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1. Introduction
Retail assortment planning is defined as specifying the set
of products carried at each store and setting their inventory
levels so as to maximize a profit function subject to fixed
shelf space and possibly other constraints, which vary by
context. Consumers sometimes cannot find their favorite
product in a store and settle for another similar product
instead. This is called substitution, and the willingness of
customers to substitute within a particular category is an
important parameter in assortment planning.
In this paper, we describe a novel methodology for esti-

mating the input data-demand and substitution parameters
for the assortment planning problem and propose an opti-
mization algorithm. We applied our method at Albert Heijn,
BV, a leading supermarket chain in The Netherlands with
1,187 stores and about $10 billion in sales. (Albert Heijn
is a subsidiary of Ahold Corporation, which owns many
supermarket chains around the world with about 8,500
stores and $50 billion in sales.) Although our methodology
is applicable to more general cases, we describe the prob-
lem and our methodology in the context of Albert Heijn’s
operations for expositional simplicity.
The number of products carried in a retail store can

be very large. In the grocery industry, supermarkets often
carry more than 30,000 stock keeping units (SKUs). At the
highest level of the hierarchy, SKUs are divided into three
groups: chilled products, dry goods, and groceries. Each
group is then divided into merchandising categories, such

as wines, bread spreads, and butter & margarine. Within
categories, subcategories are defined so that the difference
between products within a subcategory is minimal, but the
difference between subcategories is significant. For exam-
ple, the subcategories of the butter & margarine category
include deep-fry fat, regular butter, healthy butter, and mar-
garines. We assume that substitution takes place within a
subcategory but not across subcategories.
The replenishment system at Albert Heijn is typical in

the grocery industry. All the products in a category are
subject to the same delivery schedule and a fixed lead
time. There is no back room; therefore, orders are delivered
directly to the shelves. Shelves are divided into facings.
SKUs in a category share the same shelf area but not the
same facing, i.e., only one kind of SKU can be put in a
facing. The capacity of a facing depends on the depth of
the shelf and the physical size of a unit of the SKU.
The inventory model is a periodic review model with

stochastic demand, lost sales, and positive constant delivery
lead time. The number of facings fj allocated to product j
determines its maximum level of inventory, cjfj , where cj
is the capacity of a facing. At the beginning of each period,
an integral number of case-packs (batches) of size bj is
ordered to take the inventory position as close as possi-
ble to the maximum inventory level without exceeding it.
Case sizes vary significantly from product to product. Per-
ishable products are disposed at the end of their shelf life.
The loss associated with disposing a unit is approximately
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equal to the selling price. The objective is to maximize
expected gross profit, where gross profit is defined as per-
unit margin× sales− selling price× disposed inventory.
Because subcategories are defined so that there is mini-

mal interaction between the products in different subcate-
gories, we start with analyzing each subcategory separately.
The decision process for a subcategory involves allocat-
ing a discrete number of facings to each product to max-
imize total expected gross profits subject to a shelf-space
constraint:

max
fj � j∈N

Z=∑
j

Gj	fj�Dj	f�d��

s.t.
∑
j

fjwj � shelf space�

fj ∈ 
0�1�2� � � �� for all j�

(AP)

where N = 
1� � � � � J � denotes the set of potential variants
in the subcategory, fj is the number of facings allocated
to product j , and wj is the width of a facing of product j .
Gj is the (long-run) average gross profit from product j
given fj and demand rate Dj . Due to substitution, effec-
tive demand for a product includes the original demand for
the product and substitution demand from other products.
Hence, Dj	f�d�, the effective demand rate to product j ,
depends on the facing allocation and the demand rates of
all products in the subcategory, i.e., f = 	f1� f2� � � � � fJ � and
d= 	d1�d2� � � � � dJ �, where dj is the original demand rate
to product j (i.e., the number of customers who would
select j as their first choice if presented with all J prod-
ucts). We assume that the original demand for a product is
not affected by the number of facings assigned to it. The
store’s assortment is denoted S and is determined by the
facing allocation, i.e., S = 
j ∈N� fj > 0�.
The unknown inputs to the assortment optimization

(AP) are the original demand rates dj and the func-
tion Dj . There is plenty of empirical evidence suggesting
that consumers might be willing to accept a substitute if
their favorite product is unavailable (e.g., Fitzsimons 2000,
Gruen et al. 2002, Campo et al. 2004). Hence, under sub-
stitution, the observed demand for each product would be
different from its original demand. In other words, we do
not observe dj from store sales data. Rather, we observe
the value of the Dj function given the current assortment
f . In §3, we describe our model of substitution. In §4,
we present two methodologies for estimating demand for
products and the parameters of the substitution model. The
first method estimates demand and substitution rates using
sales data from multiple stores when the service levels
are high enough so that stockouts are negligible and only
assortment-based substitution (from products that are not
included in the assortment to the products that are in the
assortment) takes place. The second method generalizes our
approach to the case with stockouts and estimates demand
and substitution rates using inventory-transactions data.

The assortment optimization problem (AP) is a nonlin-
ear, nonseparable, discrete resource allocation problem. In
§5, we describe an iterative heuristic that solves a series
of separable nonlinear knapsack problems, and we assess
its performance with a computational study. On average,
the heuristic finds solutions within 0.5% of the optimal
solution. The method presented in this paper is designed
for large problems and can accommodate many realistic
constraints (e.g., discrete maximum inventory levels, batch
sizes, delivery lead times, and perishability of products).
The only known structural property of optimal assort-

ments is related to demand rates (van Ryzin and Mahajan
1999). We establish properties of the heuristic solution that
relate the products included in the assortment and their
inventory levels to demand rates and other characteristics
such as per-unit margin, per-unit volume, case-pack size,
and demand variability.
We describe the details of the implementation at Albert

Heijn, BV and assess its financial and strategical benefits
in §6. Comparing the results of the recommendations of our
system with the existing assortments suggests more than a
50% increase in profits.
The main contributions of this paper are the following.

First, we are aware of no papers that provide empirical
information about how assortment planning works in prac-
tice or evaluate a process against real data in the rapidly
growing literature on assortment planning. We are seeing
increasingly complicated models formulated and papers on
algorithms or structural properties, with limited or no evi-
dence as to the validity of those models, and not even a hint
of how to estimate the parameters of these models. It seems
timely for an injection of empirical evidence about the
nature of real assortment planning problems. We provide a
description of a real assortment planning problem together
with real data, an approach for estimating parameters of the
model, and a workable algorithm run on the real data to
demonstrate its effectiveness. Second, we present a novel
substitution estimation approach that works even when only
sales summary data are available. The only paper on esti-
mating substitution rates, Anupindi et al. (1998), requires
inventory-transactions data and is limited to stockout-based
substitution. For the cases when inventory-transactions data
are available, we generalize the approach by Anupindi et al.
(1998) to include a dynamic choice process by consumers.
Third, we develop an iterative optimization heuristic for the
assortment planning problem and establish new structural
properties based on the heuristic solution.

2. Related Literature
For extensive reviews of the assortment planning literature,
see Mahajan and van Ryzin (1998) and Kök et al. (2005).
Below is a brief review of the related literature.
Assortment planning has been the focus of numerous

industry studies, mostly concerned with the question of
whether assortments were too broad or too narrow. Quelch
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and Kenny (1994) report that the number of products in
the marketplace increased by 16% per year between 1985
and 1992, while shelf space expanded by only 1.5% per
year during the same period. Worried that current variety
levels might be excessive, many retailers started adopting
an “efficient assortment” strategy, which primarily seeks to
find the profit-maximizing level of variety by eliminating
low-selling products (Kurt Salmon Associates 1993).
Gruen et al. (2002) examine consumer response to stock-

outs across eight categories at retailers worldwide and
report that 45% of customers substitute, i.e., buy one of
the available items from that category, 15% delay pur-
chase, 31% switch to another store, and 9% do not buy
any item at all. Other studies of consumer response to
stockouts have indicated that stockouts can entail substan-
tial losses, both from a brand sales perspective (Schary
and Christopher 1979) and from a category sales perspec-
tive (Fitzsimons 2000). Campo et al. (2004) investigate the
consumer response to out-of-stocks (OOS) as opposed to
permanent assortment reductions (PAR). They report that
although the retailer losses in case of a PAR might be larger
than those in case of an OOS, there are also significant sim-
ilarities between consumer reactions in the two cases and,
further, that OOS reactions for an item can be indicative of
PAR responses for that item.
There are two common models of substitution. The util-

ity-based model of substitution assumes that consumers
associate a utility with each product in N ∪ 
0�, where

0� denotes the no-purchase option, and that they choose
the highest utility alternative available. The multinomial
logit (MNL) model is a utility-based model that is com-
monly used in the economics and marketing literatures (e.g.,
Guadagni and Little 1983, Ben-Akiva and Lerman 1985,
Anderson et al. 1992) and, more recently, in assortment
planning models.
The MNL model assumes that the utility of alternative j

to a particular customer has both a deterministic compo-
nent uj and a random component. The random compo-
nent is assumed to follow a Gumbel (extreme value of
Type I) distribution with mean zero and variance �2�2/6.
The probability that alternative j is chosen is denoted pj
and is given by

pj =
euj/�∑
k∈S euk/�

� j ∈ S ∪ 
0�� (1)

The MNL model in its simplest form is unable to cap-
ture an important characteristic of the substitution behavior
because the rate of substitution is determined by the util-
ity of the no-purchase option with respect to the utility of
the products in S. Consider the following example, where
S = 
1�2�, � = 1, and u0 = u1 = u2. The share of each
option is determined by the assumption that the probabil-
ity of choosing option i is exp	ui�/	exp	u0�+ exp	u1�+
exp	u2�� = 1/3 for i = 0�1�2. Hence, two-thirds of the
customers are willing to make a purchase from the cate-
gory. If the second product is unavailable, the probability of

choosing the first product is exp	u1�/	exp	u0�+exp	u1��=
1/2. That is, half of the consumers whose favorite is
stocked out will switch to the other variant as a substitute,
while the other half will prefer the no-purchase alternative
to the other variant. In this example, the penetration to the
category (purchase incidence) is 2/3 and the average sub-
stitution rate is 1/2. These two quantities are linked via
ui-values. We can control the substitution rate by varying
u0, but that also determines the initial penetration rate of
the category. Hence, with this model, it is not possible to
have two categories with the same penetration rates but
different substitution rates, which we have found severely
limits the applicability of this model.
In the exogenous model of substitution, mostly used in

inventory models (see Netessine and Rudi 2003 and the ref-
erences therein), customers choose from the set N , and if
the item they choose is not available for any reason, a cus-
tomer might accept another variant as a substitute according
to a given substitution probability. If the substitute is also
unavailable, the sale is lost.
Van Ryzin and Mahajan (1999) study a stochastic single-

period assortment planning problem under a multinomial
logit choice model. In their model, consumers can sub-
stitute if their favorite variant is not carried (assortment-
based substitution), but the sale is lost if their favorite
variant is carried but temporarily unavailable (no stockout-
based substitution). They show that the optimal assortment
always consists of a certain number of the most popular
products. This model is very stylistic because of restrictive
assumptions such as identical costs, prices, and demand
variability across products. Mahajan and van Ryzin (2001)
develop a stochastic sample path optimization method for
an assortment model with MNL choice and both types of
substitution. Smith and Agrawal (2000) study the assort-
ment planning problem with multiperiod base-stock inven-
tory models under the exogenous model of substitution.
They develop approximations of the objective function of
the resulting integer program. They do not consider esti-
mation of the model parameters.
Cachon et al. (2005) study the van Ryzin and Mahajan

