r�� /2 is the quasiparticle energy when s↑=1 or the
negative of the quasihole energy when s↓=−1. Notice that
we elliminate g in favor of the fermion–fermion scattering
length aF via the usual regularization 1 /g=−MV / �4�aF�
+�k1 / �2
k�, where M =2m↑m↓ / �m↑+m↓� is twice the re-
duced mass of ↑ and ↓ fermions. Equation �2� has to be
solved self-consistently with the number equations N�

=�drn��r�, where

n��r� =
1

V
�
k

�uk,Q
2 �r�f�Ek,Q,��r�� + vk,Q

2 �r�f�− Ek,Q,−��r��� ,

�3�

is the local density of � fermions. Here, uk,Q
2 �r�= �1

+�k,Q�r� /Ek,Q�r�� /2 and vk,Q
2 �r�= �1−�k,Q�r� /Ek,Q�r�� /2.

Since the pseudospin symmetry is broken in population-,
mass-, and/or trap-imbalanced Fermi gases, one needs to
solve all three equations self-consistently for all Q, and de-
termine the value of Q that minimizes the free energy
�9,20,21�.

Having established the theoretical formalism, next we
analyze the ground-state phases of trap-imbalanced fermion
mixtures as a function of aF. For this purpose, we first dis-
cuss the numerical results and then provide analytical insight
into the problem.

Numerical calculations. In this manuscript, we assume
that the trapping potentials are isotropic in space such that
V��r�=m���

2r2 /2 where r= 	r	. In addition, we do not explic-
itly consider the FFLO-like �Q�0� superfluid phase �20,21�,
and limit the numerical calculations to the Q=0 phase. How-
ever, this phase may be present in the weakly attracting im-
balanced fermion mixtures, but only in a narrow parameter

space, as discussed below. We also set N↑=N↓ and m↑=m↓,
and consider two cases �a� �↑=1.1�↓ and �b� �↑=2�↓. The
numerical calculation involves self-consistent solutions of
Eqs. �2� and �3� for 	0�r�, n��r�, and ��. For instance, in Fig.
2, we show the local polarization �n�r�=n↑�r�−n↓�r� as a
function of aF, characterizing the noninteracting, and weak,
intermediate and strong attraction regimes.

We numerically find that the ground state involves very
rich shell structures consisting of UPS and UPN as well as
P�PN and F�PN phases, depending on the particular value
of aF as shown in Fig. 1. To understand these shell structures,
next we analyze the noninteracting, and weakly and strongly
attracting limits, which are analytically tractable.

Noninteracting fermion mixtures. To understand the inter-
acting trap-imbalanced fermion mixtures, it is useful to ana-
lyze first the noninteracting case when g=0 or aF→0−. In
this limit, the mixture is in normal phase such that the super-
fluid order parameter vanishes at all space 	Q�r�=0, and that
the global chemical potentials are identical to the global
Fermi energies ��=
F,� at zero temperature �T=0�. Thus,
Eq. �3� reduces to n��r�= �1 /V��kf��k,��r��, and at T=0 is
given by n��r�= �1 /V��k
kF,��r�1, where kF,��r� is the local
Fermi momentum defined by 
F,�=kF,�

2 / �2m��
=kF,�

2 �r� / �2m��+V��r�. This leads to n��r�=m�
3��

3�RF,�
2

−r2�3/2 / �6�2�, where RF,� is the Thomas-Fermi radius of �
fermions defined by 
F,�=m���

2RF,�
2 /2, such that kF,�

=m���RF,� is the global Fermi momentum. Then, the num-
ber of � fermions is found by integrating n��r� over r where
r�RF,�, leading to N�=kF,�

3 RF,�
3 /48. Setting N↑=N↓ gives

RF,↑ /RF,↓= �m↓�↓ / �m↑�↑��1/2, and therefore, a trap-imbal-
anced fermion mixture can be realized when the condition
m↑�↑�m↓�↓ is satisfied.
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FIG. 1. �Color online� Diagrams showing shell-structures of
two-component ����↑ , ↓ �� population- and mass-balanced �N↑
=N↓ and m↑=m↓� but trap-imbalanced ��↑��↓� fermion mixtures
for �a� noninteracting, �b� weak, �c� intermediate, and �d� strong
attraction regimes. Here, �� is the trapping frequency of � fermi-
ons. The colored regions correspond to unpolarized superfluid
�UPS, red�, unpolarized normal �UPN, black�, partially ↑-polarized
normal �P↑PN, rectangular pattern�, partially ↓-polarized normal
�P↓PN, hexagonal pattern�, and fully ↓-polarized normal �F↓PN,
white� phases.
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FIG. 2. �Color online� Local polarization �n�r�=n↑�r�−n↓�r� �in
units of kF,↓

