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We analyze the possibility of a ferroelectric transition in heteronuclear molecules consisting of Bose-
Bose, Bose-Fermi, or Fermi-Fermi atom pairs. This transition is characterized by the appearance of a
spontaneous electric polarization below a critical temperature. We discuss the existence of a ferroelectric
Fermi liquid phase for Fermi molecules and the existence of a ferroelectric superfluid phase for Bose
molecules characterized by the coexistence of ferroelectric and superfluid orders. Lastly, we propose an
experiment to detect ferroelectric correlations through the observation of coherent dipole radiation pulses.
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Arguably one of the next frontiers in ultracold atomic
and molecular physics is the study of two-species atomic
mixtures [1–6] and ultracold heteronuclear molecules
composed of two-species alkali atoms such as KRb [7–
9], RbCs [10], and NaCs [11]. This frontier may be ad-
vanced through the use of Feshbach resonances which have
already been observed in mixtures of two-species alkali
atoms [12–14] and may also become a crucial tool for
tuning physical properties of heteronuclear systems.

Ultracold heteronuclear molecules made of Bose-Bose,
Bose-Fermi, or Fermi-Fermi atom pairs offer many new
opportunities compared to standard (Bose or Fermi) atomic
systems because of their additional degrees of freedom
[15–18]. For instance, when heteronuclear diatomic mole-
cules are formed from neutral atoms, electric charge is
transferred from one atom to the other leading to an electric
dipole moment jpj � qRe, where Re is the separation and
q is the effective charge transfer between constituent
atoms. These electric dipoles have equal magnitudes but
random orientations at high temperatures leading to a
vanishing average electric polarization. However, at low
temperatures, the dipoles may all point to a particular
direction producing a finite average electric polarization
density hPi, characteristic of a ferroelectric state. In addi-
tion, when ultracold heteronuclear molecules form a Bose-
Einstein condensate (BEC) a ferroelectric superfluid state
proposed in this Letter may be accessible experimentally.

Our main results are as follows. When heteronuclear
molecules are composite fermions (Bose-Fermi pairs), a
phase transition occurs, separating a paraelectric Fermi
liquid (PFL) from a ferroelectric Fermi liquid (FFL), as
shown in Fig. 1(a). These phases do not exist in standard
condensed matter systems, since all experimentally known
ferroelectrics are very good insulators [19] and are not
Fermi liquids. Furthermore, when heteronuclear molecules
are composite bosons (Bose-Bose or Fermi-Fermi pairs), a
ferroelectric transition with critical temperature TFE may
occur either above or below the BEC temperature TBEC.
When the molecular dipole moment and/or density are
sufficiently large, then TFE > TBEC leading to a paraelec-
tric Bose liquid (PBL) for T > TFE, a ferroelectric Bose

liquid (FBL) for TFE > T > TBEC, and to a ferroelectric
BEC (FBEC) for T < TBEC, as shown in Fig. 1(b). When
the molecular dipole moment and/or density are suffi-
ciently low then TFE < TBEC leading to a paraelectric
Bose liquid (PBL) for T > TBEC, a paraelectric BEC for
TBEC > T > TFE, and to a ferroelectric BEC (FBEC) for
T < TFE, as shown in Fig. 1(c). The FBEC phase corre-
sponds to a ferroelectric superfluid.

Electric dipole moment.—To describe all these phases of
ultracold heteronuclear (diatomic) molecules, we consider
first their internal degrees of freedom. At low temperatures,
the electronic and vibrational degrees of freedom are fro-
zen, and we can consider only molecular rotations de-
scribed by the Hamiltonian Hrot � L2=�MrR

2
e�, where L

is the angular momentum, Mr is twice the reduced mass,
and Re is the equilibrium size of the diatomic molecule.
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FIG. 1. Schematic phase diagram for polar (a) Fermi and (b),
(c) Bose molecules, where hPi and h�i are the corresponding
order parameters for ferroelectric order at TFE and for BEC at
TBEC, respectively.
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The eigenenergies of Hrot (in units of @ � 1) are E‘ �
‘�‘� 1�=�MrR