(1999) model in the presence of consumer search. Aydin
and Hausman (2003) study assortment planning and supply
chain coordination issues. Rajaram (2001) presents a mean-
variance analysis of assortment planning with no substitu-
tion. Also related are multi-item inventory models, either
with a single resource constraint (e.g., Nahmias and Schmidt
1984, Downs et al. 2001) or with substitutable products
(e.g., McGillivray and Silver 1978, Parlar and Goyal 1984,
Rajaram and Tang 2001, Avsar and Baykal-Gursoy 2002,
Netessine and Rudi 2003). This group of papers does not
consider the assortment problem and focuses on stocking
decisions of the products in a given assortment.
The marketing and economics literatures have studied

product variety extensively, mostly focusing on variety at
the market level (e.g., Anderson et al. 1992, Shugan 1989)
or from a product line design perspective (e.g., Green and
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Krieger 1985, Moorthy 1984). We recognize that our model
does not explicitly account for other possible factors that
influence the relationship between assortment variety and
demand: the space devoted to a category and the pres-
ence or absence of a favorite item influence the perception
of variety (Kahn and Lehmann 1991, Broniarczyk et al.
1998), as do the arrangement, complexity, and presence of
repeated items in an assortment (Hoch et al. 1999, Huffman
and Kahn 1998, Simonson 1999).
Although assortment or inventory planning with sub-

stitutable products has attracted some attention in the
literature, there is little existing work on the estimation
of substitution behavior. Anupindi et al. (1998) describe
a method for estimating consumer demand with stockout-
based substitution (when the favorite variant is temporar-
ily unavailable). They assume a Poisson arrival process
for all products and find the maximum likelihood esti-
mates of arrival rates and substitution probabilities via the
expectation-maximization (EM) algorithm. Campo et al.
(2003) also combine choice and availability data to mea-
sure the impact of stockouts in category sales. Talluri and
van Ryzin (2004) utilize the EM algorithm to jointly esti-
mate arrival rates and customer choice model parameters
when no-purchase outcomes are unobservable. The esti-
mation procedure in §4.3 is a generalization of Anupindi
et al. (1998) and Talluri and van Ryzin (2004). The EM
algorithm is first proposed by Dempster et al. (1977).
Greene (1997) shows that the procedure converges under
fairly weak conditions. Wu (1983) shows that the limit-
ing value of the procedure would be a stationary point of
the incomplete-data log-likelihood function if the expected
log-likelihood function is continuous in the parameters.
In an influential paper, Corstjens and Doyle (1981) sug-

gest a shelf-space allocation model by performing store
experiments to estimate multiplicative sales and cost func-
tions with own and cross-space elasticities. Their estima-
tion and optimization procedures cannot be applied to large
problems; as a result, they elected to work with prod-
uct groups rather than SKUs. Neither Corstjens and Doyle
(1981) nor the follow-up work explicitly model the assort-
ment selection or the inventory side of the problem. Urban
(1998) extends the basic model to include inventory-related
costs and compare heuristic solutions.
Bretthauer and Shetty (2002) provide a review of non-

linear resource allocation models. Due to substitution, our
objective function is a nonseparable function of the inven-
tory levels. The quadratic knapsack problem is the only
nonseparable problem that has been studied. Dussault et al.
(1986) and Klastorin (1990) approximate the quadratic
problem with a series of separable problems. Gallo et al.
(1980) and Caprara et al. (1999) develop methods that
directly solve the nonseparable problem with 0-1 variables.

3. The Substitution Model
Substitution behavior is not limited to the cases when con-
sumers face stockouts. Stockout-based substitution is the

switch to an available variant by a consumer when her
favorite product is carried in the store, but is stocked out at
the time of her shopping. Assortment-based substitution is
the switch to an available variant by a consumer when her
favorite product is not carried in the store. The substitution
possibilities in retailing can be classified into three groups:
(1) The consumer shops a store repeatedly for a daily

consumable, and one day she finds it stocked out so she
buys another. This is an example of stockout-based substi-
tution.
(2) The consumer has a favorite product based on ads or

her past purchases at other stores, but the particular store
she visited on a given day might not carry that product.
This is an example of assortment-based substitution.
(3) The consumer chooses her favorite from what she

sees on the shelf and buys it if it is better than her
no-purchase option. In this case, there might be other prod-
ucts she might have preferred, but she didn’t see them
because either the retailer didn’t carry them or they are
stocked out. This could be an example for either substitu-
tion type, depending on whether the product is temporarily
stocked out or not carried at that store.
The first two groups fit repeat purchases such as food,

and the third fits one-time purchases such as apparel.
The substitution model considered in this paper is char-

acterized by the following assumptions:

Assumption (A1). Every customer chooses her favorite
variant from the set N�

Assumption (A2). If for any reason this favorite is not
available, with probability � she chooses a second favorite,
and with probability 1− � she elects not to purchase. The
probability of substituting product j for k is �kj .

When the substitute item is unavailable, consumers re-
peat the same procedure: decide whether or not to purchase
and choose a substitute. The lost sales probability 	1− ��
and the substitution probabilities could remain the same for
each repeated attempt or be specified differently for each
round. Unlike the MNL model, this model can differenti-
ate between categories that have the same initial demand
for the category but different substitution rates through the
choice of �.
We next state an assumption commonly made in assort-

ment planning models for tractability.

Assumption (A3). Either the substitute product is avail-
able and the sale is made, or the sale is lost. No more
attempts to substitute occur.

By limiting the number of substitution attempts, (A3) is
not too restrictive. Kök (2003) shows that a multi-attempt
model with �′ can be approximated with a single-attempt
substitution model with rate �′′ > �′, as long as �′ is not
too large. In addition, a single-attempt model is similar to
the utility-based MNL model, where the rate of substitu-
tion depends on the set of available products: Although � is
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fixed in our model, if a consumer cannot find her second-
favorite product either, the sale is lost, and that is equiva-
lent to less-frequent substitution when the set of available
products is smaller.
The effective demand rate function under this substitu-

tion model is

Dj	f�d�= dj +
(∑
k	S
�kjdk+

∑
k∈S
�kjLk	fk�dk�

)
� (2)

where the Lk function represents lost sales (average unmet
demand) of product k. The first sum in (2) is the incremen-
tal demand for product j due to assortment-based substi-
tution, and the second sum is the incremental demand for
product j due to stockout-based substitution.

4. Demand Estimation
The data typically available for estimating the parameters
of a demand model include the number of customers that
made a transaction at each store on a given day, the sales for
each product-store-day, and additional variables that influ-
ence demand, such as weather, holidays, and marketing
variables (such as price and promotion). At Albert Heijn,
assortment changes in permanent categories are done twice
a year. Thus, at a particular store, all consumers see the
same assortment (choice set) throughout the data collection
period. At the time of our study, Albert Heijn was achieving
99.5% service level for nonperishable products, so it is rea-
sonable to assume that a negligible level of stockout-based
substitution was occurring. Therefore, we can estimate the
demand of products carried in a store from store sales data.
One possible estimation procedure is presented in §4.1,
which is a variation of the methods widely used in the mar-
keting literature and works well in our application. If the
store carries less than a full assortment, then these demand
estimates include the demand due to assortment-based sub-
stitution. We describe a procedure in §4.2 for estimating
the assortment-based substitution rate using demand esti-
mates from multiple stores, and we use this procedure to
estimate the original demand from sales data that include
assortment-based substitution. If the service levels are not
high enough to ignore stockouts and stockout-based substi-
tution but inventory-transactions data are available, one can
estimate the original demand for each product and substitu-
tion probabilities (for both stockout- and assortment-based
substitution) simultaneously by using a generalization of
the demand estimation approach in §4.1. This generalized
estimation approach is presented in §4.3.

4.1. Estimation of Demand for Products
Carried in a Store

The estimation model in this section is based on the follow-
ing assumption. The stockout rate is very low; therefore, it
is reasonable to assume that stockouts and stockout-based
substitution is negligible. We generalize the method to
include stockouts and stockout-based substitution in §4.3.

Our model of consumer purchase behavior is based on
three related decisions: (1) whether or not to buy from a
subcategory (purchase-incidence), (2) which variant to buy
(choice) given purchase incidence, and (3) how many units
to buy (quantity). This hierarchical model is standard in the
marketing literature and is commonly used on panel data
(e.g., Bucklin and Gupta 1992, Chintagunta 1993).
The demand for product j is

Dj =K	PQ�j =K�pjqj� j ∈ S� (3)

where K is the number of customers who visit the store
at a given day, 	PQ�j is the average demand for product j
per customer, � is the probability of purchase incidence
(i.e., the probability that a customer visiting the store buys
anything from the subcategory), pj is the choice probability
(i.e., the probability that variant j is chosen by a customer
given purchase incidence), and qj is the average quantity
that a customer buys given purchase incidence and choice
of product j .
Let the subscript h denote store, and t the day of the

observation. In the grocery industry, the number of cus-
tomers who visited store h on day t, Kht , can be estimated
by the daily number of customers who made transactions
in that store. We use log-linear regression on transactions
data to estimate &l, l= 1� � � � �23, in (4):

ln	Kht�=&1+&2Tt+&3HDIt+
6∑
l=1
&3+lB

l
t+

14∑
l=1
&9+lE

l
t � (4)

where the human discomfort index (HDI) is a combination
of hours of sunshine and humidity, Bl is days of the week
0-1 dummies, and El is holiday 0-1 dummies for holidays,
such as Christmas and Easter.
Purchase incidence is modeled as a binary choice:

�ht =
evht

1+ evht � (5)

where the expected utility from the subcategory v is mod-
eled as a linear function of various demand drivers for the
subcategory, i.e., vht = ,-ht .
We compute �ht , the probability of purchase incidence

for the subcategory, from sales data as the ratio of the
number of customers who bought any product in S to the
number of customers who visited store h on day t. We use
the following logistic regression applied to sales history to
estimate ,l for l= 1� � � � �24 in (6):

ln
(

�ht
1−�ht

)
= ,-ht = ,1+,2Tt +,3HDIt +

6∑
k=1
,3+kB

k
t

+,10Āht +
14∑
l=1
,10+lE

l
t � (6)

where T is the weather temperature and Ā is the average
promotion level in the subcategory. Ā=∑

j Ajht/�S�, where
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Ajht = 
1, if product j is on promotion on day t at store h;
0, otherwise}. Other variables could be used as appropriate
in a different context.
Product choice is modeled with the MNL framework,

where pjht is given by (1). The average utility of product j
to a customer, ujht , is assumed to be a function of product
characteristics, marketing, and environmental variables, i.e.,
ujht = /wjht .
We compute pjht from the sales data as the ratio of the

number of customers who bought product j to the number
of customers who bought any product in the subcategory
at store h on day t. At Albert Heijn, price and promotion
are the variables influencing uj . We fit an ordinary linear
regression to the log-centered transformation of (1) (see
Cooper and Nakanishi 1988 for details) to estimate /l for
l= 1� � � � � J + 2:

ln
(
pjht

p̄ht

)
= /wjht =

∑
k∈N
/kIjk+/J+1	Rjht − R̄ht�

+/J+2	Ajht−Āht� for all j ∈S� (7)

where p̄ht = 	
∏
j∈S pjht�1/�S�, Ijk = 
1, if j = k2 0 otherwise�,

R is price, and R̄ is average price in the subcategory. It
is straightforward to incorporate variables other than price
and promotion into this approach.
We compute qjht from sales data as the number of units

of product j sold divided by the number of customers who
bought product j at store h on day t and use linear regres-
sion to estimate 3l, l= 1� � � � � J + 16, in (8):

qjht =
∑
k∈N
3kIjk+ 3J+1Ajht + 3J+2HDIt +

14∑
l=1
3J+2+lE

l
t

for all j ∈ S� (8)

We call this four-stage model the choice-based approach.
The choice-based approach can be used in other contexts
by including the relevant explanatory variables in (4)–(8).
The current method used at Albert Heijn, called the direct
approach, is estimating 	PQ�j for each SKU directly via
logistic regression, with similar explanatory variables. The
quality of estimation is reported for both models in §6.2.
The advantage of the choice-based model is that it imitates
consumer choice behavior in a subcategory of substitutable
products. In contrast, demand for SKUs in a subcategory
is independent in the direct approach. Another advantage
of the choice-based model, which will become apparent in
§4.3, is that it can be generalized to estimate substitution
behavior with inventory-transactions data, whereas it is not
clear whether the direct approach is suitable for such a gen-
eralization. Nevertheless, this demand estimation module
can be replaced with Albert Heijn’s method or any other
method without affecting the assortment-based substitution
procedure and the optimization module. The only part of
the paper that requires the choice-based approach is the
stockout-based substitution estimation procedure in §4.3.

4.2. Estimation of Assortment-Based Substitution
with Sales Summary Data

Suppose that a store carries assortment S ⊂ N and that
stockouts are negligible. We observe Dj for products j ∈ S
from sales data. Note that at a store with full assortment
(i.e., S =N ), no substitution takes place; hence Dj = dj for
all j . If no store carries N , we redefine N as the broadest
assortment carried in any store. Therefore, we can estimate
dj for j ∈N from the sales data of a similar store that car-
ries a full assortment. If

∑
j∈S Dj >

∑
j∈S dj , we conclude

that the substitution rate in this subcategory is positive.
Note also that our estimate of the underlying substitution
rate must be higher if the gap is larger.
The substitution estimation method relies on comparing

demand estimates from multiple stores. Rather than work-
ing with demand estimates, we use demand per customer,
	PQ�j , to eliminate the scale differences between stores.
Unless it is necessary to do so explicitly, we omit the time
subscript t for brevity.

After-Substitution Demand Estimation (ASDE) Mod-
els. We estimate the demand per customer via the appli-
cation of the above models to data from a particular store h
with assortment Sh.

	PQ�jh =�pjhqjh� j ∈ Sh ∀h
is the demand per customer for product j at store h, where
the model (6)–(8) is calibrated using data from store h.
Note that these demand estimates are for the effective
demand, i.e., Dj = Kh	PQ�jh, because they might include
substitution demand if N\Sh �= �.
Original Demand Estimation (ODE) Model. No as-

sortment-based substitution takes place at stores with full
assortment. We estimate the original demand for the prod-
ucts by calibrating the above models with data from all
full-assortment stores (i.e., h� Sh =N�. In ODE, regression
coefficients are common to all stores (i.e., the parameters
are not store specific):

	PQ�ojh =�opojhqojh� j ∈N� h� Sh =N�
The superscript o denotes that the parameter estimates
come from the ODE model.
After estimating the coefficients of the ODE model, we

apply ODE to every store to estimate the original demand,
i.e., dj =Kh	PQ�ojh for all h and for all j ∈N . To account
for store differences in the ODE models, we use additional
explanatory variables in the regression equations (6)–(8).
Albert Heijn considers store size (in square meters) and
percentage of customers who bike to the store as defining
store characteristics. Both have indications about the loca-
tion of the store (urban-suburban) and the demographics of
the customer base.
For full-assortment stores, both ODE and ASDE models

estimate the original demand; however, ASDE models are
store specific and therefore more accurate than ODE.
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ODE models are used to estimate the original demand at
all stores. Consider stores h′ and h′′, which have the same
store properties, Sh′ =N and N\Sh′′ �= �. Then, 	PQ�ojh′ =
	PQ�ojh′′ for j ∈N . That is, estimates of original demand dj
at a store with less than full assortment are the same as the
demand of those products in a comparable store with full
assortment.

Estimation of the Substitution Rate. For the purpose
of estimating assortment-based substitution, we restrict the
substitution matrix such that �kj can be expressed as a func-
tion of a single subcategory substitution rate ��We consider
two models. Under random substitution, consumers choose
their second-favorite product with equal probability:

�kj = �
1
�N � � k� j ∈N� (9)

Under proportional substitution, the rate of substitution to
a product is proportional to the original demand rate of the
product:

�kj = �
dj∑

l∈N\
k� dl
� k� j ∈N� (10)

These models reduce the number of substitution parameters
to be estimated from J 2 to one. In both models, when prod-
uct k is not available, 	1− �� fraction of the demand for
product k elects not to substitute, resulting in lost sales, and
the � fraction of demand is distributed to all other products.
These one-parameter models capture many important real
aspects of substitution. We are able to differentiate between
subcategories with low and high substitution rates through
the choice of �. The following properties of the models
are consistent with what would happen in a utility-based
framework:
(i) �kj � �kl if dj � dl, which implies that Dj � Dl if

and only if dj � dl.
(ii) Suppose that a store does not carry the full assort-

ment, i.e., N\S �= �. Because only one round of substitution
is allowed, the realized substitution rate from variant k to
other products

∑
j∈S �kj is increasing in set S. This means

that a consumer who cannot find her favorite variant in
the store is more likely to buy a substitute, as the set of
potential substitutes gets larger.
(iii) Finally, in the proportional substitution matrix, the

relative substitution rate from product k to i and from k
to j is di/dj . Recall that in the MNL model, that ratio is
eui/euj , the ratio of the products’ market shares.
Define the following auxiliary variables:
yh =

∑
j∈Sh	PQ�jh: subcategory total of after-substitution

demand at store h given assortment Sh according to esti-
mates from the ASDE model h.
xh =

∑
j∈Sh	PQ�

o
jh: subcategory total of original demand

at store h given assortment Sh according to estimates from
the ODE model.

zh =
∑
j∈N 	PQ�ojh: subcategory total of original demand

at store h given full assortment N according to estimates
from the ODE model.
In words, yh is the subcategory sales per customer at

store h (according to the ASDE model), xh is what store h
would have sold with its current assortment (according to
the ODE model) if there were no substitution, and zh is
what it would have sold (according to the ODE model) if it
carried the full assortment. The most accurate estimate of
observed sales per visiting customer at store h is yh, but we
do not know how much of yh is substitution demand. For a
given substitution rate �, the effective demand for product
j ∈ Sh at store i according to the ODE model is
	PQ�ojh+

∑
k∈N\Sh

�kj	PQ�
o
kh� (11)

Summing this over products j ∈ Sh gives us the estimate
ŷh	�� according to the ODE model and the assumed sub-
stitution structure (i.e., what store h would have sold based
on the ODE model estimates and substitution rate �):

ŷh	��=
∑
j∈Sh

(
	PQ�ojh+

∑
k∈N\Sh

�kj	PQ�
o
kh

)
�

Under random substitution, substituting �kj from (9), we
have

ŷh	��=
∑
j∈Sh
	PQ�ojh+

∑
j∈Sh

∑
k∈N\Sh

�

�N � 	PQ�
o
kh

= xh+ �
�Sh�
�N � 	zh− xh�� (12)

Similarly, under proportional substitution, substituting �kj
from (10), we have

ŷh	��=
∑
j∈Sh
	PQ�ojh+

∑
j∈Sh

∑
k∈N\Sh

�
Kh	PQ�

o
jh∑

l∈N−
k� Kh	PQ�nlh
	PQ�okh

= xh+ �
∑
j∈Sh
	PQ�njh

∑
k∈N\Sh

	PQ�okh∑
l∈N−
k�	PQ�olh

= xh+ �xh
∑

k∈N\Sh

	PQ�okh
zh− 	PQ�okh

� (13)

We choose the substitution rate to minimize the total
squared error of estimation across stores h and time peri-
ods t:

�∗ = argmin
0���1

∑
h

∑
t

	ŷht	��− yht�2� (14)

This procedure uses a combination of results from many
regression models to estimate a substitution rate (i.e., pur-
chase incidence, choice, and quantity models for each
ASDE model and the ODE model). The total squared error
in our predicted category sales (if we ignore substitution)
is
∑
h

∑
t	ŷht	0�−yht�2. Choosing �∗ to minimize this error

gives
∑
h

∑
t	ŷht	�

∗�− yht�2� We measure percentage error
reduction by comparing these two quantities. The substitu-
tion rate estimate becomes more significant if the percent-
age error reduction is higher. Results of the estimation at
Albert Heijn are presented in §6.2.
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Computation of the Original Demand Rates dj . This
involves two tasks: (i) deflating the demand rate of the
variants already in the assortment Sh, and (ii) estimating
a positive demand rate for the variants that are not in Sh.
Clearly, if Sh =N , no computation is necessary.
Define Th as the estimate of the total demand for prod-

ucts in N at store h. If the ODE model’s predictions were
perfect, Th would be equal to Khzh. However, ODE models
are less accurate than ASDE models because ASDE models
are store specific. Hence, in estimating Th, we scale Khzh
by the ratio of the ASDE model’s estimate of total subcat-
egory demand yh to the total subcategory demand ŷh	�

∗�
for Sh predicted by the ODE model:

Th =Khzh
yh

ŷh	�
∗�
�

Based on the ODE models, xh/zh fraction of the total sub-
category demand is for products in Sh and the remain-
ing 	1− xh/zh� is for products in N/Sh� We now allocate
the total demand Th between these two groups. The total
demand for the products in Sh is Thxh/zh� Because the
ASDE model h has the most accurate information about
relative sales of the products in Sh, we allocate this demand
to individual products in Sh proportional to the demand
estimates of the ASDE model:

djh = Th
xh
zh

	PQ�jh

yh
=Kh

xh
ŷh	�

∗�
	PQ�jh if j ∈ Sh� (15)

As one would expect, if the estimated substitution rate was
zero, then ŷh	�

∗�= xh due to Equations (12) and (13), and
demand of the products in Sh remain as they were from the
ASDE model, i.e., djh =Kh	PQ�jh.
Total demand for the products that are not in Sh is

Th	1− xh/zh�� Because store model h does not provide us
with any information on how this demand should be allo-
cated among products not in Sh, we allocate it proportion-
ally to the demand rate estimates for store h of the ODE
model (for example, if a small-sized product is selling bet-
ter in stores with a higher percentage of customers who
bike to the store, and h is such a store, we allocate a larger
part of the total to that small-sized product):

djh = Th
(
1− xh

zh

)
	PQ�ojh

zh− xh
=Kh

yh
ŷh	�

∗�
	PQ�ojh if j 	 Sh� (16)

Figure 1 presents an example of observed demand rates and
the computed true demand rates for a subcategory with nine
products. The right-most two products are not in Sh; there-
fore, their ASDE estimates are zero, but their true demand
rate estimates are positive. The ratio of the demand for
these two products to the total subcategory demand is the
same as this ratio in the ODE models. The true demand
rates of the first seven products (products in Sh) are lower

Figure 1. Estimates of observed and original demand
rates for a subcategory.
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than their ASDE estimates because the substitution demand
is now removed.
In our application, we estimate a substitution rate from

assortment-based substitution and use it for both types of
substitution. As Campo et al. (2004) points out, there are
significant similarities in consumer reactions to a perma-
nent assortment reduction and to stockouts. The advan-
tage of estimating assortment-based substitution is that it
enables us to estimate the demand rates of products in a
store including those that have never been carried in that
particular store.

4.3. Estimation of Stockout-Based Substitution
with Inventory-Transactions Data

We describe the algorithm for estimating stockout-based
substitution using data from a single store. We later de-
scribe how the procedure can be applied to incorporate
assortment-based substitution if data from multiple stores
with nonidentical assortments are available. Because only
a single store is considered, we drop the subscript h and
assume that S =N�
Inventory-transactions data record the inventory levels of

all products at every transaction such as replenishment or
sales. From these data, we can infer the inventory levels
of all products at all times. Sales transactions have records
of all customers who visited the store and their times of
departure. We assume that the number of customers who
visited the store but did not purchase anything is negligible.
We first summarize the consumer behavior. Consider the

customer who departs in time t. During her shopping, she
elects to purchase from the subcategory with probability
�t given by (5). She then chooses her favorite product j
with probability pjt given by (1). Recall that �t is a func-
tion of vt = ,-t and pjt is a function of ujt = /wjt . If the
consumer’s first choice is not available, then she substitutes
according to substitution probability matrix �= 	�kj�k� j∈S .
Our objective is to obtain maximum likelihood estimates

(MLE) of /, ,, and �. The general approach is to write
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the likelihood function that represents the probability of
observing the data, given our model of consumer behavior,
and maximize it over the variables to be estimated. Even
inventory-transactions data with this level of detail do not
record every step of the above consumer behavior. Cus-
tomers who are not interested in the subcategory, or who are
originally interested but could not find an acceptable substi-
tute, cannot be distinguished. Hence, inventory-transactions
data are an incomplete data set. In what follows, we see that
if complete data were available, we could write the likeli-
hood function and maximize it relatively easily. However,
in the presence of missing data, the function becomes com-
plex and difficult to maximize. We deal with this missing-
data problem by using the expectation-maximization (EM)
algorithm�We first define the notation, derive the complete-
data likelihood function and the incomplete-data likelihood
function, and then describe the details of the EM algorithm.
Define the following variables:

T : list of customer departure times indexed by t�
S	t�: set of available products at time t, S	t�⊂ S.
S̄	t�: set of products not available at time t, S̄	t� =

S\S	t�.
p̄jt: probability that consumer t chooses option j ∈ S

∪ 
0�.
p̄jt =

{
�tpjt if j ∈ S�
1−�t if j = 0�

x	t�: first choice, x	t� ∈ S ∪ 
0�.
y	t�: second choice (if applicable), y	t� ∈ S ∪ 
0�.
z	t�: observed choice, z	t� ∈ S	t�∪ 
0�.
If we were to observe the customer choice behavior com-

pletely, the complete data set would be composed of the
vectors 	S	t�� x	t�� y	t�� z	t��t∈T . Note that z	t� = x	t� if
and only if x	t� ∈ S	t�∪ 
0�. Also, z	t�= y	t� if and only
if x	t� ∈ S̄	t� and y	t� ∈ S	t�∪ 
0��
The data that can be inferred from the sales and inven-

tory transactions data are 	S	t�� z	t��t∈T � This data set is
incomplete because x	t� and y	t� are not observed.
Define the following auxiliary variables for j = 0�

1� � � � � J , k= 0�1� � � � � J , and t ∈ T :
X	t�= 
z	t��∪ 
j� j ∈ S̄	t���

Y 	j� t�=




if j = 0� then 
z	t���

if j > 0� then




z	t�� if z	t� > 0�

X	t�− 
j� if z	t�= 0�

;	j� k� t�=


1 if x	t�= j and y	t�= k�
0 otherwise.

X	t� is the candidate set for the first-choice product.
Y 	j� t� is the candidate set for the second choice given
first choice j . ;	j� k� t� summarizes every choice made by
a customer: if the customer at time t purchased her first

choice j , then ;	j� j� t� = 1. If a customer could not find
her first choice j and purchased her second choice k, then
;	j� k� t�= 1 for k �= j (k= 0 means she purchased “noth-
ing”). Note that ;	j� k� t� can take positive values only for
j ∈X	t� and k ∈ Y 	j� t�. The missing data are ;	j� k� t� for
j ∈X	t�� y ∈ Y 	j� t�� t ∈ T .
The likelihood function based on the incomplete data set

	S	t�� z	t��t∈T is

∏
t

(
p̄z	t��t +

∑
k∈S̄	t�

�k� z	t�p̄kt

)
�

Because the logarithm is an increasing function, maximiz-
ing the log-likelihood function and the likelihood func-
tion are equivalent. Anupindi et al. (1998) shows that the
log-likelihood function of a model equivalent to the above
model is concave in p̄j when p̄j is exogenous and stationary
(i.e., p̄jt = p̄j for all t). However, it is not clear whether the
likelihood function is concave in 	,�/���, and the numer-
ical optimization of this function is difficult.
An alternative approach that makes it easier to find

the MLE for this problem is the expectation-maximization
(EM) algorithm. The EM algorithm is the most widely
used statistical method for missing data problems. It uses
the log-likelihood function based on the complete data set
in an iterative algorithm starting with arbitrary 	,�/���.
The E-step replaces the incomplete data with their expecta-
tion using the current estimates. The M-step maximizes the
complete-data likelihood function to obtain new estimates.
The procedure is repeated until the parameter estimates
converge. Because we cannot establish concavity, it is pos-
sible that the EM algorithm converges to a local optimum.
One way to deal with this problem is to try different starting
points. The advantage of the procedure is that maximizing
the complete-data likelihood function is much easier than
maximizing an incomplete-data likelihood function.
Fix �jj = 1 for all j = 0�1� � � � � J and �0j = 0 for all

j = 1� � � � � J . The complete-data likelihood function is

L	,�/���=∏
t

∏
j∈X	t�

∏
k∈Y 	j� t�

	p̄jt�jk�
;	j� k� t��

Define <	j� t� = ∑
k∈Y 	j� t� ;	j� k� t�. The log-likelihood

function is

�	,�/���

=∑
t

∑
j∈X	t�

∑
k∈Y 	j� t�

;	j� k� t�	ln p̄jt + ln�jk�

=∑
t

∑
j∈X	t�\
0�

<	j�t�ln�t+
∑
t

∑
0∈X	t�

<	j�t�ln	1−�t�

+∑
t

∑
j∈X	t�\
0�

<	j� t� lnpjt

+∑
t

∑
j∈X	t�

∑
k∈Y 	j�t�

;	j� k� t� ln�jk� (17)
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Note that the log-likelihood function is composed of three
separate parts with �, p, and �. Hence, it is separable in ,,
/, and �, and the maximization of each part can be done
separately. The part with �t can be rewritten as∑
t

∑
j∈X	t�\
0�

<	j� t�	,-t − ln	1+ e,-t ��

−∑
t

∑
0∈X	t�

<	j� t� ln	1+ e,-t �

=∑
t

∑
j∈X	t�\
0�

<	j�t�,-t−
∑
t

∑
j∈X	t�

<	j�t�ln	1+e,-t �� (18)

This is identical to the log-likelihood function of the stan-
dard binary choice model, which is jointly concave in ,
(Greene 1997). The part of � with pjt can be rewritten as

∑
t

∑
j∈X	t�\
0�

<	j� t�

(
/wjt − ln

∑
l∈S
e/wlt

)
� (19)

This is identical to the log-likelihood function of the stan-
dard MNL model, which is jointly concave in / under fairly
general conditions (McFadden 1974). Finally, the part with
� is also concave. As a result, with complete data we can
obtain the MLE estimates for all parameters easily.
Each iteration of the EM algorithm consists of two steps.
Step 1. The E-step: We compute the expected value of

the missing data given 	,�/���.
Let ;̂	j� k� t� denote the expectation of ;	j� k� t� for j ∈

X	t�� k ∈ Y 	j� t�� t ∈ T �
;̂	j� k� t�

=E=;	j� k� t� � z	t�� 	,�/���>
= Pr
;	j� t�= 1 � z	t�� 	,�/����
= Pr
z	t� �;	j�t�=1�	,�/����Pr
;	j�k�t�=1�	,�/����

Pr
z	t� �	,�/����
= p̄jt�jk∑

i∈X	t�
∑
l∈Y 	i� t� p̄it�il

�

;̂	j� k� t� is the conditional probability that the customer
in time t choose first j then k given z	t� and S	t��
Step 2. The M-step: Given the estimates of the missing

data, we replace ;̂	j� k� t� for j ∈ X	t�, k ∈ Y 	j� t�, t ∈ T
in the complete data set to obtain the expectation of the
log-likelihood function. This is possible because the log-
likelihood function is linear in the missing data.
The maximization of (18) with respect to , and the max-

imization of (19) with respect to / can be done via stan-
dard nonlinear optimization techniques. If 	p̄0� p̄1� � � � � p̄J �
was exogenous rather than the outcome of a choice model,
we could obtain closed-form expressions for the MLEs.
To maximize (17) subject to

∑
j∈S∪
0� p̄j = 1, we write the

Lagrangian relaxation with dual variable ?0:

∑
t

∑
j∈X	t�

<	j� t� ln p̄j −?0
(∑

j

p̄j − 1
)
�

The solution to the first-order condition for p̄j yields

p̄j =
1
?0

∑
t� j∈X	t�

<	j� t��

Substitute these in
∑
j∈S∪
0�� p̄j = 1 and solve to obtain the

unique MLE estimates:

p̄j =
∑
t� j∈X	t� <	j� t�∑

i∈S∪
0�
∑
t� i∈X	t� <	i� t�

= 1
�T �

∑
t� j∈X	t�

<	j� t��

The estimate for the probability of j being the first choice
is simply the number of observations with j as the first
choice divided by the total number of customers.
Finally, to obtain the estimate of �, we maximize (17)

subject to the following constraints:∑
k∈S\
j�

�jk = 1 for all j ∈ S� (20)

The Lagrangian relaxation with dual variables ?j is

∑
t

[ ∑
j∈X	t�

∑
k∈Y 	j� t�

;	j� k� t� ln�jk

]
−∑

j∈S
?j

( ∑
k∈S\
j�

�jk− 1
)
�

The solution to the first-order condition for �jk yields

�jk =
1
?j

∑
t� j∈X	t�� k∈Y 	j� t�

;	j� k� t�� j� k ∈ S� j �= k� (21)

Replacing �jk in 	20� and solving for ?j , we get

?j =
∑

l∈S\
j�

∑
t� j∈X	t�� l∈Y 	j�t�

;	j� l� t��

Replacing that in (21), we obtain the estimates of the sub-
stitution probability matrix:

�jk =
∑
t� j∈X	t�� k∈Y 	j� t� ;	j� k� t�∑

l∈S\
j�
∑
t� j∈X	t�� l∈Y 	j� t� ;	j� l� t�

� j� k ∈ S� j �= k�

This is also quite intuitive. The probability of substitution
from j to k is the number of observations with j as the first
choice and k as the second choice, divided by the number
of observations with j as the first choice.
The arrival rate to the store @ can be estimated by divid-

ing the total number of customers that visited the store on
a given day (K) by the length of the day. A more refined
approach would be to consider a nonstationary arrival pro-
cess and estimate @	t� for different times of the day.
The estimation procedure above is a generalization of

the approaches in Anupindi et al. (1998) and Talluri and
van Ryzin (2004). Anupindi et al. (1998) estimate station-
ary @, p̄, and �, but do not consider the dynamic choice
process—that is, the dependence of p̄ on time and other
variables through , and /. Talluri and van Ryzin (2004)
estimate demand rate and the parameters of the MNL
choice model 	@�/�, but do not consider a substitution
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matrix. Our approach combines these approaches and esti-
mate 	@�,�/���, where the consumers’ original choice is
based on the MNL model (and the values of the market-
ing and other variables) and stockout-based substitution is
governed by a general probability matrix.
This procedure can be extended to multiple stores by sim-

ply including the store index h in all variables and all sums.
Any of ,, /, and � might or might not be store specific. If
they are all store specific, however, then each store’s esti-
mation problem is independent of the others. Let (,�/���
be common across stores. The procedure can be extended
to include assortment-based substitution by considering
Sh =N for all h. Of course, the products that are not carried
in a store would always be in S̄h	t�. The procedure can also
be modified to estimate different probability matrices �s

for stockout-based substitution and �a for assortment-based
substitution. This modification would require redefinition
of the auxiliary variables and sets. It is also necessary that
the assortments across stores sufficiently vary to be able to
estimate all elements of �a.

5. Assortment Optimization
Recall the objective function of the optimization problem
(AP):

Z	f�=∑
j

Gj	fj�Dj	f�d���

In the inventory system described in §1, Gj is a nonlin-
ear function of the allocated facings to product j . It is a
function of the facings of product j (fj ), and the facings
of all other SKUs in a subcategory through the Dj func-
tion. Hence, (AP) is a knapsack problem with a nonlin-
ear and nonseparable objective function, whose coefficients
need to be calculated for every combination of the decision
variables.
We propose the following iterative heuristic that solves a

series of separable problems. We set Dj	f�d�= dj for all j
and solve (AP) with the original demand rates resulting in
a particular facings allocation f0. At iteration t, we recom-
pute Dj	f

t−1�d� given � for all j according to Equation (2)
and then solve (AP). We keep iterating until f tj converges
for all j .

Iterative Heuristic (IH)

Step 1. Set t = 0. Solve (AP) with Z	f�=∑
j Gj	fj� dj�

via a greedy heuristic and record the solution as f0.
Step 2. t← t+ 1.
Step 3. Solve (AP) with Z	f t�=∑

j Gj	f
t
j �Dj	f

t−1�d��
via a greedy heuristic and record the solution as f t .
Step 4. If f tj �= f t−1j for all j , then the facing allocation

has changed, GO TO 2. If not, then the procedure con-
verged, with solution f t .

We estimate Gj	fj�Dj� by simulating the replenishment
of product j in isolation from other products. In Step 1
of (IH), we simulate each product with demand rate dj

Figure 2. Simulation estimates of gross profit curves
for three SKUs (1 and 2 are nonperishable
and 3 is perishable).
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and record Gj	fj� dj� and Lj	fj� dj� for fj = 1�2� � � � � In
Step 3, we simulate each product with demand rate Dj ,
where lost sales estimates in the computation of Dj via (2)
are those recorded in Step 1. Figure 2 illustrates the gross
profit curves for three SKUs. The details of the simulations
are discussed in §6.
Step 3 of the algorithm specifies an objective function

that is separable in the allocated facings (i.e., Gj depends
only on f tj ). Hence, (AP) becomes a separable knapsack
problem. The optimization in Step 3 is done by a greedy
heuristic.
Because Step 3 assumes independent products, the solu-

tion f t may imply a demand vector different than the
inputted demand vector. (IH) has converged when there is
consistency between the input demand vectors and the re-
sulting solution. We do not know the true value of the objec-
tive function until (IH) converges. Therefore, the objective
function value does not necessarily improve at each itera-
tion. The convergence of the algorithm is not guaranteed.
However, it never failed to converge in our numerical tests.
In the application, the algorithm stops when no further
improvement in the objective function value is achieved for
a number of iterations or when a maximum number of iter-
ations is reached.
(AP) can be generalized to multiple subcategories of

products that share the same shelf space by including sev-
eral subcategories in the summations in the objective func-
tion and the shelf-space constraint. Let the subscript i =
1� � � � � I be the subcategory index. The objective func-
tion in the multiple subcategory case would be Z	f� =∑
i

∑
j Gij	fij �Dij	fi�di��; the shelf-space constraint can be

modified similarly.
We propose the addition of the following local search

to the (IH) algorithm. The local search consists of making
small perturbations to the current solution and observing
the final impact of that perturbation.
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Local Search

Step 5. f∗ ← 	f ti �i=1�����I �.
Step 6. Randomly pick a subcategory i that was not

picked before in local search and that has positive variety,
i.e.,

∑
j f

∗
ij > 0. If none left, STOP.

Step 7. Drop the last product in subcategory i that is
added to the assortment and mark that product to not enter
the assortment again.
Step 8. Apply Steps 2 through 4. When the procedure

converges, if Z	f� > Z	f∗�, then f∗ ← 	f ti �i=1�����I ; otherwise,
	f ti �i=1�����I ← f∗.
Step 9. GO TO Step 6.

In the case of multiple subcategories in (AP), the fac-
ing allocations for SKUs also determine a shelf-space allo-
cation between subcategories. The shelf-space allocation
between categories for the whole store can even be deter-
mined in this way. This can be viewed as a bottom-up
approach to allocating shelf space in a store, as opposed to
a top-down approach, where store space is allocated to cat-
egories, then category space is allocated to subcategories,
and finally subcategory space to SKUs. In our application,
the two approaches are blended together: category shelf
space is determined by an external algorithm that is used
by Albert Heijn. Then, the space for each subcategory is
determined as a result of the facing allocation to SKUs in
(AP) given the category shelf space.
For nonseparable resource allocation problems, another

iterative method guaranteed to reach the optimal solution
in quadratic optimization problems is found in Dussault
et al. (1986) and Klastorin (1990). They simply solve the
integer problem with the branch-and-bound method, but
at each node of the branch-and-bound, method, solve the
relaxed (i.e., continuous variables) nonseparable quadratic
optimization problem with a series of separable problems.
At each iteration, Taylor approximation is updated based
on the current solution. Our method applies a similar idea
to the discrete space. The application of the greedy heuris-
tic in Step 3 corresponds to the solution of the approxi-
mate separable objective function, and the updating of the
demand vector using the current solution corresponds to the
recomputation of the Taylor approximation. The difference
is that our method incorporates integrality at each iteration,
whereas Dussault et al. (1986) and Klastorin (1990) impose
integrality constraints at the highest level of hierarchy in the
branch-and-bound method. Another difference is that the
quadratic problem’s Taylor approximation is clearly separa-
ble, whereas because it is hard to characterize the shape of
the dependence at the objective function level, we impose
separation at the input level (i.e., the demand vector) rather
than the objective function.

5.1. Numerical Study of the Iterative Heuristic

This section assesses the performance of the iterative
heuristic. We study three sets of examples. The first set
includes 14 single-subcategory problems with up to seven

Table 1. Performance of the iterative heuristic in com-
parison to the optimal solution.

