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We analyze the phase diagram of superfluidity for two-species fermion mixtures from the Bardeen-Cooper-
Schrieffer �BCS� to Bose-Einstein condensation �BEC� limit as a function of scattering parameter, population
imbalance, and mass anisotropy. We identify regions corresponding to normal, or uniform or nonuniform
superfluid phases, and discuss topological quantum phase transitions in the BCS, unitarity, and BEC limits. We
derive the Ginzburg-Landau equation near the critical temperature, and show that it describes a dilute mixture
of paired and unpaired fermions in the BEC limit. We also obtain the zero temperature low frequency and long
wavelength collective excitation spectrum, and recover the Bogoliubov relation for weakly interacting dilute
bosons in the BEC limit. Lastly, we discuss the effects of harmonic traps and the resulting density profiles in
the BEC regime.
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I. INTRODUCTION

The evolution from Bardeen-Cooper-Schrieffer �BCS�
state to Bose-Einstein condensation �BEC� is an important
topic of current research for condensed matter, nuclear,
atomic and molecular physics communities. Recent advances
in atomic physics have allowed for the study of superfluid
properties in symmetric two-component fermion superfluids
�equal mass and equal populations� as a function of scatter-
ing length, where the theoretically predicted crossover from
BCS to BEC was observed �1–3�.

Since the population of each component as well as the
interaction strength between two components are experimen-
tally tunable, these knobs enabled the study of the BCS to
BEC evolution in asymmetric two-component fermion super-
fluids �equal mass but unequal populations� �4,5�. In contrast
with the crossover physics found in the symmetric case,
these experiments have demonstrated the existence of phase
transitions between normal and superfluid phases, as well as
phase separation between superfluid �paired� and normal �ex-
cess� fermions as a function of population imbalance �6–23�.

Arguably one of the next frontiers of exploration in cold
Fermi gases is the study of asymmetric two-component fer-
mion superfluidity �unequal masses and equal or unequal
populations� in two-species fermion mixtures from the BCS
to the BEC limit. Earlier works on two-species fermion mix-
tures were limited to the BCS regime �6–8,24�. However,
very recently, the evolution from BCS to BEC was prelimi-
narily addressed in homogenous systems as a function of
population imbalance and scattering length especially for 6Li
and 40K mixture and also for other mixtures including 6Li
and 87Sr and 40K and 87Sr mixtures �25–27�. In addition, the
superfluid phase diagram of trapped systems at unitarity was
also analyzed as a function of population imbalance and
mass anisotropy �28� �see also Ref. �29��.

In this paper, we study the BCS to BEC evolution of
asymmetric two-component fermion superfluids as a func-
tion of population imbalance and mass anisotropy, and ex-
tend our previous works �25,26� in this area. Our main re-
sults are as follows. For a homogeneous system, we analyze
the zero temperature phase diagram for ultra cold fermion

mixtures as a function of mass anisotropy and population
imbalance. We identify regions corresponding to normal,
uniform or nonuniform superfluid phases, and discuss topo-
logical quantum phase transitions in the BCS, unitarity and
BEC limits. We derive the Ginzburg-Landau theory near the
critical temperature, and show that it describes a dilute mix-
ture of weakly interacting paired and unpaired fermions in
the BEC limit. We also derive the zero temperature low fre-
quency and long wavelength collective excitation spectrum
for zero population imbalance, and recover the Bogoliubov
relation for weakly interacting dilute bosons in the BEC
limit. In addition, we describe analytically the phase separa-
tion boundaries of the resulting Bose-Fermi mixture of
paired fermions and unpaired fermions in the BEC limit.
Lastly, we discuss the effects of harmonic traps and the re-
sulting density profiles of paired and unpaired fermions in
the BEC regime.

The rest of the paper is organized as follows. In Sec. II,
we introduce the imaginary-time functional integration for-
malism, and obtain the self-consistency �order parameter and
number� equations. In Sec. III, we discuss the evolution from
BCS to BEC superfluidity at zero temperature within the
saddle point approximation, and we analyze the order param-
eter, chemical potential, and stability of the saddle-point so-
lutions. In Sec. IV, we discuss Gaussian fluctuations near the
critical temperature, and we obtain the low energy collective
excitations and corrections to the saddle point phase diagram
in the BEC region at zero temperature. In addition, we dis-
cuss the effects of harmonic traps on the density profile of
paired and unpaired fermions at zero temperature. A sum-
mary of our conclusions is given in Sec. V. Lastly, we
present in Appendixes A–C the elements of the inverse fluc-
tuation matrix, and their low frequency and long wavelength
expansion coefficients at finite and zero temperatures.

II. FUNCTIONAL INTEGRAL FORMALISM

To describe a dilute two-species Fermi gas in three dimen-
sions, we start from the Hamiltonian ��=1�

PHYSICAL REVIEW A 76, 013601 �2007�

1050-2947/2007/76�1�/013601�15� ©2007 The American Physical Society013601-1

http://dx.doi.org/10.1103/PhysRevA.76.013601


H = �
k,�

�k,�ak,�
† ak,� + �

k,k�,q

U�k,k��bk,q
† bk�,q, �1�

where the pseudospin � labels both the type and hyperfine
states of atoms represented by the creation operator ak,�

† , and
bk,q

† =ak+q/2,↑
† a−k+q/2,↓

† . Here, �k,�=�k,�−��, where �k,�
=k2 / �2m�� is the energy and �� is the chemical potential of
the fermions. Notice that we allow for the fermions to have
different masses m� and different populations controlled by
independent chemical potentials ��. The attractive fermion-
fermion interaction U�k ,k�� can be written in a separable
form as U�k ,k��=−g�k

*�k� where g�0, and �k=1 for k
�k0 and �k=0 for k�k0, where k0 is an ultraviolet cutoff for
the s-wave interaction. This cutoff will be eliminated later,
when we express the interaction amplitude g in terms of the
s-wave scattering length aF.

A. Effective action

In the imaginary-time functional integral formalism �	
=1/T and unit kB=1� �30�, the partition function for the
Hamiltonian in Eq. �1� can be written as Z
=�D�a† ,a�e−S�a†,a�, where

S = �
0

	

d
��
k,�

ak,�
† �
�

�

�

ak,��
� + H�
�	 �2�

is the action. Here, 
 is the imaginary time and ak,�
† �
� and

ak,��
� are Grassmann variables. The Hamiltonian can be
rewritten in the form

H�
� = �
k,�

�k,�ak,�
† �
�ak,��
� − g�

q
Bq

†�
�Bq�
� , �3�

where we define the operator Bq�
�=�k��k�bk,q�
�. We first
introduce the Nambu spinor �†�p�= �ap,↑

† ,a−p,↓�, where p
= �k , iw�� denotes both momentum and fermionic Matsubara
frequency w�= �2�+1�� /	, and use a Hubbard-Stratonovich
transformation

egB†�q�B�q� =� D�
†,
�e−
†�q�
�q�/g+�B†�q�
�q�+H.c.� �4�

to decouple the fermionic degrees of freedom at the expense
of introducing the bosonic complex field 
�q�. Here, q
= �q , iv�� denotes both momentum and bosonic Matsubara
frequency v�=2�� /	. We write 
�q�=�0�q,0+��q�, where
�0 is the 
-independent saddle point and ��q� is the

-dependent fluctuation.

Performing a Gaussian integration over the fermionic de-
grees of freedom and an expansion of S to quadratic order in
��q�, we obtain the Gaussian effective action

SGauss = S0 +
	

2 �
q

�̄†�q�F−1�q��̄�q� , �5�

the vector �̄†�q� is such that �̄†�q�= ��†�q� ,��−q��. Here,
the saddle point action is given by

S0 = 	

�0
2

g
− �

p

Tr ln�Gsp�p�/	�−1, �6�

where �k=�0�k is the order parameter, and �Gsp�−1�p� is the
inverse fermion propagator. The matrix �Gsp�−1�p� is defined
by

�Gsp�−1�p� = �iw� − �k,↑ �k

�k
* iw� + �k,↓

� . �7�

Furthermore, the vector �̄†�q� is the order parameter fluctua-
tion field and F−1�q� is the inverse fluctuation propagator.
The matrix elements of F−1�q� are given by

F1,1
−1 �q� =

1

g
−

1

	
�

p

G↑,↑
sp �q

2
+ p�G↓,↓

sp �q

2
− p�
�k
2, �8�

F1,2
−1 �q� =

1

	
�

p

G↑,↓
sp �q

2
+ p�G↑,↓

sp �q

2
− p�
�k
2. �9�

Notice that F2,1
−1 �q�= �F1,2

−1 �*�q� and F2,2
−1 �q�=F1,1

−1 �−q�. These
matrix elements are described further in Appendix A.
The fluctuation term in the action leads to a correction
to the thermodynamic potential, which can be written
as �Gauss=�0+�fluct with �0=S0 /	 and �fluct
= �1/	��qln det�F−1�q� /	�. Next, we derive the self-
consistency equations.

