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Persistent currents in helical structures

M. Iskin®* and I. O. Kulik
1School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
’Department of Physics, Bilkent University, Ankara 06533, Turkey
(Received 8 May 2004; revised manuscript received 19 August 2004; published 11 November 2004

The recent discovery of mesoscopic electronic structures, in particular the carbon nanotubes, made necessary
an investigation of what effect a helical symmetry of the condugtmtal or semiconductpmay have on the
persistent current oscillations. We investigate persistent currents in helical structures which are nondecaying in
time, not requiring a voltage bias, dissipationless stationary flow of electrons in a normal-metallic or semicon-
ducting cylinder or circular wire of mesoscopic dimension. In the presence of magnetic flux along the toroidal
structure, helical symmetry couples circular and longitudinal currents to each other. Our calculations suggest
that circular persistent currents in these structures have two components with pegiads! ®y/s (s is an
integer specific to any geomejryHowever, resultant circular persistent current oscillations hiyeeriod.
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I. INTRODUCTION Corresponding eigenvalue spectrum and the persistent

Aharonov and Bohm showed that, contrary to the Conclu_currents(variation of free energy with the magnetic fuxre

sion of classical electrodynamics, there exists effects of thQOth periodic ind with a period®,. If we ignore spin of the

potentials on the charged particles even in the region Wherglectron, g_round state energy and the total current flowing
all fields vanish. This effect has quantum mechanical originalong the ring can be written as
because it comes from the interference phenomenon. The 2 ®
well-known manifestation of the Ahoronov-Boh(B) ef- E(d) =2 e(P) = - 25>, co W(” + a)] )
fect is the oscillation of electrical resistance and the periodic n n 0
persistent currents in the normal metal rings and mesoscopic

rings threaded by a magnetic flux. This current arises due to (@) =S 1 (@) =-cS den(®)

the boundary conditions imposed by the doubly connected " ~ dd

nature of the loop. Therefore, electronic wave function and

then any physical property of the ring is a periodic function =1, sin[z—w(n+ 2)} ()
of the magnetic flux with a fundamental peridg,. In par- 0 . ®y/ |

ticular, flux dependence of the free energy implies the exis-

tence of a thermodynamigpersistent current. wherely=4cwty/N®y is the current amplitude, and the sum-
mation is over number of electronbl,, for each value of
Il. PERSISTENT CURRENTS IN MESOSCOPIC RINGS flux.

Persistent currents in mesoscopic systems was first pre-
dicted by one of the authdrand later discovered by Buttiker 1ll. PERSISTENT CURRENTS IN HELICAL STRUCTURES
et al? A number of key experiments also confirmed the ex-

istence of persistent currents in isolated rif§s$n the pres- of isolated systems for a long tirieHowever, theoretical

ence of magnetic flux®) applied at the center of the ring, studies suggest that persistent currents should also exist in

we consider a one-dimensional ring of circumference ; P
. . X ) connected ring3.In the presence of both longitudinal and
L,=2#r=NA. HereN is the number of lattice points aris g P g

. ; ) - L transverse flux, existence of transverse persistent currents in
the lattice spacing. Tight-binding Hamiltonian reads doubly connected mesoscopic rings is kndWrMoreover,

Persistent currents was believed to be a specific property

N _ transverse currents may contribute to an experimental obser-
He=—1to>, (&}an€“+h.c), (1)  vation of longitudinal persistent current and it can substan-
n=1 tially increase the amplitude of the AB oscillatiohs.

where ty is the hopping amplitude between the nearest- AB ef7fect ‘? also shown o be present in 'toroidal
neighbor sites for an undistorted lattice and operadQr@,) systems:” In this paper, we conS|d_er a SEt.Of identical and
annihilates(create$ an electron at siten. « is the corre- connected ‘mesoscopic rings with a circumference of

. . ; =27 and each havingyl lattice sites with a lattice spacing
sponding phase change which can be expressed in terms .
b gp 9 P of A;=L,/N. We also assume our helical structure has

AB flux (®) periods with a periodicity oN rings as shown in Fig. 1. So,
e (™ D we have a toroid of circumferendg=2#R and it contains
@= h_cf A-di= 2”@' 2 LN rings which are uniformly separated By=L,/LN along
" 0 the circumference of the toroid. In the presence of magnetic
where®,=hc/e=4.1x 10" G cn? is the flux quantum. fluxes®(a) and d(B), which are applied through the center
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FIG. 1. (Left) Toroid of LN=3x3=9 rings are connected by FIG. 2. Contour plot of (a) vs flux in the first helical model.
vertical hoppings andb(g) is applied at the cente(Right) Each Parameters aret;=t;=10, t,=t,=1, N=L=10, and N,=500
ring hasN=3 sites andb(«) is applied at the center. (half-filling).

of the connected rings and at the center of the toroid respec- gioch theorem partly digonalizes matrid, v by
n' ! !nr

tively, we propose two models. quantized values ofy with a reduced Hamiltonian matrix
elements given by