�i = 0
for all i

�i = 1 for all i
After

Iteration 1 Iteration 1 convergence

Average % gap 0�1 3�0 0�5
Maximum % gap 3�2 24�1 12�1
Instances with zero-gap 85 14 40
out of 93 instances

SKUs in each subcategory. The second set includes 13 two-
subcategory problems with up to a total of eight SKUs
between the two subcategories. The third set includes four
three-subcategory problems with up to a total of eight
SKUs between them. The subcategories, information on
SKUs, and demand estimates are taken from the Albert
Heijn application. We consider the combination of the fol-
lowing settings resulting in six instances for each of the
31 problems:

�= 
0�1��
shelf space= 
1/6�1/3�2/3� ∗ 	full_service_shelf _space��

where full_service_shelf _space is set such that we have
sufficient space to carry all products with a service level
of 99.9% or more. We solve for the optimal solution via
enumeration and compare the heuristic solution to the opti-
mal gross profits. To reduce running time, we ignore the
characteristics of the products and of the replenishment
system and use a newsvendor profit function to compute
the gross profit, i.e., Gj	fj�Dj�=mj E=min	Dj� cjfj�> and
Lj	fj� dj�= E=max	0�dj − cjfj�>�
Table 1 summarizes the results. In the � = 0 case, the

initial greedy solution (Iteration 1 of the iterative heuristic)
is the final solution of the heuristic. The average percentage
gap with the optimal solution is 0.1% with a maximum of
3.2%. Iteration 1 of the iterative heuristic found the optimal
solution 85 times out of 93.
In the �= 1 case, the result from Iteration 1 has an aver-

age gap of 3.0% and a maximum gap of 24.1%, finding
the optimal solution in 14 times out of 93. The iterative
heuristic reduces the average gap to 0.5%, the maximum
gap to 12.1%, and finds the optimal solution in 40 instances
(26 more instances than in the first iteration). The 2.5% dif-
ference on average between the iterative heuristic solution
and the solution from the first iteration is simply the value
of explicitly considering substitution in optimization. Table
2 shows that the performance of the heuristic is very good,
particularly with high levels of shelf space.

5.2. Structural Properties of the Iterative Heuristic

In this section, we characterize the properties of the result-
ing assortment from the iterative heuristic. We describe
the impact of product characteristics such as gross mar-
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Table 2. Performance of the optimization method in
comparison to the optimal solution for differ-
ent levels of shelf space.

Shelf space (%)

Low Medium High

Iteration 1
Average % gap 3�2 1�5 0�0
Maximum % gap 24�1 12�1 0�4

After convergence
Average % gap 0�5 0�4 0�0
Maximum % gap 12�1 6�5 0�1

gin, space requirement, coefficient of variation of demand,
and case sizes on product selection and product inventory
levels. We start by defining the characteristics of the prod-
ucts and the replenishment system.
Products A and B belong to a subcategory with substi-

tution rate �� 0. They are nonperishable. They are subject
to the replenishment system described in §1. The lead time
is zero. Demand for both products follows the same family
of probability distributions. Effective demand for product
A	B� has a mean DA	DB� and coefficient of variation DA
(DB�� Unless otherwise stated, dA = dB, DA = DB, cA = cB,
and bA = bB = 1.
The gross profit function for a product depends on de-

mand, margin, and operational constraints. Demand level
and per-unit margin affect the maximum gross profit a
product can generate if sufficient inventory is held. Opera-
tional constraints, such as case sizes and delivery lead time,
affect the curvature of the gross profit function. A product
with a smaller case-pack (batch size) has a higher slope of
the gross profit curve for low inventory levels; therefore,
it can achieve the maximum gross profit with lower inven-
tory levels. The following lemmas state these observations
formally.

Lemma 1. Consider products A and B. Let f̃ denote the
vector of facing allocations for all products in the subcat-
egory other than A and B. If exactly one of the following
conditions is met:
(i) All else is equal and dA > dB� The demand distribu-

tion is one of Poisson, exponential or normal distribution.
� satisfies the condition that Dj �Dk if and only if dj � dk.
(ii) All else is equal and per-unit gross margins (m) of

A and B are such that mA >mB. Then,

EGA	f �DA� >EGB	f �DB� for f � 1 and any f̃�

where EG	f �D�≡G	f �D�−G	f − 1�D��
Proof. First note that because DA is fixed for given f̃ and
fB, GA	 � is a function of fA only.
(i) Because the substitution demand is allocated to the

products proportional to the original demand rates, the
mean of effective demands for products A and B follow
the order of the mean of original demands, i.e., dA > dB ⇒

DA > DB for any f̃ . Therefore, we can compare the gross
profit functions based on the original demand rates.
Let �DA and �DB denote the random demand variables

with mean DA and DB, respectively. The inventory level
after each order is cAfA and cBfB for A and B, respec-
tively. At each period, expected sales are E=min	 �DA�cAfA�>
and E=min	 �DB�cBfB�>� Clearly, increasing the demand rate
increases sales, i.e., GA	f �DA� >GB	f �DB�� The marginal
benefit of increasing the maximum inventory level evalu-
ated at inventory level I is Pr
 �DA � I�. Because DA >DB,
it is easy to show that �DA is stochastically larger than
�DB for the three distributions listed, i.e., Pr
 �DA � I� �
Pr
 �DB � I� for all I . Hence, EGA	f �DA� >EGB	f �DB�.
(ii) Because the substitution demand is allocated to the

products that are in the assortment proportional to the
original demand rates, DA = DB for any f̃ . G is sales
times per-unit gross margin. Because expected sales is the
same for A and B and mA >mB, we have EGA	f �DA�=
	mA/mB�EGB	f �DB� >EGB	f �DB�. �

The condition on the substitution matrix in part 	i� of
Lemma 1 is reasonable for a homogenous set of products,
consistent with substitution under the MNL model, and it is
satisfied by the random and proportional substitution matri-
ces in (9) and (10). Note that Lemma 1 also implies that
GA	f �DA� > GB	f �DB� for any f under both cases (i)
or (ii). We suspect that similar results to these lemmas hold
for replenishment systems with continuous time, continu-
ous or periodic review, and positive lead times.

Lemma 2. Consider products A and B. Let f̃ denote the
vector of facing allocations for all products in the subcat-
egory other than A and B. If exactly one of the following
conditions is met:
(i) All else is equal and DA < DB�
(ii) All else is equal, bA � 1, and bB is an integer multi-

ple of bA,
then, the following holds for any f̃:

GA	f �DA� >GB	f �DB� for f � 1

and

lim
f→�

GA	f �DA�= lim
f→�

GB	f �DB��

Proof. The second result is obvious: given infinite inven-
tory levels, sales for both products are equal to the expected
effective demand rates and we have DA = DB for any f̃
because dA = dB.
(i) At every period, the initial inventory level is the same

for both products. Note that the mean effective demand
for products A and B is the same. Expected sales is mean
demand − lost sales during each period. Lost sales in a
period increases with demand variance. Hence, sales of
product A is larger than product B.
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(ii) Product A’s replenishment system can always repli-
cate product B’s ordering decisions. However, because it is
more flexible, at any ordering point, A orders more than or
equal to the order size of B, resulting in more inventory
for A. This means lower lost sales and higher gross profits
in each period. �

The following theorems characterize properties of the
iterative heuristic solution based on the above lemmas and
the properties of the greedy heuristic.

Theorem 3. Consider products A and B. If exactly one of
the following conditions of Lemma 1 or condition wA �wB
is met, then fA � fB in the final solution of the iterative
heuristic.

Proof. Recall that wj is the width of a facing of product j .
In the greedy allocation step of each iteration, the value of
assigning the f th facing to product j per-unit shelf space
is EGj	f �Dj�/wj . In parts (i) and (ii), the value of the
nominator is higher for product A than B by Lemma 1. In
part (iii), the value of the denominator is smaller. Hence,
the greedy heuristic will never assign facing f to product B
before product A. �

If the first condition holds, the implications of this propo-
sition is clear; an allocation algorithm based on demand
rates should work fairly well when products are differenti-
ated by demand rates only. This is similar to the property
of optimal assortments in the unconstrained problem in van
Ryzin and Mahajan (1999). When the second (third) con-
dition holds, the proposition implies that more inventory
should be allocated to products with higher gross margin
(lower space requirement).

Theorem 4. Consider products A and B. If exactly one of
the conditions of Lemma 2 is met, then the following holds.
In the final solution of the iterative heuristic, if product B
is included in the assortment, then so is A (i.e., fB > 0=⇒
fA > 0�.

Proof. In the greedy allocation step at each iteration, the
value of assigning the first facing to product j per-unit shelf
space is GPj	1�Dj�/wj . By Lemma 2, the marginal value
is higher for product A than B. Hence, the greedy heuris-
tic will never assign the first facing to product B before
product A. �

When one of the conditions of Lemma 2 holds (i.e.,
when B has either a larger batch size or higher demand
variability), due to limited shelf space, if A is not included
in the assortment, then neither is B. Because the maxi-
mum value of GA is higher and the slope is higher for low
inventory levels, the profit impact of first facing is higher
for A, resulting in a higher rank in the ordered input list to
the greedy heuristic. However, if both products are in the
assortment, it is possible to have fB > fA in the solution.
The reason is that GA reaches its maximum level quickly

with the early facing allocations, whereas it takes more fac-
ings for B to reach its maximum. In such cases, allocation
heuristics based on demand rates perform poorly.
To summarize, products with higher demand, higher mar-

gin, or smaller physical size should be included first in the
assortment and should be assigned more inventory. Prod-
ucts with lower demand variability and smaller case sizes
should also be included in the assortment first, but more
inventory can be assigned to products with higher demand
variance and larger case sizes if the available shelf space is
sufficiently high.

6. Application

6.1. Data

At Albert Heijn, the data set included SKU-day-store level
sales data through a period of 20 weeks in seven mer-
chandise categories from 37 Albert Heijn stores. For each
store day, we know the number of customers who made a
transaction in the store. For each SKU-day-store, we know
sales data including the number of units sold, the num-
ber of customers who purchased that product, selling price,
and whether or not the product was on promotion. In addi-
tion, we have daily weather data and a calendar of holidays
such as Christmas and Easter. The categories are cereals,
bread spreads, butter & margarine, canned fruits, canned
vegetables, cookies, and banquet sweets. There were 114
subcategories and 880 SKUs in these seven categories. The
number of subcategories and SKUs in each category is
shown in Table 3. The size of subcategories varies from 1
to 29 SKUs, with an average of 7.7 and a standard devia-
tion of 5.7.

6.2. Estimation Results

Demand Estimation. The quality of the estimation by
models (6)–(8) is tested by reporting the ratio of mean
absolute deviation to average demand for each product.
Data from the first 16 weeks are used to calibrate (fit) the
regression models, and data from the last four weeks are
used to test the prediction ability.
We first report the results for the ASDE models. Table 4

reports average mean absolute deviation (MAD) figures for
both fit and test samples for seven merchandise categories.

Table 3. Summary of merchandise categories.

Category name # Subcategories # SKUs

1 24 219
2 18 58
3 25 177
17 16 260
53 14 55
55 9 55
127 8 56

Total 114 880
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Table 4. Comparison of the demand estimation models for products in the store.

