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School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

(Received 19 December 2006; published 23 August 2007)

The ground state phase diagram of fermion mixtures in optical lattices is analyzed as a function of
interaction strength, fermion filling factor, and tunneling parameters. In addition to standard superfluid,
phase-separated or coexisting superfluid–excess-fermion phases found in homogeneous or harmonically
trapped systems, fermions in optical lattices have several insulating phases, including a molecular Bose-
Mott insulator (BMI), a Fermi-Pauli (band) insulator (FPI), a phase-separated BMI-FPI mixture or a Bose-
Fermi checkerboard (BFC). The molecular BMI phase is the fermion mixture counterpart of the atomic
BMI found in atomic Bose systems, the BFC or BMI-FPI phases exist in Bose-Fermi mixtures, and lastly
the FPI phase is particular to the Fermi nature of the constituent atoms of the mixture.
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Ultracold atoms in optical lattices are ideal systems to
study novel condensed matter phases. The study of Bose
atoms in optical lattices has revealed (in addition to super-
fluid phases) an atomic Bose-Mott insulator (BMI) phase
[1]. Even though great success was achieved in cooling and
studying Bose atoms in optical traps, it was not until very
recently that Fermi atoms (mixtures of two-hyperfine
states) [2] or mixtures of Bose and Fermi atoms were
successfully loaded into optical lattices [3]. In addition,
several groups around the world are attempting to create
mixtures of two types of fermions, as it was achieved with
two types of bosons [4].

In a very recent paper, the MIT group produced prelimi-
nary experimental evidence for superfluid and insulating
phases of ultracold 6Li atoms in optical lattices [2]. This
last experiment overcame some earlier difficulties of pro-
ducing Fermi superfluids from an atomic Fermi gas or from
molecules of Fermi atoms in optical lattices [5–7]. Unlike
in homogeneous or harmonically trapped systems, optical
lattices offer an enormous degree of control since phase
diagrams may be studied as a function of a tunneling
matrix element t� between adjacent lattice sites, onsite
atom-atom interactions g, filling fraction n�, lattice dimen-
sionality D and tunneling anisotropy � � t#=t", where �
labels the type of fermion state.

The research explosion that followed successful loading
of bosons in optical lattices and the observation of Bose-
Mott phases [8] almost guarantees a priori another re-
search explosion following successful loading of fermions
in optical lattices and the observation of superfluid and
insulating phases [2], in particular, because fermions are
more ‘‘fundamental’’ particles of atomic and condensed
matter systems in the sense that they can lead to Bose-like
behavior (Bose molecules made of two-fermions) and to
combined Bose-Fermi behavior when there are Bose mole-
cules and unbound excess fermions. Thus, the resulting
quantum phases of Fermi mixtures is much richer than
those present in systems consisting of atomic bosons or
Bose-Fermi mixtures in optical lattices. Arguably, mix-
tures of two-hyperfine states of the same type of fermion

or mixtures of two different types of fermions loaded into
optical lattices are one of the next frontiers in ultracold
atom research because of their greater tunability and the
richness of their phase diagrams.