B. Self-consistency equations

The saddle point condition �S0 /��0
*=0 or the relation

�k� = −
1

	
lim

→0

�
p

U�k,k��G↑,↓
sp �p�exp�iw�
� �10�

leads to an equation for the order parameter

1

g
= �

k


�k
2

2Ek,+
Xk,+, �11�

where Xk,±= �Xk,1±Xk,2� /2 with Xk,s=tanh�	Ek,s /2�. Notice
that, at low temperatures T
0, ��−Ek,s�=lim	→�Xk,s, where
��x� is the Heaviside function. Here, Ek,±= �Ek,1±Ek,2� /2 and
�k,±= ��k,↑±�k,↓� /2=k2 / �2m±�−�±, where

Ek,1 = ��k,+
2 + 
�k
2�1/2 + �k,−, �12�

Ek,2 = ��k,+
2 + 
�k
2�1/2 − �k,− �13�

are the quasiparticle and negative of the quasihole energies
respectively, m±=2m↑m↓ / �m↓±m↑� and �±= ��↑±�↓� /2. No-
tice that m+ is twice the reduced mass of the ↑ and ↓ fermi-
ons, and that the equal mass case corresponds to 
m−
→�.
As usual, we eliminate g in favor of the scattering length aF
via the relation

1

g
= −

m+V

4�aF
+ �

k


�k
2

2�k,+
, �14�

where V is the volume and �k,±= ��k,↑±�k,↓� /2.
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The order parameter equation has to be solved self-
consistently with number equations N�=−�� /��� which
have two contributions N�=N0,�+Nfluct,�. The first term
N0,�=−��0 /��� or the relation

N0,� =
��

	
lim

→0

�
p

G�,�
sp �p�exp�i��w�
� �15�

leads to the saddle point contribution, and is given by

N0,� = �
k
�1 − ��Xk,−

2
−

�k,+

2Ek,+
Xk,+� . �16�

Here, �↑= +1 and �↓=−1. Similarly, the second term
Nfluct,�=−��fluct /��� leads to the fluctuation contribution,
and is given by

Nfluct,� = −
1

	
�

q

��det F−1�q��/���

det F−1�q�
. �17�

While the saddle point contribution is sufficient for a semi-
quantitative analysis at zero temperature �T
0�, inclusion of
the fluctuation contribution is necessary to recover BEC
physics at finite temperatures �T→Tc�.

When populations of the pseudospin components are bal-
anced �N↑=N↓�, the results for 
�0
 and �+ ��− is irrelevant
in this case� of m↑�m↓ case can be obtained from the results
for 
�0
 and � of m=m↑=m↓ case via a substitution of m
→m+. However, when populations of the pseudospin com-
ponents are imbalanced �N↑�N↓�, we need to solve all three
self-consistency equations, since population imbalance is
achieved when either Ek,1 or Ek,2 is negative in some regions
of momentum space, which is discussed next.

III. SADDLE POINT RESULTS

At low temperatures T
0, the saddle point self-
consistency �order parameter and number� equations are suf-
ficient to describe the evolution of superfluidity from the
BCS to the BEC limit. In this section, we analyze amplitude
of the order parameter 
�0
 and chemical potentials �� as a
function of mass anisotropy mr=m↑ /m↓ and population im-
balance P=N− /N+ for a set of fixed scattering parameters
1 / �kF,+aF�. Here N±= �N↑±N↓� /2 and kF,±

3 = �kF,↑
3 ±kF,↓

3 � /2.
Because of the parabolic dispersion relation, the density of ↑
fermions is n↑=kF,↑

3 / �6�2� and the density of ↓ fermions is
n↓=kF,↓

3 / �6�2�. Here, the Fermi momenta kF,↑ and kF,↓ are
determined from the Fermi energies �F,�=kF,�

2 / �2m��. There-
fore, the total fermion density is

n = n↑ + n↓ =
kF,+

3

3�2 . �18�

Using the notations described in the preceding paragraph,
we can solve the self-consistency Eqs. �11�, �14�, and �16�.
For instance, in Fig. 1, we show self-consistent solutions of

�0
, �+ and �− �in units of �F,+� as a function of mr when
P=0.5 and 1/ �kF,+aF�=0. Here, �F,±=kF,±

2 / �2m±�. With in-
creasing mass anisotropy �or decreasing mr�, we find that
both 
�0
 and �+ increase until mr
0.4. However, further

decrease in mr beyond mr
0.4 leads to a saturation of both

�0
 and �+ with a small cusp in both quantities. The cusp is
best seen in Fig. 1 at small grazing angles. Therefore, the
evolution from mr=1 to mr→0 is nonanalytic when mr

0.4, and the evolution is not a crossover. These cusps in

�0
 and �+ are more pronounced for higher 
P
, and they
signal a topological quantum phase transition discussed be-
low. Notice that, for P=0, the evolution of 
�0
 and �+ is
analytic for all mr, and the evolution is just a crossover.

Next, we discuss the stability of uniform superfluidity us-
ing two criteria �10,31–34�: Positive definite compressibility
��T� and superfluid density ��T� matrices.

A. Stability of uniform superfluidity

In order to analyze the phase diagram at T=0, we solve
the saddle point self-consistency �order parameter and num-
ber� equations for all P and mr for a set of 1 / �kF,+aF�, and
check the stability of saddle point solutions for the uniform
superfluid phase using two criteria.

The first criterion requires that the compressibility matrix
��T� is positive definite, where the elements of ��T� are
��,���T�=−�2�0 / ���������. This criterion is related �identi-
cal� to the condition that the curvature

�2�0

��0
2 = �

k

�k
2�Xk,+

Ek,+
3 − 	

Yk,+

2Ek,+
2 � �19�

of the saddle point thermodynamic potential �0 with respect
to the saddle point parameter �0 needs to be positive �32,34�.
Here, Yk,±= �Yk,↑±Yk,↓� /2 with Yk,s=sech2�	Ek,s /2�. Notice
that, at low temperatures T
0, ��Ek,s�=lim	→�	Yk,s /4
where ��x� is the delta function. When at least one of the
eigenvalues of ��T�, or the curvature �2�0 /��0

2 is negative,
the uniform saddle point solution does not correspond to a
minimum of �0, and a nonuniform superfluid phase is fa-
vored. We would like to mention that the positivity of the
compressibility matrix guarantees the stability of the minima
of the free energy in connection with a particular choice of
symmetry or functional form of the order parameter. Within

0.6

0.9

1.2

0 0.25 0.5 0.75 1
mr

|∆0|

µ+

µ-

FIG. 1. Plots of 
�0
, �+, and �− �in units of �F,+� as a function
of mr, when P=0.5 and 1/ �kF,+aF�=0 �unitarity limit�. Notice the
presence of small cusps in 
�0
 and �+ when mr
0.4 which signal
a topological quantum phase transition discussed below. These
cusps are more pronounced for higher 
P
 �not shown�, but are best
seen in this figure at small grazing angles.
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this restriction, when the compressibility becomes negative
the free energy changes from a minimum to a maximum. In
the present case, we restricted ourselves only to order param-
eters with zero center of mass �c.m.� momentum. However, if
one is interested in a different class of superfluid states such
that the order parameter describes a Cooper pair with finite
c.m. momentum, then one needs to compare energies, and
two separate energy calculations are necessary: one for the
zero-c.m.-momentum case and the other for the finite-c.m.-
momentum case �Fulde-Ferell-Larkin-Ovchinnikov �FFLO��
�34�. However, in this paper, we study only the stability of
the zero-c.m.-momentum case.