2
e� and the eigenfunctions are the spherical

harmonics Y‘;m‘
��;�� represented by the ket j‘;m‘i. The

characteristic rotational energy is Erot � E1 � E0 � !rot

with frequency !rot � 2=�MrR
2
e�. Since the dipole op-

erator is p̂ � qRe, then the expectation value
h‘;m‘jp̂j‘;m‘i � 0, for any eigenstate of Hrot. However,
when a static electric field is applied along the ẑ direction
the states j1;�1i and j1;�1i are eigenstates of HE �
Hrot � p̂zEz, and the new ground state j �i � aj0; 0i �
bj1;�1i (when only states with ‘ � 0, 1 are considered)
breaks parity and produces a finite average dipole moment
along the direction of the field pz � h �jp̂zj �i �
qRefa�b� ab�g=

���
3
p

.
Hamiltonian.—To construct a many-body Hamiltonian

for ultracold molecules (T � !rot), we average over inter-
nal degrees of freedom and write the center-of-mass-only
Hamiltonian density (with Einstein’s sum convention)

 H�r� �  ���r�K�r� ��r� �Hdd�r� �Hed�r�; (1)

describing a weakly interacting gas of dilute polar mole-
cules, where  ���r� creates a Bose (Fermi) molecule at
position r with pseudospin �, and n��r� �  ���r� ��r� is
the density operator. The first term in Eq. (1) is K�r� �
�r2=�2M� ��� V�r�, where M is the molecular mass,
� is the chemical potential, and V�r� is the trapping
potential. The second term is the density-density interac-
tion between Bose (Fermi) molecules Hdd�r� � �1=2��R
dr0	n�0 �r0�U�0��r; r0�n��r�
 with contact interaction

U�0��r; r0� � U��s�, where U � 4�a=M and ��s� is the
delta function with s � r� r0. Here, a is the scattering
length of the corresponding Bose (Fermi) molecules. The
third term is the electric dipole-dipole interaction between
molecular dipoles at positions r and r0, Hed�r� �
��1=2�

R
dr0	P��r0�J���r; r0�P��r�
, where the vector

P�r� � p�r�
P
�n��r� is the polarization operator, and

p�r� is the molecular dipole moment at position r. The
electric dipole-dipole interaction is given by J�r; r0� �
p��r�J���r; r0�p��r0�, where f�;�g � f1; 2; 3g label the
vector components, and J���r; r0� � �3s�s�=jsj2 �
��;��=�4�"0jsj3� with ��;� being the Kronecker delta.

Electric polarization.—Within the Hartree-Fock ap-
proximation, the Hamiltonian density reduces to H0�r� �
K�r� �Un0�r� �

R
dr0p��r�J���r; r0�P0��r0�, where the

electric polarization density is P0�r� � p�r�n0�r�, with
n0�r� �

P
�n0;��r� being the local density of Bose

(Fermi) molecules at r. The average polarization hPi �R
drP0�r�=Vc is

 hPi �
1

Vc

Z
drp�r�

X
i;�

j�i�r�j2f	�
i�; (2)

where Vc is the volume, �i�r� and 
i are eigenfunctions
and eigenvalues ofH0�r�, and f	�
i� � 1=�e�
i � 	� is the
Bose (Fermi) distribution for Bose (Fermi) molecules
when 	 � 1 (� 1). The solution of Eq. (2) is nontrivial;

however, analytical insight can be gained for homogenous
systems where V�r� � 0 and P0�r� � P0 is independent of
r. We discuss the homogeneous case first and then analyze
the case of a harmonic trap.

Ferroelectric critical temperature.—In the ferroelectric
state, all molecular dipoles are pointing along the same
direction m̂ such that p�r� � p � jpjm̂ and P0 � jP0jm̂.
The critical temperature TFE for the ferroelectric transition
is found from the slope of Eq. (2) with respect to P0

evaluated at P0 � 0, leading to

 1� ~J�q! 0��@N=@��T � 0; (3)

from which TFE can be calculated. Here, ~J�q� with q �
k� k0 is the Fourier transform of J�s�, and N is the
number of Bose (Fermi) molecules. Using the Kac pa-
rameter �0 as a cutoff for short distances (jsj< 1=�0)
leads to ~J�q� � p�~J���k;k0�p�, where ~J���k;k0� �
�3q�q�=jqj2 � ��;���sin~q=~q3 � cos~q=~q2�="0 with ~q �
jqj=�0. Thus, we obtain an implicit relation for the TFE

 1� 2jpj2��TFE�n2=�3"0� � 0; (4)

in terms of the molecular density n � N=Vc and the iso-
thermal compressibility ��T� � �1=n2��@n=@��T .