Our main results are as follows. Using an attractive
Fermi-Hubbard Hamiltonian to describe fermion mixtures
in optical lattices, we obtain the ground state phase dia-
gram containing normal, phase-separated, and coexisting
superfluid–excess-fermion phases, and insulating regions
as a function of interaction strength and density of fermi-
ons. We show that when fermion-fermion (Bose) mole-
cules are formed, they interact with each other strongly and
repulsively. Furthermore, when there are excess fermions,
the resulting system corresponds to a strongly interacting
(repulsive) mixture of bosons and fermions in the molecu-
lar limit, in sharp contrast with homogenous systems where
the resulting Bose-Fermi mixtures are weakly interacting
[9]. This result is a direct manifestation of the Pauli exclu-
sion principle in the lattice case since each Bose molecule
consists of two fermions, and more than one identical
fermion on the same lattice site is not allowed. Lastly,
several insulating phases appear in the strong attraction
limit depending on the fermion filling fractions. We find a
molecular Bose-Mott insulator (superfluid) when the mo-
lecular filling fraction is equal to (less than) one, and when
the fermion filling fractions are identical. This is in quali-
tative agreement with the MIT experiment [2]. Fur-
thermore, when the filling fraction of one type of fermion
is one and the filling fraction of the other is one-half
(corresponding to molecular-boson and excess-fermion
filling fractions of one-half), we also find either a phase-
separated state consisting of a Fermi-Pauli insulator (FPI)
of the excess fermions and a molecular Bose-Mott insula-
tor (BMI) or a Bose-Fermi checkerboard (BFC) phase
depending on the tunneling anisotropy �. Finally, we
propose that all these superfluid and insulating phases
can be observed in mixtures of fermions loaded into optical
lattices.

Lattice Hamiltonian.—To describe mixtures of fermions
loaded into optical lattices, we start with a single-band
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Fermi-Hubbard Hamiltonian in momentum space

 H �
X
k;�

�k;�a
y
k;�ak;� �

g
2

X
k;k0;q;�

byk;q;�bk0;q;�; (1)

with an on-site attractive interaction g > 0. Here, the pseu-
dospin � labels the trapped hyperfine states of a given
species of fermions or labels different types of fermions
in a two-species mixture, where ayk;� is the creation opera-
tor and byk;q;� � ayk�q=2;�a

y
�k�q=2;��. In addition, �k;� �

�k;� � ~�� describes the nearest neighbor tight-binding
dispersion �k;� � 2t��k with ~�� � �� � VH;� and �k �P
i�1� cos�kiac��, where t� is the tunneling matrix ele-

ment, �� is the chemical potential, VH;� is a possible
Hartree energy shift, and ac is the lattice spacing. Notice
that we allow fermions to be of different species through t�
and to have different populations controlled by indepen-
dent ~��. Furthermore, unlike recent work of BCS pairing
of fermions in optical lattices [10,11], we discuss the
evolution from BCS to BEC pairing and the emergence
of insulating phases. We ignore multiband effects since a
single-band Hamiltonian may be sufficient to describe the
evolution from BCS to BEC physics in optical lattices
[12,13]. However, these effects can be easily incorporated
into our theory.

For the Hamiltonian given in Eq. (1), the saddle point
order parameter equation is given by

 

1

g
�

1

M

X
k

1� f�Ek;"� � f�Ek;#�

2Ek;�
; (2)

where M is the number of lattice sites, f�x� �
1=�exp�x=T� � 1� is the Fermi function, Ek;� � ��2

k;� �

j�0j
2�1=2 � s��k;� is the quasiparticle energy when s" � 1

or the negative of the quasihole energy when s# � �1, and
Ek;� � �Ek;" � Ek;#�=2. Here, �0 is the order parameter
and �k;� � �k;� � ~��, where �k;� � 2t��k with t� �
�t" � t#�=2 and ~�� � � ~�" � ~�#�=2. Notice that the sym-
metry between quasiparticles and quasiholes is broken
when �k;� � 0. The order parameter equation has to be
solved self-consistently with number equations

 N� �
X
k

�jukj
2f�Ek;�� � jvkj

2f��Ek;����; (3)

where jukj
2 � �1� �k;�=Ek;��=2 and jvkj

2 �
�1� �k;�=Ek;��=2. The number of �-type fermions per
lattice site is given by 0 	 n� � N�=M 	 1. Thus, when
n" � n#, we need to solve all three self-consistency equa-
tions since population imbalance is achieved when either
Ek;" or Ek;# is negative in some regions of momentum
space, as discussed next.