SKU-level logistic
ASDE models (%) ODE models (%) models (%)

MAD Bias MAD Bias MAD Bias

Categories Fit Test Fit Test Fit Test Fit Test Fit Test Fit Test

1 76 81 −7 −5 88 92 −6 −1 74 81 −51 −53
2 90 80 −1 −6 81 90 −14 −5 75 89 −53 −47
3 76 81 −7 −5 86 91 −8 −3 75 81 −54 −53
17 77 79 −6 −2 99 98 6 10 74 117 −44 −17
53 58 58 −5 −4 77 75 6 7 62 68 −34 −39
55 39 42 −4 −3 51 56 0 5 47 51 −24 −22
127 77 79 −9 −7 93 93 −6 −3 76 88 −55 −49
Grand avg. 74 76 −6 −4 87 90 −3 2 72 89 −47 −40

The purchase incidence model has an average MAD of
22%. MAD of the choice probabilities range from 15%
for fast movers to 100% for slow movers, with an average
MAD of 40% across all products. MAD of quantity regres-
sion is 15% on average. The average MAD of 	PQ�j across
all products, subcategories, and stores is 74% in the fit
sample and 76% in the test sample. The average bias of
our approach is −6% and −4% in the test and fit samples,
respectively. The average MAD for the ODE models across
all SKUs and stores is 84% and 86% in the fit and test
samples, respectively.
We compare the quality of estimation by the ASDE

models with the current estimation method at Albert Heijn
(SKU-level logistic regression). Albert Heijn’s approach
yields a MAD of 72% and 89% and an average bias of
−47% and −40% in the fit and test samples, respectively.
Therefore, we conclude that our approach slightly outper-
forms the current approach in the quality of the estimation.

Substitution Rate. Among the 114 categories, 48 have
full assortment at all 37 stores. Therefore, we were able to
estimate the substitution rate for only the remaining 66 sub-
categories, for which the estimation results and the percent-
age error reduction are presented in Table 5 under random
and proportional substitution. In both cases, 32 subcate-
gories out of 66 have positive substitution rate estimates,
and average error reduction among those is 14% for pro-
portional and 10% for random substitution. It is important
to note that the estimates of � under random and propor-
tional substitution are either the same or very close for
most subcategories. In the very few cases that the models’
substitution rate estimates disagree, the error reduction is
less than 1%. We conclude that we can measure the rate of
substitution in a subcategory with either substitution model,
although the proportional substitution model seems to per-
form slightly better.

6.3. Application Details

As mentioned before, we use simulation to estimate each
product’s average gross profit for the given number of fac-
ings (in isolation from other products) because we are

not able to obtain closed-form or approximate expressions
for the complicated inventory model used at Albert Heijn.
In previous studies, Albert Heijn established that demand
follows a Poisson distribution for slow-moving products
(i.e., product with a daily demand rate less than 10 units)
and gamma distribution with standard deviation equal to the
square root of the mean for fast-moving products (i.e., daily
demand rate higher than 10 units). For perishable products,
the age of individual units is tracked in the simulation, and
products reaching their shelf life are disposed. The simula-
tion results are averages from multiple replications. In each
replication, the first 10 periods are the warm-up periods,
and statistics are recorded for the last 250 periods. We con-
tinue to replicate until a 95% confidence interval for the
average gross profit is reached.
There are other operational constraints that are incorpo-

rated into the optimization module for the real application.
The minimum number of SKUs and the minimum number
of facings in a subcategory and the minimum and maxi-
mum number of facings for particular SKUs are specified
by merchandising managers. It is not difficult to incorpo-
rate these constraints into the solution of Steps 1 and 3
of the iterative heuristic. The merchandising managers also
have the option to override the recommended substitution
rates.
The delivery schedule for each category of products is

known. A period is defined as the time between two deliv-
eries. We estimate the original demand for each SKU for
each period by using the methodology in §4.2. For each
subcategory, we choose the period that has the highest total
demand across SKUs. We call this the peak-load period.
The optimization is done for the peak-load period demands.
For nonperishable items, the assigned facings are filled as
much as possible (following inventory policy) at all times,
even during nonpeak-load periods. For perishable items
such as produce that have a shelf life of a few days or less,
the recommended facing allocations determine which prod-
ucts will be carried in a store, but inventories are controlled
dynamically: Albert Heijn uses a real-time system that esti-
mates the demand for each product in the assortment based
on the sales in the last few hours, and places an order to
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Table 5. Substitution estimates from different weeks in the planning period.

Proportional Random
substitution substitution

Number of stores Total error % Error % Error Models
Group Subcategory �N � Min�S� with �S�< �N � (�= 0) �∗ reductiona (%) �∗ reductiona (%) disagree

1 3 14 13 6 78�2 0 0�0 0 0�0
1 5 8 5 7 6�2 0 0�0 0 0�0
1 13 4 2 10 6�6 1 0�5 1 1�1
1 19 23 20 11 135�0 0 0�0 0 0�0
1 20 10 9 5 54�7 0 0�0 0 0�0
1 25 7 6 4 32�3 0 0�0 0 0�0
1 26 7 6 6 37�5 0 0�0 0 0�0
1 27 6 5 7 37�6 0�2 0�4 0�3 0�4
1 28 10 9 7 218�9 1 0�9 1 0�8
1 29 10 8 22 79�6 0 0�0 0 0�0
1 30 4 3 7 8�5 0 0�0 0 0�0
1 31 13 12 1 6�8 0 0�0 0 0�0
1 32 18 8 24 24�5 1 0�9 0�4 0�2 yes
2 7 6 4 1 0�1 0 0�0 0 0�0
2 12 5 3 4 5�0 0�9 28�0 0�7 13�5
2 17 3 1 1 0�3 0�9 30�6 1 30�6
2 21 5 3 4 8�0 1 5�8 1 3�3
3 7 9 8 3 6�4 0 0�0 0 0�0
3 8 9 7 12 46�6 0 0�0 1 1�0 yes
3 10 8 7 2 1�0 0 0�0 0 0�0
3 15 4 3 1 8�5 0 0�0 0 0�0
3 17 9 8 1 4�1 0�7 24�5 0�8 24�5
3 20 11 9 3 5�1 1 17�7 1 15�6
3 23 9 7 8 57�5 1 2�7 1 2�7
3 24 6 4 4 2�2 1 5�4 1 3�5
3 25 6 5 4 5�4 0 0�0 0 0�0
3 26 6 5 4 4�6 0 0�0 0 0�0
3 27 23 9 9 148�7 0 0�0 0�2 0�6 yes
3 39 7 5 6 23�0 1 0�3 1 0�1
3 40 6 5 1 0�8 1 31�5 1 26�8
3 41 4 3 2 1�0 1 6�7 1 5�1
3 43 8 6 4 18�3 1 41�7 1 42�9
17 4 14 13 4 134�7 0 0�0 0 0�0
17 6 8 5 6 598�3 0 0�0 0 0�0
17 7 10 8 4 218�2 1 15�5 1 12�4
17 11 21 12 37 143�9 1 13�4 1 15�5
17 12 29 17 37 662�6 0�3 0�1 0�5 1�7
17 14 21 17 9 1�611�3 1 20�5 1 2�2
17 15 12 10 5 34�3 0�9 4�8 0�8 4�0
17 17 5 3 6 9�6 0�6 1�9 0�4 0�6
17 21 4 3 3 7�5 1 35�3 1 30�1
17 23 19 10 32 566�1 1 12�8 1 5�8
17 24 20 16 29 970�1 1 0�2 0 0�0 yes
17 26 22 9 36 7�476�3 1 51�1 1 8�7
17 27 15 7 34 3�675�4 1 58�8 1 32�1
17 31 11 9 2 20�1 1 1�2 1 4�0
17 32 28 18 37 338�3 0 0�0 0 0�0
17 33 21 12 37 500�1 1 0�7 0 0�0 yes
53 25 9 7 13 877�6 0�8 0�3 0�9 0�3
53 33 5 4 1 1�0 0 0�0 0 0�0
53 34 8 6 8 304�5 1 8�9 1 0�7
53 37 2 1 2 5�5 0 0�0 0 0�0
53 40 5 4 3 11�5 0 0�0 0 0�0
53 41 4 3 1 1�9 0 0�0 0 0�0
53 45 2 1 4 6�0 0 0�0 0 0�0
53 46 4 3 1 0�3 0 0�0 0 0�0

Table continues on next page.
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Table 5 (continued).

Proportional Random
substitution substitution

Number of stores Total error % Error % Error Models
Group Subcategory �N � Min�S� with �S�< �N � (�= 0) �∗ reductiona (%) �∗ reductiona (%) disagree

55 5 8 6 4 359�2 1 26�4 1 22�2
55 27 9 7 3 189�5 0 0�0 0 0�0
55 30 8 7 3 1�176�9 0 0�0 0 0�0
127 2 4 3 5 30�4 0 0�0 0 0�0
127 3 8 7 11 54�9 0�5 1�5 0�5 1�5
127 7 6 5 1 5�8 0 0�0 0 0�0
127 8 10 6 15 52�1 0 0�0 0 0�0
127 9 7 6 4 6�1 0 0�0 0 0�0
127 11 7 6 5 20�8 0 0�0 0 0�0
127 13 9 8 10 49�6 0 0�0 0 0�0

Note. aError reduction= 1−∑
h

∑
t �ŷht���− yht�

2/
∑

h

∑
t �ŷht�0�− yht�

2.

maximize each product’s expected revenues minus the cost
of disposed inventory.
Some products have case sizes larger than the capac-

ity of a single facing. If only one facing is assigned to
such items, the reorder point is negative, no inventory is
carried, and sales of the item is zero. Nevertheless, sec-
ond or third facings can create positive returns. The regu-
lar greedy heuristic never assigns the first facing to these
products because the marginal benefit of the first facing is
zero. Therefore, for products with a case size larger than
a facing, the first facing is defined as a combination of as
many facings as necessary to fit one case-pack. Also, for
perishable products or products with a high demand rate,
the gross profit function might be nonconcave: if the inven-
tory level is frequently zero at the end of the period (either
because unsold units are disposed of due to perishability or
all inventory is sold due to high demand), and the number
of cases that fit in the given space does not increase with an
assigned facing, the last facing might not be effective. The
gross profit function resembles a step function that jumps
every time a new case is able to fit into the space defined
by the number of facings. This nonconcavity is dealt with
by allowing the greedy heuristic to consider allocating one
or two facings at a time.