The second criterion requires that superfluid density
matrix ��T� to be positive definite, where the elements

of ��T� are defined by �i,j�T�= �1/	��p�Tr�Gsp�p�M̃��i,j

+kikjTr�Gsp�p�Gsp�p���, where M̃ is a diagonal mass matrix

with elements M̃i,j =��m��i,j with �↑=1 and �↓=−1, and �i,j
is the Kronecker delta. After the evaluation of the fermionic
Matsubara frequency, we obtain

�ij�T� = �m↑N↑ + m↓N↓��i,j −
	

2 �
k

kikjYk,+. �20�

When at least one of the eigenvalues of ��T� is negative, a
spontaneously generated gradient of the phase of the order
parameter appears, leading to a nonuniform superfluid phase.
Notice that the ��T� matrix is reducible to the scalar

�0�T� = m↑N↑ + m↓N↓ −
	

6 �
k

k2Yk,+, �21�

in the s-wave case.
Even though we use these two criteria, we have found that

the compressibility criterion is the most restrictive over the
entire phase space explored. This indicates that nonuniform
phases with spontaneously generated phase gradients are not
present. The nonuniform phases that can be obtained using
the dominant compressibility criterium correspond to phase
separated �PS� states, where normal and superfluid states do
not mix. However, allowing for Cooper pairs to have c.m.
momenta produces FFLO phases near the BCS regime, and
allows for the possibility of generalized FFLO phases with
several wave vectors close to unitarity. However, we have
not performed these calculations in connection with general-
ized FFLO states, and thus limited ourselves only to the sta-
bility of the zero c.m. momentum �uniform� superfluid states.
In addition, we did not specifically consider the phase
boundary between FFLO and PS since it was shown that the
standard FFLO phases exist only a very small region on the
BCS side of the phase diagram �12�.

Before discussing ground state phase diagrams, we would
like to add an additional criterion to fine tune the classifica-
tion of the various phases that emerge as a result of unequal
masses, interactions, and population imbalance. For this pur-
pose we discuss next, the quasiparticle excitation spectrum
and its connection to topological quantum phase transitions.

B. Topological quantum phase transitions

The excitation spectrum of quasiparticles is determined
by energies Ek,1 and Ek,2 defined in Eq. �12�. Using these
relations, one can identify surfaces in momentum space
where these energies have zeros, indicating that the quasipar-
ticle excitation spectrum changes from a gapped to a gapless
phase, with a corresponding change in the momentum distri-
bution as well. These changes in the Fermi surfaces of qua-
siparticles are topological in nature. Thus we identify topo-
logical quantum phase transitions associated with the
disappearance or appearance of momentum space regions of
zero quasiparticle energies when either 1 / �kF,+aF�, P, and/or
mr is changed. These topological transitions are shown as
dotted lines in Figs. 3–5.

These phases are characterized by the number of zeros of
Ek,1 and Ek,2 �zero energy surfaces in momentum space�
such that �I� Ek,1 has no zeros and Ek,2 has only one, and �II�
Ek,1 has no zeros and Ek,2 has two zeros. We first define
B±=m↑�↑±m↓�↓ to establish general constraints on the mag-
nitude 
�0
 of the order parameter for the s-wave pairing in
the presence of population imbalance. The zeros of Ek,s oc-
cur at real momenta k±

2 =B+± �B−
2 −4m↑m↓
�0
2�1/2 provided

that 
�0
2� 
B−
2 / �4m↑m↓� for B+�0 and 
�0
2�−�↑�↓ for
B+�0. Notice that, the Fermi sea of the lower quasiparticle
band is a sphere of radius k+ in phase I, and is a spherical
shell k−�k�k+ in phase II, and the transition from phase II
to I occurs when k−→0. The superfluid has gapless quasi-
particle excitations in both phases I and II, when there is
population imbalance, e.g., N↑�N↓. We illustrate these cases
in Figs. 2�a� and 2�b�, respectively, for N↑�N↓. The case of
no population imbalance P=0 �N↑=N↓� corresponds to case
III, where Ek,1 and Ek,2 have no zeros and are always posi-
tive, and thus the superfluid has always gapped quasiparticle
excitations.

The transitions among phases I, II, and III indicate a
change in topology in the lowest quasiparticle band, similar
to the Lifshitz transition in ordinary metals �35� and non-
s-wave superfluids �36–40�. The topological transition here
is unique, because it involves an s-wave superfluid, and
could be potentially observed for the first time through the
measurement of the momentum distribution or thermody-
namic properties. Notice that the topological transition oc-
curs without changing the symmetry of the order parameter
as the Landau classification demands for ordinary phase tran-
sitions. However, thermodynamic signatures of the topologi-
cal transition are present at low temperatures in the com-
pressibility, specific heat, superfluid density, etc., because the
quasiparticle excitation spectrum changes dramatically. The
temperature dependence of the quasiparticle contributions to
these properties are exponentially activated ��exp�−Eg /T��
for the gapped phase �III�, or have a power law behavior
�with different powers of T� in the gapless phases �I and II�.

The zero temperature momentum distributions

nk,� =
1 − ��Xk,−

2
−

�k,+

2Ek,+
Xk,+ �22�

for phases I and II are extracted from Eq. �16�. For momen-
tum space regions where Ek,1�0 and Ek,2�0, the corre-

M. ISKIN AND C. A. R. SÁ DE MELO PHYSICAL REVIEW A 76, 013601 �2007�

013601-4



sponding momentum distributions are equal nk,↑=nk,↓. How-
ever, when Ek,1�0 and Ek,2�0, then nk,↑=0 and nk,↓=1. We
illustrate these cases in Figs. 2�c� and 2�d� for parameters of
Figs. 2�a� and 2�b�, respectively. Notice that the zero of nk,↑
is shifted slightly upwards to distinguish it from nk,↓ in the
regions of momentum space where nk,↑=nk,↓. Although this
topological transition is quantum �T=0� in nature, signatures
of the transition should still be observed at finite tempera-
tures within the quantum critical region, where the momen-
tum distributions are smeared out due to thermal effects. Al-
though the primary signature of this topological transition is
seen in the momentum distribution, the isentropic �S or iso-
thermal �T compressibilities and the speed of sound cs would
have a cusp at the topological transition line similar to that
encountered in 
�0
 �see Fig. 1� as a function of the mass
anisotropy mr. The cusp �discontinuous change in slope� in
�S, �T, or cs gets larger with increasing population imbal-
ance.

Having discussed the finer topological classification of
possible superfluid phases, we take all the criteria together
�positive compressibility, positive curvature of thermody-
namic potential, positive superfluid density, and topological
character� to present next the resulting ground state phase
diagrams.

C. Ground state phase diagrams

Based on all the previous criteria, we construct the P ver-
sus mr phase diagram for seven sets of interaction strengths:
1 / �kF,+aF�=−2, −1, and −0.25 on the BCS side shown in
Fig. 3; 1 / �kF,+aF�=0 at unitarity shown in Fig. 4; and
1/ �kF,+aF�=0.25, 1, and 2 on the BEC side shown in Fig. 5.
In these diagrams, the ↑ �↓� label always corresponds to
lighter �heavier� mass such that lighter �heavier� fermions are
in excess when P�0�P�0�. Notice that this choice spans
all possible population imbalances and mass ratios.

In Figs. 3–5, we indicate the regions of normal �N�, and
uniform �U�, or non-uniform �NU� superfluid phases. The
black squares indicate the transition line that separates topo-
logical phases I and II. In all phase diagrams, phase I �II�
always appears to the left �right� of the dotted lines for P
�0, while phase I �II� always appears to the right �left� of
the dotted lines for P�0.