Ground state saddle point phase diagrams.—To obtain
ground state phase diagrams, we solve Eqs. (2) and (3) as a
function of interaction strength g, population imbalance
�1 	 P � �n" � n#�=�n" � n#� 	 1, and total filling frac-
tion 0 	 F � �n" � n#�=2 	 1, for two sets of tunneling
ratios � � t#=t". The case of � � 1 (t� � t) is shown in
Fig. 1, and the case of� � 0:15 is not shown. While � � 1

corresponds to one-species (two-hyperfine-state) mixture
such as 6Li or 40K, � � 0:15 corresponds to a two-species
mixture (one-hyperfine state of each type of atom) such as
6Li and 40K.

In the phase diagrams shown in Fig. 1, we indicate the
regions of normal (N) phase where j�0j � 0 and group
together the regions of coexistence of superfluidity and
excess fermions (CSE) and/or phase separation (PS),
where j�0j � 0. When F
 1, the phase diagrams are
similar to the homogenous case [14,15], and the P versus
F phase diagram is symmetric for equal tunnelings as
shown in Fig. 1 and is asymmetric for unequal tunnelings
having a smaller normal region when the lighter band mass
fermions are in excess (not shown) [16]. Here, we do not
discuss separately the CSE and PS regions since they have
already been discussed in homogeneous and harmonically
trapped systems [14,15] and experimentally observed
[17,18], but we make two remarks. First, the phase diagram
characterized by normal, non-normal (CSE or PS), and
insulating regions may be explored experimentally by
tuning the ratio g=t�, total filling fraction F, and popula-
tion imbalance P as done in harmonic traps [17,18].
Second, topological phases characterized by the number
(I and II) of simply connected zero-energy surfaces of Ek;�
may lie in the stable region of CSE, unlike in the homoge-
neous case where the topological phase II always lies in the
phase-separated region for all parameter space [19].

We would like to emphasize that the saddle point ap-
proximation only tells us that the system is either super-
fluid (j�0j � 0) or normal (j�0j � 0), but fails to tells us
about insulating phases. Thus, first, we present a physical
discussion of the emergence of insulating phases, and then
show that these phases indeed emerge from fluctuation
effects beyond the saddle point approximation.

Emergence of Insulating Phases.—Generally, lines AB
(0< n" < 1; n# � 0) and ED (n" � 0; 0< n# < 1) in Fig. 1
correspond to normal �-type Fermi gases for all interac-
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FIG. 1. (a) n" versus n#, and (b) P versus F diagrams for g �
5t and g � 10t. The normal regions (outside the ‘‘football’’) and
coexistence of superfluidity with excess fermions (CSE) and/or
phase separation (PS) (inside the football) are indicated. The
CSE/PS (normal) region expands (shrinks) with increasing at-
traction.
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tions, while points B (n" � 1, n# � 0) and D (n" � 0,
n# � 1) correspond to a Fermi-Pauli (band) insulator since
there is only one type of fermion in a fully occupied band.
Thus, the only option for additional fermions ( " in case B
and # in case D) is to start filling higher energy bands if the
optical potential supports it; otherwise, the extra fermions
are not trapped. For the case where no additional bands are
occupied, we label the corresponding phase diagram re-
gions as ‘‘Inaccessible’’ in Fig. 1(b) since either n" > 1 or
n# > 1 in these regions.

In addition, the population balanced line AC ends at the
special point C, where n" � n# � 1. This point is a Fermi-
Pauli (band) insulator for weak attraction since both fer-
mion bands are fully occupied, and a Bose-Mott Insulator
(BMI) in the strong attraction limit since at each lattice site
there is exactly one molecular boson (consisting of a pair
of " and # fermions) which has a strong repulsive onsite
interaction with any additional molecular boson due to the
Pauli exclusion principle.