IV. FIRST HELICAL MODEL

In order to have helical symmetry, we allow only nearest- Hyp o = [~ t1 60 5n/,nN+lei“— (t3—t1) Sk 5n,’nN+l5k,nN+lei“
neighbor circular hopping between the sites in each ring and

vertical hoppings(no cross-hoppingsbetween the nearest- ~ a8 S k11l Sn€ 7 + (1= S €]
neighbor rings along the toroid, respectively. o (1- ) iB
Assuming the tight-binding model for electron transport, (ta = t2) 8y (1 = Sn) S o +16kn€
system Hamiltonian can be written as = (t4 = 1) S SnSic o r18€ P + hocl. (7)
N N . Matrix Hyn s should be diagonalized numerically which
H=2 > > [~ tidnain 1€ = (ts suggests that instead kyfn, we introduce =N(k— 1) +n with
1=1 k=1 n=1 r changing from 1 toN?. For a given value ofx and 3,
_ 9 5 .
~t)aka dag, —(t Hamiltonian has total oL N“ eigenvalues sincély, ()
V1€ Aoyt . ! should be diagonalized for each value o&(2x/L)s,
—tz)aﬁnanamuL_|+1),kN+1,ne'B5kn s=0,1,...L-1. Finding these eigenvalues accomplishes

unitary transformation of creation operators frajy, to a:r
which ensures that states, . :a:r,|0> are orthogonal to each

where t, is the hopping amplitude between the nearestother and a;, are canonical Fermi operators, ie.,
neighbor sites in the ring; is the vertical hopping amplitude (a5, 8,75/ )+ = 855 Opr -

between the nearest-neighbor ringsis the special hopping For a given number of electrons in toroil,, we calcu-
amplitude in vertical direction, ant} is the special circular late minimal energy which is sum of lowest, out of LN?
hopping amplitude which connects two special vertical hop-€eigenvalues and also calculate total persistent currents both
pings as shown in Fig. 1. Note that in order to study helicalalong the toroid and along the rings by variation of free
symmetry with this Hamiltonian, it is necessary to haveenergy of the system with the magnetic flux.

t3>1, andt,>t,. Operatora, (a,,) annihilategcreateyan Total persistent currents along the rin@#cularn and the
electron at periodl, ring k, and site n. ny represents toroid (longitudina) are perpendicular to each other. In Fig.
n(modN), &; is the Kronecker delta, h.c. is a Hermitian con- 2, We choose hopping parameters such that probability of
jugate, anda and B are the corresponding phase Changeg‘inding electrons inside the rings is much more than along
between nearest sites in a particular ring and between neardg€ toroid. In this limit,1.(«) dominatesl|(3)—0 and the
rings along the toroid, respectively. They can be expressed igoupling between these currents is very snagigligible) as

- t2a1+kna|+5kN(|L—|+1),kN+1,neiB +h.c] (5)

terms of AB flux(d) as shown in the figure. In the opposite limit, where electrons
have more probability of being along the toroid than inside
d(a) D(B) the rings,l,(B) dominated(a) — 0 and the coupling is also
a= 2”@1 B= 277@- (6)  very small as shown in Fig. 3.
0 0 In order to understand the mixing of both symmetries, we
Eigenfunctions of the Hamiltonian, H choose another set of parameters such that probability of

=3 k21 k.o Nikn )k 8kn@riens €AN be written as an expan- finding electrons along the helical paffig. 1) is much more
sion of ¥==,  ;Cinanl0), Where |0) denotes the vacuum than finding it elsewhere in the toroid. This case is shown in
state. Expansion coefficicents Cyp, satisfies  Figs. 4 and 5. As opposed to the previous limits, we find that
21k Nikni 7k Crkenr = EnCikn- According to Fig. 1, the sys-  mixing symmetries has a cross-effect on the system and both
tem exactly repeats itself after translation along the toroid bycurrents coupled to each other. However, both currents in
N rings. Therefore Bloch theorem applies and it givesdifferent directions are periodic i with a period ofd, as
Ci+1xn=€"C) «n» Wherey=(2m/L)s with s=0,1,... L-1. expected in all cases.
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FIG. 3. Contour plot of|(8) vs flux in the first helical model. FIG. 5. Contour plot of(8) vs flux in the first helical model.
Parameters are;=t;=1, t,=t,=100, N=L=10, and N,=500 Parameters aret;=t,=1, t3=t,=10, N=L=10, and Ng=500
(half-filling). (half-filling).