The normal phase is characterized by a vanishing order
parameter ��0=0�, while the uniform superfluid phase is
characterized by �0�0��0 and �2�0 /��0

2�0. The nonuni-
form superfluid phase is characterized by �0�0��0 and/or
�2�0 /��0

2�0, and it should be of the FFLO-type having one
wave vector modulation only near the BCS limit �41,42�,

-1

0

1

2

3

0 1 2

k

Ek,1

Ek,2

-1

0

1

2

3

0 1 2

k

Ek,1

Ek,2

0

0.5

1

0 1 2

k

nk,↑

nk,↓

0

0.5

1

0 1 2

k

nk,↑

nk,↓

(a) (b)

(c) (d)

FIG. 2. Schematic plots of Ek,1

�thin lines� and Ek,2 �thick lines�
versus k for �a� phase I and �b�
phase II. Here, Ek,s and k are in
units of �F,+ and kF,+, respectively.
Corresponding momentum distri-
butions nk,↑ �thin lines� and nk,↓
�thick lines� are shown in �c�
phase I and �d� phase II. Notice
that the zero of nk,↑ is slightly
shifted upwards from the zero of
nk,↓, for better visualization.
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although closer to unitarity, we expect the nonuniform phase
to be substantially different from the FFLO phases either
having spatial modulation that would encompass several
wave vectors or presenting complete phase separation be-
tween paired and unpaired fermions. However, from numeri-
cal calculations, the superfluid density criterion seems to be
weaker for all parameter space and the nonuniform super-
fluid phase is characterized by �2�0 /��0

2�0, which indi-
cates possible phase separation, since at least one of the ei-
genvalues of the compressibility matrix ��,�� also becomes
negative. Therefore, for a homogeneous system, paired �or
superfluid� fermions and unpaired �or excess� fermions coex-
ist in the uniform superfluid regions. However, they are
phase separated in nonuniform superfluid regions, and the
topological transition from phase I to phase II may not be
accessible. However, in a harmonic trap with a large super-
fluid region at the center, the topological phases should be
observable since the central region is essentially a “uniform
superfluid” with the excess fermions at the edge �40�. The

peculiar momentum distribution of different topological
phases would be smeared out by the trapping potential, but
their marked signatures should still be present. Furthermore,
these topological phases may be accessible in trapped sys-
tems at finite temperature �43�, or in optical lattices �44�.

As shown in Figs. 3�a� and 3�b�, we find a small region of
uniform superfluidity on the BCS side only when the mass
anisotropy is small and the lighter fermions are in excess
�P�0�. Thus, to probe the largest amount of phases on the
BCS side, mixtures consisting of 6Li and 40K �mr
0.15� or
6Li and 87Sr �mr
0.07� are good candidates. In the rest of
the phase diagram, we find a quantum phase transition from
the nonuniform superfluid to the normal phase beyond a
critical population imbalance for both positive and negative
P. The phase space of uniform superfluidity expands while
that of the normal phase shrinks with increasing interaction
strength as shown in Figs. 3�b� and 3�c�.

This general trend continues into the unitarity limit
�1/ �kF,+aF�=0� as shown in Fig. 4. Since this limit is theo-
retically important as well as experimentally accessible, it is
useful to analyze the phase diagram as a function of popula-
tion imbalance and mass anisotropy. Notice that Fermi mix-
tures corresponding to mass ranges 0�mr�0.23, like 6Li
and 87Sr �mr
0.07� and 6Li and 40K �mr
0.15�, have phase
diagrams which are qualitatively different from those corre-
sponding to mass ratios 0.23�mr�0.45 like 6Li and 25Mg
�mr
0.24� and 6Li and 2H �mr
0.33�, since a topological
transition line may be accessible in the second range. Fur-
thermore, only NU and N phases are accessible at unitarity
for Fermi mixtures in the range of mass ratios 0.45�mr
�1 like 40K and 87Sr �mr
0.64� or any equal mass mix-
tures. Notice that our results for the case of equal masses
�mr=1� are in close agreement with recent MIT experiments
�4� in a trap. At unitarity, our nonuniform superfluid to nor-
mal state boundary occurs at P
 ±0.73, and the MIT group
obtains P
 ±0.70�4� for their superfluid to normal bound-
ary. This agreement is perhaps coincidental, since our calcu-
lations do not include the trapping potential, while the ex-
periments do. In recent Monte Carlo calculations �45� the
population imbalance for the homogeneous system at the dis-
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FIG. 3. Phase diagram of P= �N↑−N↓� / �N↑+N↓� versus mr

=m↑ /m↓ on the BCS side when �a� 1/ �kF,+aF�=−2, �b� 1/ �kF,+aF�
=−1, and �c� 1/ �kF,+aF�=−0.25. We show normal �N�, uniform �U�,
or nonuniform �NU� superfluid phases. The dotted line separates
topologically distinct superfluid phases. For P�0, topological
phase I �II� corresponds to the region to the left �right� region of the
dotted line, and for P�0 the topological phase is always of type II.
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FIG. 4. Phase diagram of P= �N↑−N↓� / �N↑+N↓� versus mr

=m↑ /m↓ at the unitarity limit when 1/ �kF,+aF�=0. We show normal
�N�, uniform �U�, or nonuniform �NU� superfluid phases. The dot-
ted line separates topologically distinct superfluid phases. For P
�0, topological phase I �II� corresponds to the region to the left
�right� region of the dotted line, and for P�0 the topological phase
is always of type II.
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appearance of superfluidity is P=0.44. However, when the
trap is considered the Monte Carlo method leads to P
=0.77. However, it is not presently clear why the finite-sized
Monte Carlo results and our thermodynamic calculations dif-
fer by a factor of 1.66 for the superfluid to normal phase
boundary at unitarity.

Additional increase of interaction strength beyond unitar-
ity on the BEC side leads to further expansion �shrinkage� of
the uniform superfluid �normal� region as shown in Figs. 5�a�
and 5�b�. When heavier fermions are in excess �P�0�, a
uniform superfluid phase is not possible for any mass aniso-
tropy until a critical interaction strength is reached. The criti-
cal interaction strength corresponds to 1/ �kF,+aF�
0.8 for
mr=1. Further increase of interaction strength towards the
BEC limit �1/ �kF,+aF��1�, leads to further expansion
�shrinkage� of the uniform �nonuniform� superfluid region as

shown in Fig. 5�c�, and only the uniform superfluid phase
exists in the extreme BEC limit �1/ �kF,+aF��1� even for P
�0 �not shown�.

Having discussed the ground state phase diagrams, we
present next fluctuation effects beyond the saddle point ap-
proximation.

IV. GAUSSIAN FLUCTUATIONS

In this section, we discuss the �Gaussian� fluctuation ef-
fects around the saddle point solutions at finite and zero tem-
peratures. Near the critical temperature �T
Tc� we discuss
the time-dependent Ginzburg-Landau �TDGL� equation, and
at zero temperature �T=0� we analyze the collective phase
�or Goldstone� mode as well as the effects of harmonic trap
in the BEC limit, which are discussed next.

A. Time-dependent Ginzburg-Landau equation
near critical temperatures

Our basic motivation here is to investigate the low fre-
quency and long wavelength behavior of the order parameter
near Tc where �0=0, and derive the TDGL equation �3�. The
TDGL equations can be obtained from the GL action SGL
=SGauss+S4, where SGauss is the Gaussian effective action of
Eq. �5� with �0=0 and S4=b
��x�
4 /2. Here, b involves a
four-point Green’s function defined in Appendix B.

The quadratic part of the Ginzburg-Landau action can be
obtained from a long wavelength, small frequency expansion
of SGauss when the order parameter vanishes ��0=0�. In this
case, F1,2

−1 �q�=0 and F1,1
−1 �q�=L−1�q�, where

L−1�q� =
1

g
− �

k

1 − nf��q/2+k,↑� − nf��q/2−k,↓�
�q/2+k,↑ + �q/2−k,↓ − iv�


�k
2,

where nf���=1/ �exp�	��+1� is the Fermi distribution.
Minimization of the action SGL leads to the TDGL equa-

tion

�a + b
��x�
2 − �
i,j

cij

2
�i� j − id

�

�t	��x� = 0 �23�

in the real space x= �x , t� representation. Notice that these
equations are nothing but the Euler-Lagrange equations for
the field ��x� appearing in SGL.

Expressions for the coefficients a, b, cij, and d are pre-
sented in Appendix B. The condition a=0 corresponds to the
Thouless criterion, and the coefficient of the nonlinear term
is positive �b�0� guaranteeing the stability of the effective
theory. The kinetic energy coefficient cij is an effective in-
verse mass tensor which reduces to a scalar c in the s-wave
case. The time-dependent coefficient d is a complex number,
and its imaginary part reflects the decay of Cooper pairs into
the two-particle continuum for �+�0. However, for �+�0,
the imaginary part of d vanishes and the behavior of the
order parameter ��x� is propagating reflecting the presence
of stable �long lived� bound states.