The ferroelectric instability is accompanied by a di-
vergence of the dielectric function in the long-wavelength
and low-frequency limit. Using linear response theory,
the dielectric function "�q; iwn� can be related to the
density-density correlation function C�q;
�� hT
n̂�q;
��
n̂��q;0�i and to ~J�q� via 1="�q; iwn� � 1� 	~J�q�=Vc
�R1=T

0 d
eiwn
C�q; 
�, where n̂�q; 
� is the density operator.
In the long-wavelength and low-frequency limit, C�q; 
� is
directly related to ��T� via the compressibility sum rule
[20]. Therefore, a divergent dielectric function occurs
when "�q! 0; iwn ! 0� � 0 leading to 1� ~J�q! 0��
�@N=@��T � 0, which is identical to Eq. (3). This relation
can be applied to both Bose and Fermi systems. Next, we
discuss TFE for a weakly interacting (a� �) and dilute
(na3 � 1) gas of Bose and Fermi molecules, where a is
the scattering and � is the thermal length.

Fermi molecules.—As a first application of Eq. (4),
we analyze TFE for a weakly interacting gas of Fermi
molecules at any T. The molecular density is given by
n � 2F3=2�z�	1� 2F1=2�z�a=�F
=�

3
F, where �F �

	2�=�MT�
1=2 is the thermal length and leads to ��T� �
	F1=2�z�=F3=2�z� � 2F�1=2�z�a=�F
=�nT�, where 0 � z �
exp���� � 1 is the fugacity and F��z� � 	1=����
�R
1
0 x

��1dx=	z�1ex � 1
 is the Fermi integral. Here, ����
is the Gamma function. Thus, we obtain

 TFE �
2jpj2

3"0

�
F1=2�zc�

F3=2�zc�
�

2a
�F
F�1=2�zc�

�
n; (5)

where zc � exp��=TFE�. Notice that, in the classical
(zc � 1) limit, Eq. (5) reduces to TFE � 2jpj2�1�
2zca=�F�n=�3"0�, which shows that TFE / n for a gas
of classical electric dipoles. The TFE for an ideal
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(noninteracting) gas of Fermi molecules can be obtained
by setting a � 0. For an ideal gas, when TFE is much
smaller than the Fermi energy 
F, we obtain TFE �

�2
���
3
p
=��
F	jpj2n=�"0
F� � 1
1=2, which is valid for

jpj2n=�"0
F�> 1 and 	jpj2n=�"0
F� � 1
1=2 � 1. For
T > TFE a PFL phase exists and for T < TFE a FFL phase
appears as shown in Fig. 1(a).

Bose molecules for T 
 TBEC.—As a second application
of Eq. (4), we analyze TFE for a weakly interacting gas of
Bose molecules when T 
 TBEC. The molecular density is
given by n � B3=2�z�	1� 4B1=2�z�a=�B
=�

3
B, where �B �

	1=�2�MT�
1=2 is the thermal length and leads to ��T� �
	B1=2�z�=B3=2�z� � 4B�1=2�z�a=�B
=�nT�, where 0 � z �
exp���� � 1 is the fugacity and B��z� � 	1=����
�R
1
0 x

��1dx=	z�1ex � 1
 is the Bose integral. Thus, we
obtain

 TFE �
2jpj2

3"0

�
B1=2�zc�

B3=2�zc�
�

4a
�B
B�1=2�zc�

�
n: (6)

Notice that, in the classical (zc � 1) limit, Eq. (6) reduces
to TFE � 2jpj2�1� 4zca=�B�n=�3"0�, which again leads
to TFE / n for a gas of classical electric dipoles. The TFE

for an ideal (noninteracting) gas of Bose molecules can be
obtained by setting a � 0. Notice that the second terms in
Eqs. (5) and (6) are different by a factor of 2 due to the
degeneracy of pseudospin-1=2 fermions in contrast to
pseudospin-0 bosons.

Bose molecules for T � TBEC.—As a third application
of Eq. (4), we analyze TFE for an ideal (noninteracting)
gas of Bose molecules when T � TBEC. In this case,
the molecular density is given by n � B3=2�z�=�

3
B � ns,

where ns � z=	Vc�1� z�
 � ��T�n is the density of bo-
sons in the condensed (zero-energy) state. Here, ��T� �
1� �T=TBEC�

3=2, where TBEC � 2�	n=��3=2�
2=3=M is
the critical BEC temperature for noninteracting dilute bo-
sons, and ��x� is the Zeta function. In this case, ��T� �
	B1=2�z�=�3

B � Vcn
2
s=z
=�n2T�, which diverges in the ther-

modynamic limit [21] when fN;Vcg ! 1 but n � N=Vc is
a constant. Thus, we obtain

 TFE �
2jpj2

3"0

�
B1=2�zc�

B3=2�zc�
�n� ns� �

Vcn2
s

zc

�
; (7)

which is always smaller than TBEC and reduces to the
noninteracting limit of Eq. (6) in the absence of BEC.