6.4. Recommended Changes and
Financial Impact

We applied our estimation and optimization methodology
to the data from 37 stores and two categories that we had
shelf-space allocation data for. The categories butter & mar-
garine and cookies include 34 subcategories and 234 SKUs.
(AP) is solved for each category for a given category of
shelf space. The facing allocations for SKUs also deter-
mine the space allocated to subcategories. We compare
the category gross profit of the recommended assortments
with that of the current assortments at Albert Heijn. The
gross profit of the recommended system optimized over the

peak-load periods is 13.8% higher than that of the cur-
rent assortment. However, this improvement might not be
realized at nonpeak-load periods such as Monday through
Wednesday. Weekly gross profits are estimated based on
daily demand rates and service levels of peak-load periods
for high demand days, and with 100% service level for low
demand days. The estimated total improvement in weekly
gross profit is 6.2%. Table 6 summarizes these results.
It might be fairer to benchmark our procedure with the

assortment Albert Heijn would likely create given recent
sales data rather than the existing assortment determined
six months ago. The assortment planning principles used
at Albert Heijn involve allocating shelf space to prod-
ucts (hence selecting the assortment and reallocating space
between subcategories) proportional to their average sales
at that store. The continuous numbers are rounded down to
discrete facings, and resulting excess space is distributed to
the products that had the highest remainders in the round-
down procedure. We call this approach the proportional
allocation heuristic. As seen in Table 6, the proportional
allocation heuristic yields a gross profit that is 3.5% higher
than the existing assortment at Albert Heijn over the opti-
mized peak-load period and is 0.7% higher in weekly gross
profits. The weekly gross profit improvement by the propor-
tional improvement is about one-ninth of the improvement
associated with our approach.
According to 2002 financial data, Albert Heijn’s gross

profit is 25% of its revenues, and its pretax income is 3% of
its revenues. Therefore, a 6.2% increase in gross profit is a
1.55% increase in revenues, which increases pretax income
to 4.55%. In other words, the impact of our methodol-
ogy would bring a 52% increase in pretax profits. Based
on Albert Heijn’s $10 billion yearly sales, the use of our
approach yields a $155 million increase in pretax profits.
A summary of the recommended changes is presented in

Table 7. There were 35 subcategories and 37 stores consid-
ered, leading to 1,295 combinations. The recommendation
is to reduce the number of products offered in 627 cases,
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Table 6. Gross profit improvements by our recommended solution and the proportional
allocation heuristic over the current assortments at Albert Heijn.

% Improvement in % Improvement in
peak-load gross profit (%) weekly gross profit (%)

Product Proportional Recommended Proportional Recommended
category allocation solution allocation solution

3 Average 3�5 13 1�3 7�0
Min −3�1 1�6 −2�7 0�7
Max 45�8 76�0 15�7 30�9

55 Average 3�6 15 0�3 5�6
Min −5�0 0�0 −3�4 0�3
Max 30�3 65�4 8�8 19�3

Grand average 3�6 13�9 0�7 6�2

Table 7. Summary of recommended changes across all stores and subcategories.

# of stores with
assortment size Average absolute

change in subcategory Average absolute
Category Subcategory Decreased Increased shelf space (%) change in # facings (%)

3 7 20 3 15 15
8 11 6 15 15
9 10 0 24 24
10 8 7 15 15
11 9 0 25 26
13 37 0 19 21
14 29 0 28 32
15 10 1 22 21
16 6 0 27 27
17 14 5 25 27
19 14 3 25 24
20 17 5 20 20
21 26 0 30 29
23 15 5 26 27
24 15 2 21 22
25 17 2 22 20
26 15 1 21 21
27 2 23 98 93
39 23 2 28 28
40 16 3 29 28
41 27 1 52 52
42 28 0 23 23
43 24 2 22 20
44 26 0 17 17
47 12 0 21 21

3 Total 431 71 27 27

55 5 35 0 25 23
6 22 0 23 23
7 7 0 17 16
12 33 0 21 21
15 10 0 31 31
18 15 0 22 22
24 27 0 19 18
27 33 1 11 11
30 14 2 39 37

55 Total 196 3 23 23

Grand total 627 74 26 26
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Table 8. Impact of the substitution rate on assortment
size, shelf space, and total number of facings
in a subcategory.

Substitution rate (%)

Low Medium High

Average magnitude of 77 29 28
assortment size increase

Average magnitude of −24 −26 −29
assortment size decrease

Average change in 12 −3 −3
shelf space

Average change in 11 −3 −2
number of facings

Note. The substitution rate is classified as low if � < 0
3; high if
�> 0
7; medium otherwise.

add more products in 74 cases, and not change the size
of the assortment in the remaining 594 cases. Table 7 also
shows that the magnitude of the changes in the shelf space
and the number of facings assigned to a subcategory are
quite large.
Table 8 illustrates the relation between the magnitude of

recommended changes in a subcategory and the substitution
rate. Shelf space and facings are transferred from categories

Table 9. Description of the recommended changes to Albert Heijn assortment and breakdown of the gross profit improve-
ment by subcategory for two examples.

Current solution Recommended changes

Subcat. Space GP # SKUs # SKUs Space (%) GP (%) Other

(a) Store 1,002, category 55, an average example with 12% gross profit improvement.

5 989 11�824 8 −3 2 35 Added facings to 3 products.
6 715 11�352 3 0 43 1 Added 3 facings to a product.
7 644 8�101 5 0 17 4 Added 1 facing to a product.
12 1�938 33�418 7 0 −29 0 Reduced 1 facing each from 6 products.
15 1�968 22�031 6 0 −41 0 Reduced 1 facing each from 6 products.
18 877 7�661 5 −2 −13 9 Added 1–2 facings to 3 products.
24 1�272 8�691 4 −1 −9 28 Added 1 facing to 1 product, reduced 1 from another.
27 2�870 21�418 9 −3 5 7 Added 1 facing each to 5 products.
30 2�017 30�362 8 −1 50 32 Added 4 facings to a product, 3 to another, 1 to another.

(b) Store 1,141, category 55, an extreme example with 65% gross profit improvement.

5 1�510 11�75 8 −2 6 67 Added 1 facing to 4 products.
6 1�022 6�164 3 −1 −19 76 Added 2 facings to a product with a very large case size.
7 1�154 6�544 5 0 26 54 Reduced facings from a product with decreasing GP

(due to disposals) and increased facings for the others by 1.
12 2�688 37�366 7 −1 −15 6 Dropped a product with negative GP, increased 2 facings for

2 products.
15 2�804 19�03 6 −1 −25 50 Dropped a low-margin product and added 3 facings to a

product with higher margin and large case size.
18 1�422 7�721 5 0 48 63 Added facings to 4 products and reduced 1 facing from

a product.
24 1�968 1�64 4 −3 −78 −18 Dropped products require 3–4 facings for significant sales

because case sizes are twice the capacity of facings, but
demand and margins are low.

27 3�978 4�598 9 −5 −26 181 Dropped 4 products with very low GP; added facings to
others, all large case size, one also with high margin.

30 3�501 16�081 8 0 79 195 Added 8 facings to 2 products with case sizes 1.5 times facing
capacity and 2 facings to 2 products with also large cases.

Note. GP denotes gross profit.

with high substitution rates to those with low substitution
rates. Similarly, conditional on an increase in assortment
size, it seems that the magnitude is larger in subcategories
with low substitution rates. These observations support the
intuition that broader assortment and higher in-stock rates
are more important in categories with higher substitution.
The improvements achieved by our approach stems from

three proposed changes to the existing assortment: radi-
cal alteration in total space allocated for subcategories, the
addition/deletion of SKUs within subcategories, and the
facing exchanges between SKUs in subcategories. One of
the reasons for facing exchanges between SKUs is due
to Theorem 4. Facing allocations have usually been based
on sales levels (demand rates). Therefore, a high-demand
item always gets more facings. However, maximum inven-
tory levels are usually much higher than the demand rates
as a result of positive lead times and case-packs. A high-
demand item that has a smaller case-pack does not need
several facings to reach its sales plateau. These facings can
be assigned to lower demand items with larger case-packs.
This benefit could not have been recognized if operational
aspects such as case-packs had not been incorporated into
gross profit estimation. Table 9 presents a more detailed
description of the changes for two examples from cate-
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gory 55. The first example (Table 9a) is an average case
where the recommended solution achieved a 12% improve-
ment in gross profits. Products with low profit are dropped
from the assortment, the number of facings of products
with low marginal return are reduced, and the number of
facings of those with higher returns are increased. The
second example (Table 9b) is from the store that achieved
the highest improvement, a 65% increase in profit. Again,
most of the changes are facing exchanges between prod-
ucts; particularly, the products with large case-packs are
assigned more facings by the algorithm. Subcategories 6,
15, and 27 achieved higher profits with less space. In all
three cases, products with low profits are dropped from
the assortment, and more facings are assigned to products
with large case-packs and larger margins. These benefits
underline the importance of considering the profit impact
of facing sizes, case-packs, margins, and demand together
while developing an assortment plan.

7. Conclusion
The objective of this paper is to develop an algorithmic
process to help retailers determine the best assortment for
each store. This paper formulates and solves a general
and realistic assortment optimization problem. We provide
methodologies for estimating the parameters of the model
for different sets of available data. Using our optimiza-
tion algorithm, the retailer can add or delete products from
stores that carry less than full assortment and delete prod-
ucts from stores with full assortment. We establish cer-
tain structural properties of the assortments suggested by
the heuristic optimization algorithm. We find that products
with higher demand, higher margin, or smaller physical
size should be included first in the assortment and should
be assigned more inventory. Products with lower demand
variability and smaller case sizes should also be included
in the assortment first, but more inventory can be assigned
to products with higher demand variance and larger case
sizes if the available shelf space is sufficiently high. Finally,
we describe the details and the impact of our application
at Albert Heijn. We observe the above structural proper-
ties in the optimal assortments computed for Albert Heijn
as well. Comparing the results of the recommendations of
our system with the existing assortments suggests a more
than 50% increase in profits. The method described here
demonstrates that focusing on the right decisions (the set of
products and their stocking levels) and taking operational
characteristics of products into account in assortment plan-
ning can greatly improve a retailer’s profitability.
The assortment optimization model deals with a setting

in which shelf space limits total inventory and shelf-space
allocation determines the inventory level of each product.
We allow for any inventory replenishment system. We con-
sider mature product categories and assume that demand
estimates from past data are valid. Our methodology is not
suitable for seasonal product categories because we do not

deal with a dynamic assortment problem. Still, the opti-
mization model can be used within each season. We believe
that our model is applicable to supermarkets, convenience
stores, liquor stores, most parts of home improvement
stores (e.g., Home Depot), without ruling out other possible
retail applications.
Our estimation methodology is also quite general. The

specific regression equations will, of course, depend on the
context, but any estimation procedure that involves a choice
from multiple products can replace the procedure in §4.1.
The methodology for estimating choice and substitution
simultaneously is general and can be applied to any setting
where inventory-transactions data are available. If inventory
data are not available, estimating assortment-based substi-
tution requires sales data from multiple stores with vary-
ing assortments. Although the model we presented in §4.1
does not lend itself directly to estimating the demand for
new products, it is easy to modify our choice models to
use the approach suggested by Fader and Hardie (1996).
They demonstrate that using product attributes as indepen-
dent variables in the regression equations rather than using
product-specific dummy variables enables the estimation of
demand for new products, which can then be included in
consideration sets used for assortment optimization.
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