Since a uniform superfluid phase is more stable
in the BEC side, we calculate analytically all coefficients
in the BEC limit where 
�±
�
�b
 /2�Tc. We obtain
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FIG. 5. Phase diagram of P= �N↑−N↓� / �N↑+N↓� versus mr

=m↑ /m↓ on the BEC side when �a� 1/ �kF,+aF�=0.25, �b�
1/ �kF,+aF�=1, and �c� 1/ �kF,+aF�=2. We show normal �N�, uniform
�U�, or nonuniform �NU� superfluid phases. The dotted lines sepa-
rate topologically distinct superfluid phases. In �a� phase I �II� cor-
responds to the region to the left �right� of the dotted line, and for
P�0 phase is always of type II. In �b� phase I �II� corresponds to
the region to the right �left� of the dotted line, and for P�0 the
phase is always of type I. In �c� the entire superfluid region corre-
sponds to phase I.

MIXTURES OF ULTRACOLD FERMIONS WITH UNEQUAL… PHYSICAL REVIEW A 76, 013601 �2007�

013601-7



a=a1+a2=−Vm+
2�2�+−�b�aF / �8��+Vm+neaF

2 , b=b1+b2

=Vm+
3aF

3 / �16��−Vm+
2��ne /��e�aF

4 , c=Vm+
2aF / �8��m↑+m↓��,

and d=Vm+
2aF / �8��. Here, e labels the excess type of fermi-

ons and ne is the density of unpaired fermions. Through the
rescaling ��x�=�d��x�, we obtain the equation of motion
for a dilute mixture of weakly interacting bosons and fermi-
ons

− �B��x� + �UBB
��x�
2 + UBFne�x����x� −
�2��x�

2mB

− i
���x�

�t
= 0, �24�

with bosonic chemical potential �B=−a1 /d=2�+−�b, mass
mB=d /c=m↑+m↓, and repulsive boson-boson UBB=Vb1 /d2

=4�aF /m+ and boson-fermion UBF=Va2 / �dne�=8�aF /m+

interactions. This procedure also yields the spatial density of
unpaired fermions given by

ne�x� = �a2/d + b2
��x�
2/d2�/UBF

= ne − UBF��ne/��e�
��x�
2. �25�

Since �ne /��e�0 the unpaired fermions avoid regions
where the boson field 
��x�
 is large. Thus, in a harmonic
trap, the bosons condense at the center and the unpaired fer-
mions tend to be at the edges. Notice that, Eq. �24� reduces
to the Gross-Pitaevskii equation for equal masses with P=0
�3�, and to the equation of motion for equal masses with P
�0 �18�.

Next, we recall the standard definitions of the interactions
in terms of the scattering lengths UBB=4�aBB/mB and UBF
=4�aBF/mBF, where mB is the mass of the bosons and mBF
=2memB / �mB+me� is twice the reduced mass of a boson of
mass mB and an excess fermion of mass me. Combining these
definitions with our results for UBB and UBF in terms of the
fermion-fermion scattering length aF, we can directly relate
the boson-boson scattering parameter

aBB =
mB

m+
aF = �1 +

m↑
2m↓

+
m↓

2m↑
	aF �26�

and the boson-fermion scattering parameter

aBF =
2mBF

m+
aF =

4mBme

m+�mB + me�
aF �27�

to aF. Notice that these expressions reduce to aBB=2aF and
aBF=8aF /3 for equal masses �3,18�. A better estimate for aBB
can be found in the literature �47�.

Since the effective boson-fermion system is weakly inter-
acting, the BEC temperature is Tc=2��nB /��3/2��2/3 /mB,
where ��x� is the Zeta function and nB= �n−ne� /2.

Notice that the effective total number equation for the
boson-fermion mixture can be written as

N 
 �
k

nf��k,e� + 2�
q

nb� 
q
2

2mB
− �̃B	 , �28�

where nb���=1/ �exp�	��−1� is the Bose distribution and
�̃B→0− includes also the Hartree shift. In the limit when
Tc→0, we obtain the critical chemical potential for unpaired

fermions at the normal-to-stable uniform superfluid bound-
ary as given by �e=22/3�m+ /me��F,+, where e= �↑ , ↓ � labels
excess type of atoms. Since, �+→�b /2 in this limit, the criti-
cal chemical potential imbalance is given by �−=�e�−�b /2
+22/3�m+ /me��F,+�, where �b=−1/ �m+aF

2� is the binding en-
ergy, and �↑= +1 and �↓=−1.

This concludes our analysis for the homogenous mixture
of two types of ultracold fermions at finite temperatures.
Next, we discuss collective excitations at zero temperature.

B. Sound velocity at zero temperature

In order to obtain the collective mode spectrum, we use
the effective action defined in Eq. �5� and express ��q�
= ���q�+ i��q�� /�2 in terms of the amplitude ��q� and phase
��q� fields, respectively. Using the matrix elements of F−1

defined in Eqs. �8� and �9� and described in Appendix A, we
can obtain the matrix elements of the fluctuation matrix in
the rotated basis (��q� ,��q�). The diagonal elements of the
fluctuation matrix in the rotated basis become M�,�

−1 �q�
= �F1,1

−1 +F1,2
−1 +F2,1

−1 +F2,2
−1 � /2 and M�,�

−1 �q�= �F1,1
−1 −F1,2

−1 −F2,1
−1

+F2,2
−1 � /2, while the off-diagonal elements become M�,�

−1 �q�
= i�F1,1

−1 −F1,2
−1 +F2,1

−1 −F2,2
−1 � /2 with M�,�

−1 �q�= �M�,�
−1 �*�q�.

The collective modes are found from the poles of the
fluctuation matrix M�q� determined by the condition
det M−1�q�=0, when the usual analytic continuation iv�

→w+ i0+ is performed. The easiest way to get the phase
collective modes is to integrate out the amplitude fields to
obtain a phase-only effective action. To obtain the long
wavelength dispersions for the collective modes at T=0,
we consider 
P
→0 or kF,+=kF,↑=kF,↓ limit, and expand
the matrix elements of F−1�q� to second order in 
q
 and w
to get M�,�

−1 �q�=A+C
q
2−Dw2, M�,�
−1 �q�=Q
q
2−Rw2, and

M�,�
−1 �q�= iBw, such that

M−1�q,w� = �A + C
q
2 − Dw2 iBw

− iBw Q
q
2 − Rw2 � .

The expansion coefficients are given in Appendix B. Thus
there are two branches for the collective excitations, but we
focus only on the lowest energy one corresponding to the
Goldstone mode with dispersion w�q�=v
q
, where

v =� AQ

AR + B2 �29�

is the speed of sound. Extra care is required when P�0
since Landau damping causes collective excitations to decay
into the two-quasiparticle continuum even for the s-wave
case, since gapless fermionic �quasiparticle� excitations are
present �see Fig. 2�.

The BCS limit is characterized by the criteria �+�0 and
�+
�F,+� 
�0
. The expansion of the matrix elements to
order 
q
2 and w2 is performed under the condition
�w , 
q
2 / �2m+��� 
�0
. The coefficient that couples phase and
amplitude fields vanish �B=0� in this limit. Thus there is no
mixing between the phase and amplitude modes. The zeroth
order coefficient is A=D, and the second order coefficients
are C=Q /3=DvF,↑vF,↓ / �36
�0
2�, and D=R /3=D / �12
�0
2�.
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Here, vF,�=kF,� /m� is the Fermi velocity and D
=m+VkF,+ / �2�2� is the density of states per spin at the Fermi
energy. Thus, we obtain

v =�vF,↑vF,↓
3

= �v↑v↓, �30�

with v�=vF,� /�3, which reduces to the Anderson-
Bogoliubov relation when the masses are equal.

On the other hand, the BEC limit is characterized by the
criteria �+�0 and �k,+� 
�0
. The expansion of the matrix
elements to order 
q
2 and w2 is performed under the condi-
tion �w , 
q
2 / �2m+��� 
�+
. The coefficient B�0 indicates
that the amplitude and phase fields are mixed. The zeroth
order coefficient is A=�
�0
2 / �2
�+
�, the first order
coefficient is B=�, and the second order coefficients
are C=Q=� / �2�m↑+m↓�� and D=R=� / �8
�+
�, where �
=D / �32�
�+
�F,+�. Thus we obtain

v =

�0


�4�m↑ + m↓�
�+

= �v↑v↓, �31�

with v�=�2�n�aF /m�
2 . Notice that the sound velocity is very

small and its smallness is controlled by the scattering length
aF. Furthermore, in the theory of weakly interacting dilute
Bose gas, the sound velocity is given by vB=�4�aBBnB /mB

2 .
Making the identification that the density of pairs is nB=n+,
the mass of the bound pairs is mB=m↑+m↓, and that the Bose
scattering length is

aBB =
mB

m+
aF = �1 +

m↑
2m↓

+
m↓

2m↑
	aF, �32�

vB reduces to the well known Bogoliubov relation when the
masses are equal. Therefore, the strongly interacting Fermi
gas with two species can be described as a weakly interacting
Bose gas at zero temperature as well as at finite temperatures
�25�. Notice that aBB reduces to aBB=2aF for equal masses
�46� in the Born approximation. A better estimate for aBB can
be found in the literature �47�.