The two cases of Bose molecules allow the construction
of the phase diagrams indicated in Fig. 1(b) and 1(c),
respectively, where the PBL, FBL, PBEC, and FBEC are
identified depending on the existence of a spontaneous
average electric polarization hPi and/or of a BEC fraction
h�i. The ferroelectric superfluid phases proposed here may
be experimentally observed with currently available cool-
ing techniques only when TFE is large enough. This re-
quirement imposes a condition on the size of the electric
dipole moments of the molecules, and it is discussed next
for the Fermi-Fermi Bose molecules.

Fermi-Fermi Bose molecules.—To set the scale, we
consider the specific example of Li-K molecules consisting
of 6Li and 40K atoms in their ground state, where jpj �
3:6 Debye. We also choose an equal population mixture of
6Li and 40K atoms with parameters N � 105 and Vc �
10�7 cm3 leading to TBEC � 0:099
F and TFE � 21TBEC.
Here, 
F � k2

F=�2Mr� is the effective Fermi energy, where
Mr is twice the reduced mass of Li and K atoms, and kF is
the effective Fermi momentum with n � k3

F=�6�
2�. How-

ever, for a molecule with jpj � 1:0 Debye (0.36 Debye),
TFE � 1:6TBEC (0:22TBEC). Heteronuclear molecules
formed via Feshbach resonances or photoassociation
from precooled atoms are in highly excited vibrational
states, which have small jpj. However, photoassociated
RbCS molecules were brought into their vibrational
ground state [22], where jpj � 1:3 Debye, using a laser-
stimulated transfer process. Furthermore, stimulated
Raman adiabatic passage was used to transfer Feshbach
molecules of 87Rb2 into lower vibrational states with high
efficiency [23]. This last technique is also generalizable to
heteronuclear molecules.

Therefore, it may be possible in the future to tune the
dipole moment using a combination of Feshbach reso-
nances and laser transfer processes to lower vibrational
states. Depending on the values of the dipole moment,
there are two cases: (i) TFE > TBEC and (ii) TFE < TBEC.
We mention in passing that as the scattering parameter
1=�kFa� decreases, the size of the molecules increases
and p gets smaller, thus producing a reduced TFE. If Li-K
Feshbach molecules could be brought to lower vibrational
states (or hopefully to the vibrational ground state) then
they would correspond to case (i). However, other molecu-
lar systems with smaller dipole moments and/or densities
may correspond to case (ii). Next, we discuss heteronuclear
Bose molecules in a trap.

Heteronuclear Bose molecules in a trap.—We use
a parabolic trapping potential V�r� � ��jE‘�r�j2,
where � is the molecular polarizability and jE‘�r�j2 �
E2

0 exp	��2=�w2
�� � z2=�w2

z�
 is the time averaged laser
intensity with �2 � x2 � y2 and widths w�, wz. Thus, the
trapping potential can be approximated by V�r� � V0 �

M�2
��

2=2�M�2
zz

2=2, where V0 � ��E
2
0 and �i �

�2�E0=Mw2
i � are the characteristic frequencies of the har-

monic trap along i � �, z directions. When wz � w�
(wz � w�) the trap is cigar (disk) shaped.

The Thomas-Fermi approximation at T � 0 leads to
Un0�r� � �� V�r� �

R
dr0J�r; r0�n0�r0�, and the electric

polarization density is given by P�r� � pn0�r�. The inte-
gral equation can be solved analytically when � �
	jpj2=�4�"0�
=U� 1, corresponding to a small ratio be-
tween the characteristic electric dipolar energy
jpj2=�4�"0Vc� and the characteristic contact interaction
energyU=Vc. To zeroth order in�, the electric polarization
is P�r� � PTF�r� � pnTF�r�, where nTF�r� � nmax	1�
�2=�2

c � z2=z2
c
. Here, nmax � ��� V0�=U, �2

c �

��� V0�=�M�2
��, and z2

c � ��� V0�=�M�2
z�. The cor-
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rection to first order in � for the cigar-shaped trap is

 �P�r� � p�
4�
18

�n
�2
c

z2
c
	c1 � c2��2=�2

c � z2=z2
c�
; (8)

where c1 and c2 are constants, and �n � N=Vc. Thus,
P�r� � PTF�r� � �P�r�.

