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The recent discovery of mesoscopic electronic structures, in particular the carbon nanotubes, made necessary
an investigation of what effect a helical symmetry of the conductor(metal or semiconductor) may have on the
persistent current oscillations. We investigate persistent currents in helical structures which are nondecaying in
time, not requiring a voltage bias, dissipationless stationary flow of electrons in a normal-metallic or semicon-
ducting cylinder or circular wire of mesoscopic dimension. In the presence of magnetic flux along the toroidal
structure, helical symmetry couples circular and longitudinal currents to each other. Our calculations suggest
that circular persistent currents in these structures have two components with periodsF0 and F0/s (s is an
integer specific to any geometry). However, resultant circular persistent current oscillations haveF0 period.
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I. INTRODUCTION

Aharonov and Bohm showed that, contrary to the conclu-
sion of classical electrodynamics, there exists effects of the
potentials on the charged particles even in the region where
all fields vanish. This effect has quantum mechanical origin
because it comes from the interference phenomenon. The
well-known manifestation of the Ahoronov-Bohm(AB) ef-
fect is the oscillation of electrical resistance and the periodic
persistent currents in the normal metal rings and mesoscopic
rings threaded by a magnetic flux. This current arises due to
the boundary conditions imposed by the doubly connected
nature of the loop. Therefore, electronic wave function and
then any physical property of the ring is a periodic function
of the magnetic flux with a fundamental periodF0. In par-
ticular, flux dependence of the free energy implies the exis-
tence of a thermodynamics(persistent) current.

II. PERSISTENT CURRENTS IN MESOSCOPIC RINGS

Persistent currents in mesoscopic systems was first pre-
dicted by one of the authors1 and later discovered by Buttiker
et al.2 A number of key experiments also confirmed the ex-
istence of persistent currents in isolated rings.8,9 In the pres-
ence of magnetic fluxsFd applied at the center of the ring,
we consider a one-dimensional ring of circumference
Lr =2pr =ND. HereN is the number of lattice points andD is
the lattice spacing. Tight-binding Hamiltonian reads

He = − t0o
n=1

N

san
+an+1e

ia + h.c.d, s1d

where t0 is the hopping amplitude between the nearest-
neighbor sites for an undistorted lattice and operatorsan san

+d
annihilates(creates) an electron at siten. a is the corre-
sponding phase change which can be expressed in terms of
AB flux sFd

a =
e

"c
E

n

n+1

A ·dl = 2p
F

NF0
, s2d

whereF0=hc/e.4.1310−7 G cm2 is the flux quantum.

Corresponding eigenvalue spectrum and the persistent
currents(variation of free energy with the magnetic flux) are
both periodic inF with a periodF0. If we ignore spin of the
electron, ground state energy and the total current flowing
along the ring can be written as

EsFd = o
n

ensFd = − 2t0o
n
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N
Sn +

F

F0
DG , s3d
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N
Sn +

F
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whereI0=4cpt0/NF0 is the current amplitude, and the sum-
mation is over number of electrons,Ne, for each value of
flux.

III. PERSISTENT CURRENTS IN HELICAL STRUCTURES

Persistent currents was believed to be a specific property
of isolated systems for a long time.2 However, theoretical
studies suggest that persistent currents should also exist in
connected rings.3 In the presence of both longitudinal and
transverse flux, existence of transverse persistent currents in
doubly connected mesoscopic rings is known.4,5 Moreover,
transverse currents may contribute to an experimental obser-
vation of longitudinal persistent current and it can substan-
tially increase the amplitude of the AB oscillations.8

AB effect is also shown to be present in toroidal
systems.6,7 In this paper, we consider a set of identical and
connected mesoscopic rings with a circumference of
Lr =2pr and each havingN lattice sites with a lattice spacing
of D1=Lr /N. We also assume our helical structure hasL
periods with a periodicity ofN rings as shown in Fig. 1. So,
we have a toroid of circumferenceLt=2pR and it contains
LN rings which are uniformly separated byD2=Lt /LN along
the circumference of the toroid. In the presence of magnetic
fluxesFsad andFsbd, which are applied through the center
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of the connected rings and at the center of the toroid respec-
tively, we propose two models.

IV. FIRST HELICAL MODEL

In order to have helical symmetry, we allow only nearest-
neighbor circular hopping between the sites in each ring and
vertical hoppings(no cross-hoppings) between the nearest-
neighbor rings along the toroid, respectively.