In Fig. 6, we show the sound velocity as a function of the
mass ratio mr for three values of the scattering parameter
1 / �kF,+aF�=−1, 0, and 1 corresponding to the BCS side

�1/ �kF,+aF�=−1�, unitarity �1/ �kF,+aF�=0�, and to the BEC
side �1/ �kF,+aF�=1�. Notice that the speed of sound could be
measured for a given mr using similar techniques as in the
single species case mr=1 �51,52�.

This concludes our analysis for collective excitations in
the homogenous mixture of two types of fermions at zero
temperature. We discuss next the effective field theory be-
tween paired and unpaired fermions.

C. Weakly interacting paired and excess fermions
(Bose-Fermi mixtures) at zero temperature

In this section, we concentrate on the BEC regime, where
the paired and unpaired �excess� fermions can be described
by a mixture of molecular bosons and fermions. In this limit,
the resulting equation of motion is identical to Eq. �24� near
the critical temperature, except that all parameters are evalu-
ated at zero temperature. Thus, at low temperatures the sys-
tem continues to behave as a dilute mixture of weakly inter-
acting bosons �formed from paired fermions� and unpaired
fermions, and can be described by the free energy density

F�x� = E�x� − �ene�x� − �B
��x�
2, �33�

where the energy density is

E�x� = KB + KF +
1

2
UBB
��x�
4 + UBFne�x�
��x�
2.

Here, KB is the kinetic energy density of bosons �assumed to
be much smaller than all the other energies� and KF is the
kinetic energy density of fermions. Averaging these energy
densities over the spatial coordinates F=�dx F�x� /V leads to
a ground state average free energy density

F =
1

2
UBBnB

2 + UBFnenB +
3

5
�F,ene − �ene − �BnB,

where ne �nB� is the average density of fermions �bosons�,
and �F,e is the Fermi energy of the excess fermions. Using
the positivity of the Bose-Fermi compressibility matrix
��,	=��� /�n	, where � ,	=e ,B, one can show that bosons
and fermions phase separate when the condition

ne �
4�

3
� �

me
�3�UBB

UBF
2 �3

�34�

is satisfied �53�.
From the relation above, the knowledge of the exact val-

ues of the boson-boson and boson-fermion interactions UBB
=4�aBB/mB and UBF=4�aBF/mBF in the strong attraction
limit allows us to construct accurate phase boundaries in this
region. However, the exact theoretical values of aBB and aBF
for arbitrary mass ratios are not known. The aBB values were
reported in the literature �47� as a function of mass aniso-
tropy, but the values of aBF have not been computed to our
knowledge. Thus, we use our results obtained in the Born
approximation values for the case of unequal masses. For
equal mass mixtures, the exact theoretical values are known
�aBB
0.60aF and aBF
1.18aF� �47–50�, but lead to a very
small change of the location of the phase boundary between

0

0.2

0.4

0.6

0 0.25 0.5 0.75 1

v

mr

FIG. 6. Sound velocity v �in units of vF,+=kF,+ /m+� versus mr

for 1 / �kF,+aF�=−1 �solid line�, 1 / �kF,+aF�=0 �solid squares�, and
1/ �kF,+aF�=1 �hollow squares�. Here, populations are equal �P
=0�.
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phase separation and uniform �mixed phase� towards the
BEC side.

Using the boson-boson and boson-fermion interactions
UBB=4�aBB/mB and UBF=4�aBF/mBF, the scattering pa-
rameters indicated in Eqs. �26� and �27�, as well as the rela-
tions 
P
=ne /n, n=n↑+n↓=kF,+

3 / �3�2� and nB= �n−ne� /2,
then phase separation occurs when


P
 �
1

2
��

8
�3�m+/me

kF,+aF
�3

. �35�

Here e labels excess type of fermions, me is the mass of the
unpaired fermions, and m+ is twice the reduced mass of the ↑
and ↓ fermions. This expression is quantitatively correct in
its region of validity, i.e., when 1/ �kF,+aF��1, however, it
still gives semiquantitative results for 1 / �kF,+aF� 2. For in-
stance, in the case of an equal mass mixture, this expression
would suggest that the resulting Bose-Fermi mixture is uni-
form when 1/ �kF,+aF��2.5 for 
P
→0.5, and when
1/ �kF,+aF��3.2 for 
P
→1. From our numerical calculations
we find 1/ �kF,+aF��1.9 for 
P
→0.5, and when 1/ �kF,+aF�
�2.4 for 
P
→1.

The analytic expression given in Eq. �35� may be used as
a guide for the boundary between phase separation �nonuni-
form� and the mixed phase �uniform� for any mixture of
fermions. In particular, this relation serves as an estimator for
the phase boundary for future experiments performed in the
BEC limit of unequal mass fermions with population imbal-
ance. This relation can be rewritten in terms of the mass ratio
mr=m↑ /m↓ by realizing that the ratio m+ /me=2mr / �1+mr�
when ↓ �heavier� fermions are in excess, and that m+ /me
=2/ �1+mr� when ↑ �lighter� fermions are in excess. Thus,
when ↓ �heavier� fermions are in excess, the critical polar-
ization below which phase separation �nonuniform phase�
occurs is

Pc,↓
�1� = −

1

2
� �

4kF,+aF
�3� mr

1 + mr
�3

, �36�

while, when ↑ �lighter� fermions are in excess, the critical
polarization above which phase separation �nonuniform
phase� occurs is

Pc,↑
�1� = +

1

2
� �

4kF,+aF
�3� 1

1 + mr
�3

. �37�

Notice that in the equal mass �mr=1� case Pc,↓
�1� =−Pc,↑

�1� as
required by symmetry.

In addition, we can also describe analytically a finer struc-
ture of nonuniform �phase separated� superfluid phases deep
into the BEC regime. For a weakly interacting Bose-Fermi
mixture, the phase separated region consists of two phases:
PS�1�, where there is phase separation between pure fermi-
ons and pure bosons �tightly paired fermions�, and PS�2�,
where there is phase separation between pure fermions and a
mixture of fermions and bosons �tightly bound fermions�.
Following the method of Ref. �53�, we obtain analytically the
condition

ne �
1125�4

128me
4

UBB
3

UBF
6 −

5

4

UBB

UBF
nB, �38�

for the transition from the PS�2� to the PS�1� phase.
Using our effective boson-boson �UBB� and effective

boson-fermion UBF interactions, we can rewrite this relation
as


P
 �
8

11
�15�

64
�3�m+/me

kF,+aF
�3

−
5

11
, �39�

where we used nB= �n−ne� /2 as the boson density and 
P

=ne /n. These phase boundaries can also be expressed in
terms of mr and 1/ �kF,+aF� as follows. When ↓ �heavier�
fermions are in excess, the critical polarization below which
the transition from PS�2� to PS�1� occurs is

Pc,↓
�2� = −

1

11
� 15�

16kF,+aF
�3� mr

1 + mr
�3

+
5

11
, �40�

while, when ↑ �lighter� fermions are in excess, the critical
polarization above which the transition from PS�2� to PS�1�
occurs is

Pc,↑
�2� = +

1

11
� 15�

16kF,+aF
�3� 1

1 + mr
�3

−
5

11
. �41�

Notice that in the equal mass �mr=1� case Pc,↓
�2� =−Pc,↑

�2� as
required by symmetry.