Possible experiment.—For the detection of ferroelectric
correlations it is useful to consider time dependent non-
equilibrium processes. First, consider an individual Bose
molecule labeled by index ‘‘i.’’ In this case, a � pulse of
circularly polarized light propagating along the z axis can
cause internal molecular transitions from the ground state
j �i � aj0; 0i � bj1;�1i � j#i discussed in the introduc-
tion to the first excited state j"i � j1;�1i. This amounts to
inverting the Bloch vector of each molecule to the j"i
position. Such a state cannot radiate classically, but pro-
cesses like incoherent spontaneous emission, background
thermal radiations, or quantum fluctuations cause the
Bloch vector to relax towards the ground state, producing
a time dependent polarization vector pi�t� that acts as a
source for the radiation field Ei�t�. The shape and duration
of the radiation pulse requires the solution of the Maxwell-
Bloch equations [24].

This single molecule description can be generalized to
the many-molecule problem by considering the radiation
electric field operator E�r; t� �

P
iEi�r; t�, where the field

intensity is I �
P
ihEi �Eii �

P
i�jhEi � Eji. For a BEC

where the center-of-mass kinetic energy is neglected, the
Maxwell’s equation for the radiation field E�r; t� produced
by a macroscopic polarization P�r; t� is �c2r2 � @2

t �E �
4�@2

tP, while the Bloch equation for the generalized mac-
roscopic polarization (Bloch vector) P � �P T;P L� is
@tP � �jpjEeff � P � P T=T2 � �P L � P �0�L �=T1, as de-
rived from the Liouville equation for the density matrix d.
Here, T1 (T2) is the relaxation (dephasing) time, P T �

Pxx̂� Pyŷ, P L � jpTjn�r��d"" � d##�ẑ, while Eeff �

�ET; EL�, where ET � �Ex � Edip;x�x̂� �Ey � Edip;y�ŷ,
and EL � �!0=jpT j, with !0 � !rot � pzEdip;z. Notice
that jpT j is the magnitude of the transitional dipole moment
between the ground and first excited state and that Edip is
the dipole field due to all other molecules.

We assume that T2 is the shortest time scale, and that
after time t � 0 when the � pulse ends, the Bloch vector
swings down monotonically to the ground state as in super-
radiance [25]. In our case, the radiation intensity for T �
minfTFE; TBECg is proportional to N2:

 I�t� � jpj2N2� exp��t=T2�sech2	�t� 
d�=
s
: (9)

Here, 
s � 8�
0=�N�1=2� is the pulse width, 
0 is the
radiation lifetime of an isolated molecule, and 
d �
�
s=2� lnN is the delay time. Since P rotates primarily in
the x-y plane, coherent dipole radiation is emitted mostly
along ẑ. In addition, �1=2 � minfN0; NFEg=N, where N0=N
is the superfluid condensate fraction and NFE=N �
jPj=�Njpj� is the ferroelectric fraction. However, when

T ! TFE (�! 0) phase coherence between the dipoles is
lost and each molecule acts as an independent emitter. In
this case, the emitted radiation is essentially isotropic and
proportional to the number of molecules N. Typical pulse
durations for the incoherent case are 
inc � 1 s for systems
of two adjacent rotational levels as is the case here (see,
e.g., the case of HF molecules [26] ). However, in the
coherent case the pulse width is much shorter by a factor
of N�1=2, which for N � 105 and � � 1 leads to 
s �
240 ns and 
d � 1:38 �s, and for jpj � 1:0 Debye, Ipeak �

100 �W=cm2.
Conclusions.—We analyzed the possibility of a ferro-

electric transition in Bose-Bose, Bose-Fermi, or Fermi-
Fermi heteronuclear molecules. This transition is charac-
terized by the appearance of ferroelectric order below a
critical temperature. We obtained the order parameter
equation, and we evaluated the transition temperature and
the electric polarization for ultracold heteronuclear (Bose
or Fermi) molecules. We discussed the existence of a
ferroelectric Fermi liquid phase for polar Fermi molecules
and the existence of a ferroelectric superfluid phase for
polar Bose molecules characterized by the coexistence of
ferroelectric and superfluid orders. We also proposed an
experiment to detect ferroelectric correlations via the ob-
servation of coherent dipole radiation pulses.
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