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Inventory record inaccuracy leads to ineffective replenishment decisions and deteriorates supply chain
performance. Conducting cycle counts (i.e., periodic inventory auditing) is a common approach to
correcting inventory records. It is not clear, however, how inaccuracy at different locations affects supply
chain performance and how an effective cycle-count program for a multi-stage supply chain should be
designed. This paper aims to answer these questions by considering a serial supply chain that has
inventory record inaccuracy and operates under local base-stock policies. A random error, representing
a stock loss, such as shrinkage or spoilage, reduces the physical inventory at each location in each period.
The errors are cumulative and are not observed until a location performs a cycle count. We provide a
simple recursion to evaluate the system cost and propose a heuristic to obtain effective base-stock levels.
For a two-stage system with identical error distributions and counting costs, we prove that it is more
effective to conduct more frequent cycle counts at the downstream stage. In a numerical study for more
general systems, we find that location (proximity to the customer), error rates, and counting costs
are primary factors that determine which stages should get a higher priority when allocating cycle
counts. However, it is in general not effective to allocate all cycle counts to the priority stages only.
One should balance cycle counts between priority stages and non-priority stages by considering second-
ary factors such as lead times, holding costs, and the supply chain length. In particular, more cycle counts
should be allocated to a stage when the ratio of its lead time to the total system lead time is small and the
ratio of its holding cost to the total system holding cost is large. In addition, more cycle counts should be
allocated to downstream stages when the number of stages in the supply chain is large. The analysis and
insights generated from our study can be used to design guidelines or scorecard systems that help
managers design better cycle-count policies. Finally, we discuss implications of our study on RFID
investments in a supply chain.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Inventory record inaccuracy refers to the discrepancy between
physical inventory held in stock and the record of inventory stored
in the information system of a firm. Shrinkage, spoilage, misplaced
inventories, and transaction errors (e.g., scanning errors and
incorrectly counting products) contribute to inaccurate inventory
information. Inaccurate inventory information leads to ineffective
replenishment decisions, which, in turn, result in poor service
levels and higher inventory costs. This is a major issue affecting
supply chain performance in manufacturing, distribution and retail
settings. For example, DeHoratius and Raman (2008) found records
to be inaccurate 65% of the items stored at a publicly traded
retailer. According to ECR ECR Europe (2003), the value of lost
inventory due to shrinkage in 2000 was €13.4 billion for retailers
and €4.6 billion for manufacturers in Europe.

A common method to mitigate the impact of inventory
inaccuracy is to conduct cycle counts. Companies usually imple-
ment cycle-count policies according to an ABC classification
scheme, i.e., classifying products into A, B, C classes based on prod-
uct attributes, such as volume, error rate and value, and assigning a
count cycle to each class (Jordan, 1994). Motivated by empirical
studies and business practice, researchers recently have developed
various analytical models, aiming to study this problem more
rigorously (see Section 2 below). To our knowledge, all of the exist-
ing analytical results are on single-location models. Nevertheless,
major apparel retailers and consumer-packaged goods companies

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2014.01.052&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2014.01.052
mailto:gurhan.kok@duke.edu
mailto:khshang@duke.edu
http://dx.doi.org/10.1016/j.ejor.2014.01.052
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


92 A.G. Kök, K.H. Shang / European Journal of Operational Research 237 (2014) 91–105
have significant inaccuracy problems across their supply chains.
Managers have limited knowledge of the extent of inaccuracy at
different locations and their impact on overall supply chain perfor-
mance (Delen, Hardgrave, & Sharda, 2009; Hardgrave, Aloysius, &
Goyal, 2009, 2013). In this study, we investigate the impact of
inventory inaccuracy on the supply chain performance. In particu-
lar, we aim to answer the following questions: (1) What is the
impact of inventory inaccuracy at a location on the entire supply
chain performance? (2) Given the fact that cycle counts are costly,
which locations should have more frequent counts? (3) How should
different product attributes and system characteristics be taken
into account when designing cycle-count policies in a supply chain?
The answers to these questions are not readily available in the aca-
demic and business literatures. While one may argue that record
inaccuracy at downstream locations has a greater impact because
of proximity to customers, inaccuracy at an upstream location
affects the supply for all downstream locations. Similarly, one
may argue that maintaining accurate records at a location with a
longer lead time is more important because such locations are
slower to respond to demand changes. On the other hand, such
locations generally have more pipeline and safety stock, which
implies that they would be affected less by record inaccuracy.

In this paper, we consider a periodic-review, N-stage serial
supply chain with inventory record inaccuracy. Random customer
demand arrives at stage 1. Stage 1 replenishes from stage 2, stage
2 from stage 3, and so on, and stage N from an outside supplier with
ample supply. There are constant transportation lead times
between stages. Record inaccuracy is caused by a random inventory
loss that reduces physical inventory. (See Section 2 for a discussion
on the other causes of inventory inaccuracy.) To describe inventory
inaccuracy, we use the term ‘‘nominal’’ to signify inventory records
stored in the computer system, and ‘‘actual’’ to signify the physical
inventory levels. Each stage implements a cycle-count policy to
correct the inventory records. A fixed stage-specific inspection cost
is incurred for each cycle count. Errors at each stage are cumulative
and they are not observed by the information system unless
the stage conducts a cycle count. Thus, the discrepancy between
the nominal inventory and the actual inventory equals the accumu-
lated error since the last cycle count. The material flow is controlled
by local base-stock policies. That is, if the local nominal inventory
order position at a stage is less than a target base-stock level, the
stage places an order to raise the nominal inventory position to
the target level. Such a replenishment scheme is commonly seen
in practice and most firms have computer systems automate this
process. The objective is to minimize the actual average total
supply-chain cost per period.