Furthermore, for very weak fermion attraction, lines BC
(n" � 1, 0< n# < 1) and CD (0< n" < 1, n# � 1) corre-
spond essentially to a fully polarized ferromagnetic metal
(or half-metal), where only the fermion with filling fraction
less than one can move around. However, when the fer-
mion attraction is sufficiently strong, the lines BC and CD
must describe insulators, as molecular bosons and excess
fermions are strongly repulsive due to the Pauli exclusion
principle. The crosses in Fig. 1 at points n" � 1, n# � 1=2
or n" � 1=2, n# � 1 indicate the case where the molecular-
boson filling fraction nB � 1=2 and the excess-fermion
filling fraction is ne � 1=2. At these high symmetry points,
molecular bosons and excess fermions tend to segregate,
either producing a domain wall type of phase separation
with a molecular Bose-Mott insulator (BMI) and a Fermi-
Pauli insulator (FPI) region or a checkerboard phase of
alternating molecular bosons and excess fermions (BFC).
A schematic diagram of these two phases is shown in
Fig. 2(a).

Thus, the strong attraction limit in optical lattices brings
additional physics not captured at the saddle point and not

present in homogenous or purely harmonically trapped
systems, as discussed next.

Strong attraction (molecular) limit.—The emergence of
insulating phases in the strong attraction attraction limit
requires the simultaneous inclusion of spatial and temporal
fluctuations. Thus, first, we derive a time dependent
Ginzburg-Landau theory involving molecular bosons and
excess fermions near the critical temperature Tc of the
possible superfluid phase leading to �a� bj��x�j2 �
cr2=2� id�@=@t����x� � 0 in the x � �x; t� representa-
tion. Here, ��x� is the fluctuation of the order parameter
around its saddle point value j�0j � 0.

In the strong attraction (molecular) limit j ~��j �
j�bj�1� pe�=2� 2Dt�, we obtain a�a1�a2�
��2 ~����b�1�pe��=�g

2�1�pe���pe=�g�1�pe��, b�
b1�b2�2=�g3�1�pe�

2���@pe=@ ~�e�=�g
2�1�pe��, c �

4a2
ct"t#=�g

3�1� pe�
2�, and d � 1=�g2�1� pe��. Here,

�b � �g is the binding energy defined by 1=g �P
k1=�2�k;� � �b�, and e (� e) labels the excess (nonex-

cess) type of fermions and pe � jn" � n#j is the number of
unpaired fermions per lattice site.

Through the rescaling ��x� �
���
d
p

��x�, we obtain the
equation of motion for a mixture of bound pairs (molecular
bosons) and unpaired (excess) fermions
 

��B��x� � �UBBj��x�j
2 �UBFpe�x����x� �

r2��x�
2mB

� i
@��x�
@t

� 0; (4)

with pair chemical potential �B � �a1=d � 2 ~�� �
�b�1� pe�, mass mB � d=c � g=�4a2

ct"t#�, and
repulsive pair-pair UBB � b1a

3
c=d

2 � 2ga3
c and pair-

fermion UBF � a2a3
c=�dpe� � ga3

c interactions. This pro-
cedure also yields pe�x� � �a2=d� b2j��x�j2=d2�=UBF �
pe � ga3

c�@pe=@�e��1� pe�j��x�j2 
 0 which is the spa-
tial density of unpaired fermions. In contrast with the
homogeneous or harmonically trapped systems [9,19],
the boson-boson and boson-fermion interactions are
strongly repulsive due to the important role played by the
Pauli exclusion principle in the lattice, which is discussed
next.

Effective lattice Bose-Fermi action.—In the limit of
strong attractions between fermions g=t� � 1, we obtain
an effective Bose-Fermi lattice action