V. SECOND HELICAL MODEL

S
_ N H=-2> b;kbqk{t1 cogkA; + a) +t, cos(qA2+ﬂ+—a>}.
In order to satisfy necessary boundary conditions for the ak L

geometry of the toroid ringn=LN+1 should coincide with (10)
ring m=1. As shown in Fig. 6, we fix the position of the first

ring and rotate restLN-1) of them by 2rs/LN, where  Ejgenvalues of this Hamiltonian are periodic d with a

$=0,1,... LN-1. Note that each value of paramesapeci-  period of ®, and they are given by
fies different geometry. In this model, we considered all pos-

sible circular and cross hoppings both inside and between the 2 ()
rings. €nn(®) =-2t; co —<n+—>

In the tight-binding approximation, system Hamiltonian N Po
becomes 2 o sb
—-2t,co —Tr<m+ﬁ+ﬂ) . (11
LN N LN (O2S D,
H= 2_: 2 [~ tla;qnam,nNﬂe'a‘tza;mamwl,ne'ﬁe'(sa/") Corresponding total persistent currents along the rings
meLn=t and the toroidcircular « and longitudinal@ current$ which
+h.c], (8) are periodic in® with a period ofd, are perpendicular to

] ) ] each other and they are given byl (P(a))
wh.ere ty is thg hopplng a_mplltude between the n?arESI':Zm,n[demn(CD)/dCI)(a)] where summation is over the num-
neighbor sites in a ring angis the cross-hopping amplitude e of electronsN,. Ignoring the spin of electrons, for each
between the rings. Operatoag,, (a;,) annihilates(create$ \51ue of flux we have
an electron at ringn and siten. « and 8 are the correspond-

ing phase changes between sites in a particular ring and dif- { 20 ()
ferent rings in the toroid, respectively. They are given by Eq. l(a@)=2 114 sin{—( + )]
(6). mn D
The Hamiltonian can be diagonalized by discrete Fourier 20 d(B)  sP(a)
transformation froma,,, in site to by, in momentum repre- +1, sin[—( + e + T)] . (12
sentation as 0 0
-1 j(knp+qma,) 20 DB sd(a

where k=(2#/NAj))n and n=0,1,2,...N-1 and
q:(ZW/LNAz)m and m:0,1,2,...LN—1. In diagonal Wherell:_4C7Tt1/N(D0 and|2:_4C7ths/LN(I)o are the cur-

form, the Hamiltonian becomes rent amplitudes.

8 n=s, 4L m=3
0 =
n=2
g L LI =1
0 025 05 0.75 1
D()/D, =2
FIG. 4. Contour plot ofl ;(«) vs flux in the first helical model. FIG. 6. (Left) Connected rings in the first model wiil(a)
Parameters aret;=t,=1, t3=t,=10, N=L=10, and N,=500 applied at the centetRight) Rotated rings by angle/LN for
(half-filling). s=1,N=3, andL=3.
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V1. DISCUSSION AND CONCLUSION In the second model, we consider electron transport with

The geometric structure determines the electronic strucSf0SS hoppings between the rings. This coupling between
ture and thus the characteristics of the persistent current oB€rpendicularx and g magnetic fluxes yields an extra com-
cillations. In this paper, we study symmetry mixing and Ponent to the total circular curre(it2) with a period®y/s.
cross-effects in a toroidal system which is threaded by magSinces is a positive integer, total circular persistent currents
netic flux both along(a) and inside(B) the structure. We have periodd, as expected. In the special case, $e10, all
consider a set of connected-mesoscopic rings and model hetoss-hoppings are indeed now vertical hoppings and we re-
lical symmetry by restricting hopping directions in our mod- cover the result of the first model together with circular cur-
els. The electronic structure calculated from the tight-bindingents which have perio®,. We also note that Eq$12) and
model is given in Eq.(11) for the second helical model, (13) are in agreement with Eq4) in the limits when
however, we cannot solve it for the first helical model andN— 1, s=0 andt,— 0.

instead evaluate it numerically. Since magnetic flbka) An extra componentcoupling of circular persistent cur-
andd(B) are in perpendicular directions, circular and longi- rents appears in both models. These currents are vanishingly
tudinal currents also flows in perpendicular directions. small in the limit of a large number of ring§,—«, as ex-

In both models we consider electron transport inside thgected. Note that the extra circular current component is due
rings, however, we propose two models with hoppings inonly to ®(a), and the presence d(p) results only in lon-
different directions between the rings. In the first model, wegitudinal persistent currents along the toroid. Both of our
allow only vertical hoppings between the neighboring rings.model results are also in agreement with lehal® They
Since the system is periodic along the toroid, we include theshowed that perpendiculab(g) through the carbon nano-
Bloch condition and solve the final Hamiltonian matrix for tube toroidal structures results in persistent current oscilla-
energy eigenvalues and persistent currents numerically. Otions with a periodb,. To conclude, our calculations suggest
results show that mixing perpendicular magnetic fluxeshat circular persistent currents in structures with helical
couples perpendicular currents with each other and both cisymmetry have two components with periofig and ®y/s.
cular and longitudinal currents are periodicdnwith a pe- However, total circular persistent current oscillations have

riod d,,. ®, period.
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