3 / �2��3� versus radius r �in units of RF,↓� is shown for
population- and mass-balanced �N↑=N↓ and m↑=m↓� but trap-
imbalanced fermion mixtures, where the trapping frequencies are
�a� �↑=1.1�↓ and �b� �↑=2�↓. While the unpolarized regions are
UPS, the polarized regions include both FFLO superfluid and P�PN
and F�PN phases.
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When m↑�↑�m↓�↓, since RF,↑�RF,↓, there are more ↑
fermions near the center of the trap while ↓ fermions are in
excess near the edges as shown in Fig. 3. In addition, the
local densities of ↑ and ↓ fermions are equal only at radius
rc=RF,↓�m↓�↓��↑−�↓� / �m↑�↑

2−m↓�↓
2��1/2 satisfying �n�rc�

=0. Therefore, in this case, the ground state corresponds to a
P↑PN for 0�r
rc, to a UPN for r=rc, to a P↓PN for rc

r�RF,↑, and to a P↓PN for RF,↑
r�RF,↓. For instance,
when �↑=2�↓, we find rc�0.58RF,↓ and RF,↑�0.71RF,↓, and
these three phases can be seen in Fig. 2�b� when 1 / �kF,↓aF�
=−�. The shell structure of this case is schematically shown
in Fig. 1�a�. Having finite and attractive fermion-fermion in-
teractions changes this simple noninteracting picture dra-
matically, which is discussed next.

Weakly attracting fermion mixtures. When g�0 or aF
�0, the normal mixture may become unstable against for-
mation of Cooper pairs at some regions of the trap such that
	Q�r��0. According to the BCS theory of superconductiv-
ity, this is always the case for chemical potentially balanced
mixtures, ���r�= ��↑�r�−�↓�r�� /2=0 for all r, no matter
how weak the g is. This suggests that, for an arbitrarilly
small g, trap-imbalanced fermion mixtures first become un-
stable against superfluidity at radius rc, where �n�rc�=0 and
���rc�=0.

In the weakly attracting BCS limit when g� �
F,↑ ,
F,↓�,
the local order parameter is obtained from Eq. �2�, and is
given by 	0�r�= �8 /e2���r�exp�� / �2kF�r�aF��, which is
valid when ��r��	0�r�. Here, ��r�= ��↑�r�+�↓�r�� /2 is the
effective local Fermi energy and kF�r�= �2M��r��1/2 is the
effective local Fermi momentum. Notice that, 	0�r� has a
maximum at the center of the trap and it vanishes towards
the edges. Furthermore, for ��r��0, Eq. �3� suggests that
while the local superfluid phase is unpolarized when
	���r� 	 �	0�r�, it is polarized when 	���r� 	 �	0�r�. How-
ever, it is also known that the polarized superfluid phase is
unstable in this limit since the normal phase with 	0�r�=0 is
favored with a lower free energy �8,9,22�.

Therefore, for mass-balanced �m↑=m↓� mixtures, a UPS
phase with Q=0 minimizes the free energy only when 0
� 	���r� 	 �0.71	0�r�, however, further increase in 	���r�	
causes a first order transition to a P�PN phase when
	���r� 	 �0.71	0�r� �28,29�. In this weakly attracting BCS
limit, this suggests that the UPS fermions are surrounded by
the P�PN fermions, and that they exist only away from the
central core of the trapping potentials. For instance, these
phases can be seen in Fig. 2�b� when 1 / �kF,↓aF�=−1 or −0.7,
and are schematically shown in Fig. 1�b�. Notice that similar

shell structures have been also reported for purely mass-
imbalanced mixtures �24,26,27�.

As the interactions increase, 	0�r� increases at a faster
rate near r=0 due to the faster increase in local fermion
densities, which causes an additional first order transition
from P�PN to UPS at r=0. For instance, when �↑=2�↓, this
transition occurs at 1 / �kF,↓aF��−0.65 as can be seen in Fig.
2�b�, and the shell structure of this case is schematically
shown in Fig. 1�c�. Notice that this shell structure does not
occur with purely mass-imbalanced mixtures �24,26,27�.
Further increasing the interactions towards unitarity, we find
that the central UPS region expands towards the edges.

In passing to the strongly attracting BEC limit, we make
two comments. First, it is known that an FFLO-like super-
fluid phase with 	Q�r�=	�r�exp�iQ�r�r� and Q�r�
�2.4M 	���r� 	 /kF�r� may also exist in a small parameter
space when 0.71	0�r�� 	���r� 	 �0.75	0�r� �20,21�. This
phase resides between the UPS and P�PN phases, and is
separated from the UPS phase by a first order and from the
P�PN phase by a second order transition. Notice that FFLO
shells are not shown in Figs. 1�b� and 1�c�. Second, the in-
clusion of fluctuations beyond the MF would reduce 	0�r�,
and therefore the transitions discussed above are likely to
occur at higher values of 1 / �kF,↓aF� than our MF predictions.
While the weakly attracting MF description is strictly valid
for 1 / �kF,↓aF��0, it still serves as a qualitative estimator for
the phase boundaries until 1 / �kF,↓aF��−0.5. However, this
description can not be used for 1 / �kF,↓aF��0, which is dis-
cussed next.