 SBF �
Z �

0
d�
�X

i

�fyi @�fi � b
y
i @�bi� �H

eff
BF

�
; (5)

where Heff
BF � KF � KB �HBF �HBB. Here, KF �

��F
P
if
y
i fi � tF

P
hi;jif

y
i fj is the kinetic part of the excess

fermions; KB � ��B
P
ib
y
i bi � tB

P
hi;jib

y
i bj is the kinetic

part of the molecular bosons; HBF � UBF
P
if
y
i fib

y
i bi is

the interaction between molecular bosons and excess fer-
mions; and HBB � UBB

P
ib
y
i bib

y
i bi is the interaction be-

tween two molecular bosons.
The total number of fermions is fixed by the constraint

n � 2nB � pe, where nB � NB=M is the number of bo-
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FIG. 2 (color online). (a) schematic diagram for the BFC phase
(top) and BMI/FPI phase separation (bottom), and (b) VBB versus
VBF phase diagram.
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sons per lattice site. The important parameters of this
effective Hamiltonian are the excess-fermion transfer en-
ergy tF � te, the molecular-boson transfer energy tB �
2t"t#=g, the boson-fermion effective repulsion UBF � g,
and the boson-boson effective repulsion UBB � 2g.
Notice that onsite interactions UBB and UBF become infi-
nite (hard-core) when g! 1 as a manifestation of the
Pauli exclusion principle. In addition, there are weak and
repulsive nearest neighbor boson-boson VBB / �t2" � t

2
# �=g

and boson-fermion VBF / t
2
e=g interactions. These repul-

sive interactions in optical lattices lead to several insulating
phases, depending on fermion filling fractions. In the fol-
lowing analysis, we discuss only two high symmetry cases:
(a) n" � n#, and (b) n" � 1 and n# � 1=2 or n" � 1=2 and
n# � 1.

In case (a) indicated as point C in Figs. 1 and 3, where
pe � 0, Heff

BF reduces to a molecular Bose-Hubbard
Hamiltonian with the molecular Bose filling fraction nB �
n=2 � F, thus leading to a molecular BMI when nB � 1
beyond a critical value of UBB. The critical value Uc

BB

needed to attain the BMI phase can be estimated using
the approach of Ref. [20] leading to Uc

BB � 3�3�
���
8
p
�tB,

which in terms of the underlying fermion parameters leads
to gc � 4:18

�������
t"t#
p

for the critical fermion interaction. This
value of gc is just a lower bound of the superfluid-to-
insulator (SI) transition, since Heff

BF is only valid in the g�
t� limit. This SI transition at gc has been observed in
recent experiments [2].

In case (b) indicated as crosses in Figs. 1 and 3, the
ground state of the effective molecular-boson–excess-
fermion system corresponds to either a checkerboard phase
of alternating bosons and fermions or to a phase-separated
BMI/FPI system depending on the ratio VBB=VBF. The
checkerboard phase shown in Fig. 2(a) is favored when
VBB > 2VBF, leading to the phase diagram of Fig. 2(b). At

the current level of approximation, we find that when t" �
t#, phase separation is always favored; however, when " ( # )
fermions are in excess, the checkerboard phase is favored
when t# >

���
3
p
t" (t# < t"=

���
3
p

). Therefore, phase separation
and checkerboard phases are achievable if the tunneling
ratio � can be controlled experimentally in optical lattices.
Notice that this checkerboard phase present in the lattice
case is completely absent in homogeneous or harmonically
trapped systems [14,15,19]. Furthermore, the entire lines
BC and CD in Fig. 3 represent insulating phases.

Conclusions.—We have analyzed the ground state phase
diagram of fermion mixtures in optical lattices as a func-
tion of interaction strength, fermion filling factor, and
tunneling parameters. In addition to standard superfluid,
phase-separated or coexisting superfluid–excess-fermion
phases, we have found several insulating phases including
a molecular Bose-Mott insulator (BMI), a Fermi-Pauli
(band) insulator (FPI), a phase-separated BMI/FPI mix-
ture, and a Bose-Fermi checkerboard phase depending on
fermion filling fractions. All these additional phases make
the physics of Fermi mixtures much richer than those of
atomic bosons or Bose-Fermi mixtures in optical lattices
and of harmonically trapped fermions. Lastly, the molecu-
lar BMI phase discussed here has been preliminarily ob-
served in a very recent MIT experiment [2], opening up the
experimental exploration of the rich phase diagram of
fermion mixtures in optical lattices in the near future.
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