In Fig. 7, we the show phase diagram of uniform and
non-uniform superfluidity as a function of population imbal-
ance 
P
 and �m+ /me� / �kF,+aF�, which is strictly valid in the
BEC limit when 1/ �kF,+aF��1. In this figure, we show the
uniform superfluid �U� phase where tightly paired and un-
paired fermions coexist, and phase separated �nonuniform�
superfluid �PS� phases. The PS�1� region labels phase sepa-
ration between pure unpaired �excess� and pure tightly paired
fermions �bosons�, while the PS�2� region labels phase sepa-
ration between pure unpaired �excess� fermions and a mix-
ture of unpaired and tightly paired fermions. The phase

0

0.25

0.5

0.75

1

0 1 2 3 4

|P
|

(m+/me)/(kF,+aF)

U

PS(2)

PS(1)

FIG. 7. Phase diagram of 
P
= 
N↑−N↓
 / �N↑+N↓� versus
�m+ /me� / �kF,+aF� in the BEC limit. We show the uniform superfluid
�U� phase where paired and unpaired fermions coexist, and the
phase separated nonuniform superfluid phases PS�1� and PS�2�. The
PS�1� region labels phase separation between pure unpaired �ex-
cess� and pure tightly paired fermions �bosons�, while the PS�2�
region labels phase separation between pure unpaired �excess� fer-
mions and a mixture of unpaired and tightly paired fermions.
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boundary between U and PS�2� phases is determined from
Eq. �35�, and the phase boundary between PS�2� and PS�1�
phases is determined from Eq. �39�. For a fixed mass aniso-
tropy mr, when 
P
 is large, we find phase transitions from
PS�1� to PS�2� to U phase as the interaction strength
1/ �kF,+aF� increases. However, when 
P
 is small, we find a
direct phase transition from the PS�1� to the U phase as
1/ �kF,+aF� increases.

In Fig. 8, we show the phase diagram of population im-
balance P versus mass anisotropy mr=m↑ /m↓ in the BEC
limit when �a� 1/ �kF,+aF�=3 and �b� 1/ �kF,+aF�=4. We indi-
cate the uniform superfluid �U� phase where paired and un-
paired fermion coexist, and phase separated nonuniform su-
perfluid phases PS�1� and PS�2�. The phase boundary
between U and PS�2� phases is determined from Eq. �36�
when P�0, and from Eq. �37� when P�0. In addition, the
phase boundary between PS�2� and PS�1� phases is deter-
mined from Eq. �40� when P�0, and PS�1� phase does not
exist when P�0. Notice that these phase diagrams are very
similar to the one given in Fig. 5�c�, with the added refine-
ment of the nonuniform superfluid phases PS�1� and PS�2�.
For a fixed interaction strength 1/ �kF,+aF�, when 
P
 is large,
we find phase transitions from PS�1� to PS�2� to U phase as
the mass anisotropy mr increases. However, when 
P
 is
small, we find a phase transition from the PS�1� to the U
phase as mr increases.

To summarize, we analyzed analytically the structure of
nonuniform �phase separated� superfluid phases in the BEC
regime. However to understand experiments with ultracold
atoms, one needs also to consider the trapping potential,
which is discussed next.

D. Effects of trapping potential

For simplicity, we approximate the trapping potential by
an isotropic harmonic function where the potential energy is
V��x�=��
x
2 /2 such that the local chemical potentials are
given by

���x� = �� −
1

2
��
x
2. �42�

Here, �� is proportional to the trapping frequency of the �
type fermion, which is typically different for each kind of
atom. In general, it is quite difficult to make completely iso-
tropic traps and harmonic traps are typically elongated such
that V��x�=��,xx

2 /2+��,yy
2 /2+��,zz

2 /2 with ��,x=��,y

���,z. However, the same qualitative behavior occurs in the
elongated or spherically symmetric �isotropic� traps, and we
confine ourselves for simplicity to the isotropic case. When
experimental data becomes available and all the numbers are
known, one can revisit this problem for detailed comparison
between theory and experiment.

Again, we confine our discussion to the BEC regime, and
obtain the equation of motion for a dilute mixture of weakly
interacting bosons and fermions at zero temperature

− �B��x� + �UBB
��x�
2 + UBFne�x����x� + �V↑�x�

+ V↓�x����x� −
�2��x�

2mB
= i

���x�
�t

, �43�

where the spatial density of unpaired fermions is

ne�x� = nex�x� − UBF
�nex�x�

��e

��x�
2. �44�

These results are quite similar to the case of equal masses
�18�. Notice that setting V�=0 reduces the problem to the
free space case discussed in the previous subsection. Here,
ne�x�= �1/V��knf��k,e−�e�x��, where nf���=1/ �exp�	��
+1� is the Fermi distribution. In the BEC limit when aF

→0+, we can approximate the local density of unpaired fer-
mions as

ne�x� 

1

V
�
k

nf��k,e − �e�x� + UBF
��x�
2� , �45�

which at zero temperature leads to

ne�x� =
1

6�2 �2me��e�x� − UBFnB�x���3/2. �46�

Notice that the density of bosons at zero temperature is given
by nB�x�= 
��x�
2. Therefore, we need to solve Eq. �43� self-
consistently with the number of unpaired �excess� Ne
=�dx ne�x� and paired �bound� Nbf=2�dx nB�x� fermions
such that the total number of fermions is N=Ne+Nbf.

Next we solve the self-consistency equations for a 6Li and
40K mixture �mr=0.15� within the Thomas-Fermi �TF� ap-
proximation, where the kinetic energy term in Eq. �43� is
neglected. This leads to coupled equations for the density of
paired and unpaired fermions
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FIG. 8. Phase diagram of P= �N↑−N↓� / �N↑+N↓� versus mr

=m↑ /m↓ in the BEC limit when �a� 1/ �kF,+aF�=3 and �b�
1/ �kF,+aF�=4. We show the uniform superfluid �U� phase where
paired and unpaired fermion coexist, and phase separated nonuni-
form superfluid phases PS�1� and PS�2�.
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nB�x� 

�B − V↑�x� − V↓�x� − UBFne�x�

UBB
. �47�

In our numerical analysis, we choose for convenience �↑
=�↓=�, 1 / �kF,+aF�=2 and P=0.5 such that N↑=3N↓. How-
ever, in a more realistic case �↑��↓=�, since atoms with
different masses may experience different trapping potentials
due to their different polarizabilities.

In Fig. 9�a�, we show the density n��
x
� of � type fer-
mion �in units of kF,+

3 � as a function of 
x
 / 
x
TF, where 
x
TF
is the TF radius defined by �F,+=kF,+

2 / �2m+�=�
x
TF
2 /2. We

also scale the total number of fermions with N
=kF,+

3 
x
TF
3 /24. We find that the density of ↑ and ↓ fermions

are similar close to the center of the trapping potential, while
most of the excess fermions are close to the edges. In Fig.
9�b�, we show the density of bosons nB�
x
�=n↓�
x
� as well
as unpaired fermions ne�
x
�=n↑�
x
�−n↓�
x
�. In both figures,
we find a clear indication of phase separation between paired
and unpaired fermions. In Fig. 9�b�, we also compare the
density of bosons nB�
x
� for the same parameters when the
populations are balanced N↑=N↓. When P�0, the total local
density of fermions at the center of the trap is reduced in
comparison to the P=0 case for the same fermion scattering
parameter, since the unpaired fermions are pushed away
from the center of the trap due to UBF. These findings for
unequal masses are similar to previous results on equal mass
mixtures �18–23�. However, we find three regions within the
TF approximation and parameters used: �a� bosons only for

x
 / 
x
TF�0.23; �b� bosons and excess fermions for 0.23

� 
x
 / 
x
TF�0.45; and �c� excess fermions only for

x
 / 
x
TF�0.45.

Lastly, for the parameters used, the harmonic trap tends to
favor phase separation into a PS�1�-type phase where one has
almost pure fermion and almost pure boson regions. In a
harmonic trap it may be still possible to realize the PS�2�-
type phase where one has an almost pure fermion region and
an almost pure mixed phase of bosons and fermions, pro-
vided that good control over the trapping potentials is pos-
sible. Having concluded our discussion of the effects of a
trapping potential, we present next the summary of our con-
clusions.

V. CONCLUSIONS

In summary, we analyzed the phase diagram of ultra cold
mixtures of two types of fermions �e.g., 6Li and 40K; 6Li and
87Sr; or 40K and 87Sr� from the BCS to the BEC limit as a
function of scattering parameter, population imbalance, and
mass anisotropy. We found that the zero temperature phase
diagram of population imbalance versus scattering parameter
is asymmetric for unequal masses, having a larger stability
region for uniform superfluidity when the lighter fermions
are in excess. This result is in sharp contrast with the sym-
metric phase diagram for equal masses.