Strongly attracting fermion mixtures. In the strong fer-
mion attraction �BEC� limit when g� �
F,↑ ,
F,↓� or aF�0,
imbalanced fermion mixtures can be described by a mixture
of weakly repulsing Bose molecules and Fermi atoms, where
the Bose molecules correspond to paired ↑ and ↓ fermions,
and the Fermi atoms correspond to unpaired fermions
�13,22�. However, in population-balanced �N↑=N↓� mixtures,
all ↑ and ↓ fermions are paired to form Bose molecules, and
therefore the equation of motion at T=0 is

− �B�r��B�r� + UBB	�B�r�	2�B�r� =
�2�B�r�

2mB
, �4�

which is of the Gross-Pitaevskii form, where �B�r�
= �M2aF / �8���1/2	0�r� is the local BEC order parameter,
�B�r�=2��r�−
b=�B−VB�r� is the local chemical potential,
UBB=4�aBB /mB is the repulsive interaction, and mB=m↑
+m↓ is the mass of the molecular bosons. Here, �B=�↑
+�↓−
b is the chemical potential, VB�r�=V↑�r�+V↓�r� is the
trapping potential, 
b=−1 / �MaF

2� is the binding energy, and
aBB= �mB /M�aF �within the Born approximation� is the
boson-boson scattering length of the molecules. Notice that
identification of VB�r�=mB�B

2r2 /2 as the molecular trapping
potential leads to �B= ��m↑�↑

2+m↓�↓
2� / �m↑+m↓��1/2, which is

the effective trapping frequency felt by the molecular
bosons. Therefore, we find in the BEC limit that the ground
state of trap-imbalanced fermion mixtures is the BEC of mo-
lecular bosons for the entire trap.

These results are strictly valid for 1 / �kF,↓aF��0, but they

(a)

00

n (r)V (r)

(b)

σ σ

FRF RF

εF

RRF
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FIG. 3. �Color online� Schematic �a� trap �V�� and �b� density
�n�� profiles are shown for non-interacting �1 / �kF,↓aF�=−��
population- and mass-balanced �N↑=N↓ and m↑=m↓� but trap-
imbalanced ��↑��↓� fermion mixtures.
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still serve as a qualitative estimator for the phase boundaries
until 1 / �kF,↓aF��1. For instance, when �↑=2�↓, we find
that the central UPS region expands, and the inner UPS and
normal regions shrink towards the edges with respect to Fig.
1�c�, as 1 / �kF,↓aF� is increased. Notice that the expansion of
central UPS towards the edges is similar to the one observed
with population-imbalanced fermion mixtures �10,11�. How-
ever, in our case, the normal regions vanish beyond a critical
1 / �kF,↓aF�, and the entire mixture becomes a UPS �30�.
When �↑=2�↓, this occurs at 1 / �kF,↓aF��−0.1, and the
shell-structure of this case is schematically shown in Fig.
1�d�. Having analyzed the ground-state phases, next we dis-
cuss briefly the validity of our results and also their experi-
mental realization in atomic systems.

Experimental realization. In this manuscript, we mainly
rely on the LD, MF, and isotropic trap approximations. In
LD approximation, the mixture is treated as locally homog-
enous, and this approximation is valid as long as the number
of fermions is large �12,18,19�, which is typically satisfied in
atomic systems. In MF approximation, the superfluid order
parameter is treated at the saddle-point level, and the fluc-
tuations are not included �22�. This description is qualita-
tively valid throughout the BCS-BEC evolution only at low
temperatures �7�, which can be reached in atomic systems.
Lastly, in isotropic trap approximation, the traps are assumed
to be isotropic, while the atomic traps are typically elongated
in one direction. However, the anisotropy of traps is not ex-
pected to affect the shell structure of superfluid and normal

phases other than causing shells to have elliptical rather than
circular cross sections.

In atomic systems, trap-imbalanced fermion mixtures can
be realized in several ways. For instance, in the case of mag-
netically trapped systems, trapping two different hyperfine
states �↑ and ↓� of a particular atom �i.e., 6Li or 40K� which
have different magnetic moments �i.e., M↑�M↓� corre-
sponds to a situation where m↑=m↓ and �↑��↓. Likewise,
in optically trapped systems, asymmetrically detuning the la-
ser frequency with respect to two hyperfine states may pro-
duce a state-dependent optical trap. Furthermore, trap-
imbalanced fermion mixtures can be naturally realized with
two-species fermion mixtures �24,26,27� �i.e., 6Li and 40K�
in both magnetically and optically trapped systems due to
their different mass and also to hyperfine properties.

Conclusions. We analyzed the ground-state phases of two-
component population- and mass-balanced but trap-
imbalanced fermion mixtures as a function of fermion-
fermion interactions. In the BCS limit, we found that the
UPS fermions are surrounded by P�PN fermions, and exist
only away from the central core of the trapping potentials. As
the interactions increase towards unitarity, we found that the
central P�PN core first transitions to a UPS, and then ex-
pands towards the edges until the entire mixture becomes a
UPS in the BEC limit.
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