Assuming the tight-binding model for electron transport,
system Hamiltonian can be written as

H = o
l=1

L

o
k=1

N

o
n=1

N

f− t1alkn
+ alk,nN+1e

ia − st3

− t1dalkn
+ alk,nN+1e

iadk,nN+1 − st4

− t2dalkn
+ al+dkNslL−l+1d,kN+1,ne

ibdkn

− t2alkn
+ al+dkNslL−l+1d,kN+1,ne

ib + h.c.g s5d

where t1 is the hopping amplitude between the nearest-
neighbor sites in the ring,t2 is the vertical hopping amplitude
between the nearest-neighbor rings,t4 is the special hopping
amplitude in vertical direction, andt3 is the special circular
hopping amplitude which connects two special vertical hop-
pings as shown in Fig. 1. Note that in order to study helical
symmetry with this Hamiltonian, it is necessary to have
t3@ t1 andt4@ t2. Operatoralkn salkn

+ d annihilates(creates) an
electron at periodl, ring k, and site n. nN represents
nsmodNd, di j is the Kronecker delta, h.c. is a Hermitian con-
jugate, anda and b are the corresponding phase changes
between nearest sites in a particular ring and between nearest
rings along the toroid, respectively. They can be expressed in
terms of AB flux sFd as

a = 2p
Fsad
NF0

, b = 2p
Fsbd
LNF0

. s6d

Eigenfunctions of the Hamiltonian, H
=ol,k,nol8,k8,n8hlkn,l8k8n8alkn

+ al8k8n8 can be written as an expan-
sion of c=ol,k,nClknalkn

+ u0l, where u0l denotes the vacuum
state. Expansion coefficicents Clkn satisfies
ol8k8n8hlkn,l8k8n8Cl8k8n8=ElknClkn. According to Fig. 1, the sys-
tem exactly repeats itself after translation along the toroid by
N rings. Therefore Bloch theorem applies and it gives
Cl+1,k,n=eigCl,k,n, whereg=s2p /Lds with s=0,1, . . . ,L−1.

Bloch theorem partly digonalizes matrixHlkn,l8k8n8 by
quantized values ofg with a reduced Hamiltonian matrix
elements given by

Hkn,k8n8 = f− t1dkk8dn8,nN+1e
ia − st3 − t1ddkk8dn8,nN+1dk,nN+1e

ia

− t2dn,n8dk8,kN+1fdkNeisb+gd + s1 − dkNdeibg

− st4 − t2ddn,n8s1 − dkNddk8,kN+1dkne
ib

− st4 − t2ddn,n8dkNdk8,kN+1dkne
isb+gd + h.c.g. s7d

Matrix Hkn,k8n8 should be diagonalized numerically which
suggests that instead ofk, n, we introducer =Nsk−1d+n with
r changing from 1 toN2. For a given value ofa and b,
Hamiltonian has total ofLN2 eigenvalues sinceHkn,k8n8sgd
should be diagonalized for each value ofg=s2p /Lds,
s=0,1, . . . ,L−1. Finding these eigenvalues accomplishes
unitary transformation of creation operators fromalkn

+ to arr8
+

which ensures that statescrr8=arr8
+ u0l are orthogonal to each

other and arr8
+ are canonical Fermi operators, i.e.,

fars
+ ,ar8s8g+=dss8drr8.
For a given number of electrons in toroid,Ne, we calcu-

late minimal energy which is sum of lowestNe out of LN2

eigenvalues and also calculate total persistent currents both
along the toroid and along the rings by variation of free
energy of the system with the magnetic flux.

Total persistent currents along the rings(circular) and the
toroid (longitudinal) are perpendicular to each other. In Fig.
2, we choose hopping parameters such that probability of
finding electrons inside the rings is much more than along
the toroid. In this limit, Icsad dominatesI lsbd→0 and the
coupling between these currents is very small(negligible) as
shown in the figure. In the opposite limit, where electrons
have more probability of being along the toroid than inside
the rings,I lsbd dominatesI lsad→0 and the coupling is also
very small as shown in Fig. 3.

In order to understand the mixing of both symmetries, we
choose another set of parameters such that probability of
finding electrons along the helical path(Fig. 1) is much more
than finding it elsewhere in the toroid. This case is shown in
Figs. 4 and 5. As opposed to the previous limits, we find that
mixing symmetries has a cross-effect on the system and both
currents coupled to each other. However, both currents in
different directions are periodic inF with a period ofF0 as
expected in all cases.

FIG. 1. (Left) Toroid of LN=333=9 rings are connected by
vertical hoppings andFsbd is applied at the center.(Right) Each
ring hasN=3 sites andFsad is applied at the center.

FIG. 2. Contour plot ofIcsad vs flux in the first helical model.
Parameters aret1= t3=10, t2= t4=1, N=L=10, and Ne=500
(half-filling).
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V. SECOND HELICAL MODEL

In order to satisfy necessary boundary conditions for the
geometry of the toroid ringm=LN+1 should coincide with
ring m=1. As shown in Fig. 6, we fix the position of the first
ring and rotate restsLN−1d of them by 2ps/LN, where
s=0,1, . . . ,LN−1. Note that each value of parameters speci-
fies different geometry. In this model, we considered all pos-
sible circular and cross hoppings both inside and between the
rings.

In the tight-binding approximation, system Hamiltonian
becomes

H = o
m=1

LN

o
n=1

N

f− t1amn
+ am,nN+1e

ia − t2amn
+ amLN+1,ne

ibeissa/Ld

+ h.c.g, s8d

where t1 is the hopping amplitude between the nearest-
neighbor sites in a ring andt2 is the cross-hopping amplitude
between the rings. Operatorsamn samn

+ d annihilates(creates)
an electron at ringm and siten. a andb are the correspond-
ing phase changes between sites in a particular ring and dif-
ferent rings in the toroid, respectively. They are given by Eq.
(6).