In addition, we discussed topological quantum phase tran-
sitions associated with the disappearance or appearance of
momentum space regions of zero quasiparticle energies
when either the scattering parameter or population imbalance
are changed. These quantum phase transitions are reflected in
the momentum distribution as well as in thermodynamic
properties, however they seem to lie in the nonuniform re-
gion of the phase diagram, but may survive at the center of a
harmonic trap �25�. Furthermore this phase may be observ-
able at finite temperatures in trapped systems �43�, or in op-
tical lattices �44�.

We also analyzed Gaussian fluctuations around the saddle
point order parameter both at finite and zero temperatures.
Near the critical temperature, we derived the Ginzburg-
Landau equation, and showed that it describes a dilute mix-
ture of composite bosons �tightly bound fermions� and ex-
cess �unpaired� fermions in the BEC limit. At zero
temperature, we obtained analytically the dispersion of col-
lective excitations in the BCS and BEC limits, and showed
numerically the evolution from the BCS to BEC regimes in
the case of zero population imbalance. In addition, we dis-
cussed analytically how phase separation between paired fer-
mions and excess fermions emerges analytically at zero tem-
perature in the BEC limit. Lastly, we discussed the effects of
a harmonic trapping potential, and concluded that phase
separation between paired and unpaired fermions is favored
even in the BEC limit.
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FIG. 9. �a� Density n��
x
� of fermions �in units of kF,+
3 �, and �b�

density of bosons nB�
x
� �hollow circles� and density of unpaired
fermions ne�
x
� �solid circles� versus trap radius 
x
 / 
x
TF. Here P
=0.5 and 1/ �kF,+aF�=2. In �b�, we also compare nB�
x
� for P=0
when 1/ �kF,+aF�=2 �crosses�.
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APPENDIX A: INVERSE FLUCTUATION PROPAGATOR

In this appendix, we present explicitly the elements of the
inverse fluctuation propagator F−1�q�. The diagonal matrix
element of F−1�q� is given by

F1,1
−1 =

1

g
+ �

k
�vq/2−k

2 uq/2+k
2 nf�Eq/2−k,1� − nf�Eq/2+k,1�

iv� + Eq/2−k,1 − Eq/2+k,1

− uq/2−k
2 vq/2+k

2 nf�Eq/2−k,2� − nf�Eq/2+k,2�
iv� − Eq/2−k,2 + Eq/2+k,2

+ uq/2+k
2 uq/2−k

2 1 − nf�Eq/2+k,1� − nf�Eq/2−k,2�
iv� − Eq/2+k,1 − Eq/2−k,2

− vq/2+k
2 vq/2−k

2 1 − nf�Eq/2−k,1� − nf�Eq/2+k,2�
iv� + Eq/2−k,1 + Eq/2+k,2

�
�k
2

�A1�

and the off-diagonal matrix element of F−1�q� is given by

F1,2
−1 = �

k
uq/2+kvq/2+kuq/2−kvq/2−k�nf�Eq/2−k,1� − nf�Eq/2+k,1�

iv� + Eq/2−k,1 − Eq/2+k,1

−
nf�Eq/2−k,2� − nf�Eq/2+k,2�
iv� − Eq/2−k,2 + Eq/2+k,2

−
1 − nf�Eq/2+k,1� − nf�Eq/2−k,2�

iv� − Eq/2+k,1 − Eq/2−k,2

+
1 − nf�Eq/2−k,1� − nf�Eq/2+k,2�

iv� + Eq/2−k,1 + Eq/2+k,2
�
�k
2, �A2�

where uk
2 = �1+�k,+ /Ek,+� /2 and vk

2 = �1−�k,+ /Ek,+� /2, and
nf�x�=1/ �exp�	x�+1� is the Fermi distribution.

For the s-wave case considered in this paper, a well de-
fined low frequency and long wavelength expansion is pos-
sible in two limits: �I� At zero temperature �T=0� when
population imbalance is zero P=0 such that the Fermi func-
tions in Eqs. �A1� and �A2� vanish, and �II� near the critical
temperature �T
Tc� where 
�0
→0 such that vq/2±k �when
�q/2±k,+�0� and uq/2±k �when �q/2±k,+�0� in Eqs. �A1� and
�A2� vanish. Other than these two limits, there is Landau
damping which causes the collective modes to decay into the
two quasiparticle continuum.

APPENDIX B: EXPANSION COEFFICIENTS AT T=Tc

In this appendix, we derive the coefficients a ,b ,cij ,d of
the time dependent Ginzburg-Landau theory described in Eq.
�23�. We perform a small q and iv�→w+ i0+ expansion of
the effective action near the critical temperature �T
Tc�,
where we assume that the fluctuation field ��x , t� is a slowly
varying function of x and t. The zeroth order coefficient
L−1�0,0� is given by

a =
1

g
− �

k

Xk,+

2�k,+

�k
2, �B1�

where Xk,±= �Xk,↑±Xk,↓� /2 and Xk,�=tanh�	�k,� /2�. The sec-
ond order coefficient �2L−1�q ,0� / ��qi�qj� evaluated at q=0
is given by

ci,j = �
k
��Xk,↑Yk,↑

m↑
2 +

Xk,↓Yk,↓

m↓
2 �	2kikj

32�k,+

+ �2kikjC−

m−�k,+
− �i,jC+� 	

16�k,+
+ � �i,j

2m+
−

kikj

m−
2�k,+

� Xk,+

4�k,+
2 	

!
�k
2, �B2�

where C±= �Yk,↑ /m↑±Yk,↓ /m↓� /2 and Yk,�=sech2�	�k,� /2�.
Here, �i,j is the Kronecker delta.

The coefficient of the fourth order term is approximated
by its value at q=0,

b =
1

	
�

p

G↑,↑
sp �p�G↓,↓

sp �p�G↑,↑
sp �p�G↓,↓

sp �p�
�k
4

=
1

	
�
k,w�


�k
4

�iw� − �k,↑�2�iw� + �k,↓�2 �B3�

and evaluation of the fermionic Matsubara frequency leads
to

b = �
k
� Xk,+

4�k,+
3 −

	Yk,+

8�k,+
2 �
�k
4. �B4�

The time-dependent coefficient has real and imaginary parts,
and for the s-wave case is given by

d = lim
w→0

�
k

Xk,+� 1

4�k,+
2 + i�

��2�k,+ − w�
2w

	
�k
2, �B5�

where ��x� is the Delta function.

APPENDIX C: EXPANSION COEFFICIENTS AT T=0

In this appendix, we perform a small q and iv�→w+ i0+

expansion of the effective action at zero temperature �T=0�.
From the rotated fluctuation matrix M−1 expressed in the
amplitude-phase basis, we can obtain the expansion coeffi-
cients necessary to calculate the collective modes. We calcu-
late the coefficients only for the case of zero population im-
balance P=0, as extra care is needed when P�0 due to
Landau damping. In the long wavelength �
q
→0�, and low
frequency �w→0� limits the condition �w ,qiqj /2m+�
�min�2Ek,+�, is used.

The coefficients necessary to obtain the matrix element
M�,�

−1 �q� are

A = �
k


�0
2

2Ek,+
3 �C1�

corresponding to the �q=0, w=0� term,

C = �
k
��k,+

Ek,+
2 − 3
�0
2

8m+Ek,+
5 − �Ek,+

2 − 10
�0
2

m+
2 +

10
�0
4

m+
2Ek,+

2

+
Ek,+

2 − 
�0
2

m−
2 � k2

24Ek,+
5 	 �C2�

corresponding to the 
q
2 term, and
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D = �
k

Ek,+
2 − 
�0
2

8Ek,+
5 �C3�

corresponding to the w2 term.
The coefficients necessary to obtain the matrix element

M�,�
−1 �q� are

Q = �
k
� �k,+

8m+Ek,+
3 − �Ek,+

2 − 3
�0
2

m+
2 +

Ek,+
2

m−
2 � k2

24Ek,+
5 	

�C4�

corresponding to the 
q
2 term, and

R = �
k

1

8Ek,+
3 �C5�

corresponding to the w2 term.
The coefficients necessary to obtain the matrix element

M�,�
−1 �q� is

B = �
k

�k,+

4Ek,+
3 �C6�

corresponding to the w term. These coefficients can be evalu-
ated in the BCS and BEC limits, and are given in Sec. IV B
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