The Hamiltonian can be diagonalized by discrete Fourier
transformation fromamn in site to bqk in momentum repre-
sentation as

amn=
1

ÎLN
o
k,q

bqke
isknD1+qmD2d, s9d

where k=s2p /ND1dn and n=0,1,2, . . . ,N−1 and
q=s2p /LND2dm and m=0,1,2, . . . ,LN−1. In diagonal
form, the Hamiltonian becomes

H = − 2o
q,k

bqk
+ bqkHt1 cosskD1 + ad + t2 cosSqD2 + b +

sa

L
DJ .

s10d

Eigenvalues of this Hamiltonian are periodic inF with a
period ofF0 and they are given by

emnsFd = − 2t1 cosF2p

N
Sn +

Fsad
F0

DG
− 2t2 cosF2p

LN
Sm+

Fsbd
F0

+
sFsad

F0
DG . s11d

Corresponding total persistent currents along the rings
and the toroid(circulara and longitudinalb currents) which
are periodic inF with a period ofF0 are perpendicular to
each other and they are given byIcsFsadd
=om,nfdemnsFd /dFsadg where summation is over the num-
ber of electrons,Ne. Ignoring the spin of electrons, for each
value of flux we have

Icsad = o
m,n
HI1 sinF2p

N
Sn +

Fsad
F0

DG
+ I2 sinF2p

LN
Sm+

Fsbd
F0

+
sFsad

F0
DGJ , s12d

I lsbd = I2o
m,n

sinF2p

LN
Sm+

Fsbd
F0

+
sFsad

F0
DG , s13d

where I1=−4cpt1/NF0 and I2=−4cpt2s/LNF0 are the cur-
rent amplitudes.

FIG. 5. Contour plot ofI lsbd vs flux in the first helical model.
Parameters aret1= t2=1, t3= t4=10, N=L=10, and Ne=500
(half-filling).

FIG. 6. (Left) Connected rings in the first model withFsad
applied at the center.(Right) Rotated rings by angle 2ps/LN for
s=1, N=3, andL=3.

FIG. 3. Contour plot ofI lsbd vs flux in the first helical model.
Parameters aret1= t3=1, t2= t4=100, N=L=10, and Ne=500
(half-filling).

FIG. 4. Contour plot ofIcsad vs flux in the first helical model.
Parameters aret1= t2=1, t3= t4=10, N=L=10, and Ne=500
(half-filling).
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VI. DISCUSSION AND CONCLUSION

The geometric structure determines the electronic struc-
ture and thus the characteristics of the persistent current os-
cillations. In this paper, we study symmetry mixing and
cross-effects in a toroidal system which is threaded by mag-
netic flux both alongsad and insidesbd the structure. We
consider a set of connected-mesoscopic rings and model he-
lical symmetry by restricting hopping directions in our mod-
els. The electronic structure calculated from the tight-binding
model is given in Eq.(11) for the second helical model,
however, we cannot solve it for the first helical model and
instead evaluate it numerically. Since magnetic fluxFsad
andFsbd are in perpendicular directions, circular and longi-
tudinal currents also flows in perpendicular directions.

In both models we consider electron transport inside the
rings, however, we propose two models with hoppings in
different directions between the rings. In the first model, we
allow only vertical hoppings between the neighboring rings.
Since the system is periodic along the toroid, we include the
Bloch condition and solve the final Hamiltonian matrix for
energy eigenvalues and persistent currents numerically. Our
results show that mixing perpendicular magnetic fluxes
couples perpendicular currents with each other and both cir-
cular and longitudinal currents are periodic inF with a pe-
riod F0.

In the second model, we consider electron transport with
cross hoppings between the rings. This coupling between
perpendiculara andb magnetic fluxes yields an extra com-
ponent to the total circular current(12) with a periodF0/s.
Sinces is a positive integer, total circular persistent currents
have periodF0 as expected. In the special case, fors=0, all
cross-hoppings are indeed now vertical hoppings and we re-
cover the result of the first model together with circular cur-
rents which have periodF0. We also note that Eqs.(12) and
(13) are in agreement with Eq.(4) in the limits when
N→1, s=0 andt2→0.

An extra component(coupling) of circular persistent cur-
rents appears in both models. These currents are vanishingly
small in the limit of a large number of rings,L→`, as ex-
pected. Note that the extra circular current component is due
only to Fsad, and the presence ofFsbd results only in lon-
gitudinal persistent currents along the toroid. Both of our
model results are also in agreement with Linet al.6 They
showed that perpendicularFsbd through the carbon nano-
tube toroidal structures results in persistent current oscilla-
tions with a periodF0. To conclude, our calculations suggest
that circular persistent currents in structures with helical
symmetry have two components with periodsF0 andF0/s.
However, total circular persistent current oscillations have
F0 period.
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