To evaluate the system cost, we derive the actual local inventory
variables for any given cycle-count policy. However, obtaining
these local inventory variables requires characterizing the local
demand for each stage. One key contribution of this paper is that
we provide a simple procedure to evaluate the system cost. This
procedure recursively evaluates the cost for each echelon (a stage
and all of its downstream stages) starting from echelon 1 to echelon
N. Moreover, this recursion leads to a heuristic to find local base-
stock levels. A numerical study suggests that the heuristic is effec-
tive. We then use these results to answer the research questions.

For two-stage systems, regarding the impact of errors, we show
that it is more costly to have the same error occur at the down-
stream stage than at the upstream stage. Furthermore, regarding
the cycle-count policies, we show that it is always a better strategy
to assign more cycle counts to the downstream stage than to the
upstream stage when both stages have identical errors and count-
ing costs. For more general systems, we categorize system param-
eters into two groups in terms of their effect on cycle-count policy
decisions. Primary factors determine which stages should get a
higher priority when allocating cycle counts. They include location
(position in the supply chain), error rate, and counting cost. All else
being equal, downstream locations should be assigned more
frequent counts. However, a significantly higher error rate or lower
counting cost at an upstream stage may reverse the result. We
observe that the marginal benefit of cycle counts is decreasing in
its frequency. Thus, one should not allocate all cycle counts to a
single location. We therefore suggest using secondary factors to
determine whether the policy should strongly favor the high-
priority stages or allocate counts in a more balanced way. The
secondary factors include lead time and holding cost structure
and the supply chain length. We find that more cycle counts should
be allocated to a stage if the ratio of the stage’s lead time to the
total system lead time is small and the ratio of the stage’s holding
cost to the total holding cost is large. Furthermore, more cycle
counts should be allocated to downstream stages if the supply
chain is long (i.e., the number of stages in the supply chain is large).

Our research questions have implications for investment
decisions on Radio Frequency Identification (RFID) systems.
Specifically, if a location installs RFID readers, this will, in principle,
eliminate inventory inaccuracy by continuously monitoring the
inventory. This has the same effect as conducting a cycle count in
each period in our model. In fact, many RFID applications in retail
supply chains involve hand-held RFID readers, whose role is to facil-
itate cycle counting. Because RFID implementation can be very
costly (Kearney, 2004), many industry practitioners are concerned
about where RFID readers should be installed in a supply chain
(Chappell et al., 2002). Labor savings and investment costs of RFID
systems can be quantified in each stage in isolation from others
(Chopra & Sodhi, 2007), but it is not clear how one can quantify
the impact of reducing inaccuracy at a particular stage on supply
chain performance. The guidelines developed in this paper have
implications on how to prioritize RFID investments in a supply
chain.

The rest of the paper is organized as follows. Section 2 discusses
major causes of inventory inaccuracy in supply chains and reviews
the literature related to each of the causes. Section 3 presents a
single-stage model and discusses the model set-up. Section 4
introduces the serial system and provides a scheme to evaluate
the average total cost per period. Section 5 presents the lower
bound and the heuristic algorithm. Section 6 presents our analytical
and numerical results and provide answers to the research ques-
tions. Section 7 concludes. All proofs are provided in Appendix A.

2. Causes of inventory inaccuracy and related literature

Empirical research and industry reports indicate that shrinkage,
transaction errors, and misplaced items are the main reasons that
cause inventory inaccuracy (ECR Europe, 2003; Raman & Ton,
2003; Sheppard & Brown, 1993). In the following, we describe each
type of inaccuracy and its impact on the supply chain.

Shrinkage, also known as stock loss, may be due to theft by
shoppers or employees, and spoiled and damaged inventory. The
impact of shrinkage on the actual inventory is one-sided: it always
reduces the actual inventory. Thus, the inventory record is always
greater than or equal to the actual inventory when shrinkage is the
only reason that causes inventory inaccuracy. Our model considers
this type of inaccuracy. In a supply chain, inventory shrinkages
between locations are often independent because losing a unit of
inventory at one location is not related to that at another location.

Shrinkage is found to be the dominant cause of inventory
inaccuracy in many empirical studies. Kang and Gershwin (2005)
report two firms for which the majority of the inventory inaccuracy
is due to stock loss. Similarly, ECR Europe (2001, 2003) conduct a
comprehensive study over more than 200 companies and suggest
that stock loss errors may be more prominent than others. In these
studies, shrinkage is estimated to be about 1.7% of the sales for
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retailers and 0.56% for manufacturers. The National Retail Security
Survey of 118 retailers (Hollinger, 2003) reports similar results.
These studies emphasize the stockout effects of shrinkage. Chen
(2013) proposes a data-driven optimal inspection policy for a sin-
gle-item model. Fleisch and Tellkamp (2005) conduct a simulation
study on the impact of inventory shrinkage for a three-echelon
supply chain. Arguably, shrinkage has the most direct impact on
supply chain performance because shrinkage at an upstream
location will directly affect the stock availability of its downstream
location, which may, in turn, lead to significant stockouts or back-
logs for the system. In order to directly address this issue affecting
many supply chains, we consider only shrinkage-type inaccuracy in
the present paper.

Transaction errors refer to errors caused by misidentification of
the items or miscounting of the items in inbound and outbound
processes. This transaction will make the actual inventory larger
(smaller) than the nominal inventory. Thus, the impact of transac-
tion error on the actual inventory is two-sided: it may increase or
decrease the actual inventory. Iglehart and Morey (1972) is the
first paper to consider transaction errors in a single-stage model.
The inventory system implements a base-stock policy and the
objective is to find the cycle-count frequency that minimizes
inspection and inventory holding costs subject to a pre-specified
inaccuracy probability. In an empirical study of one retailer’s
records, DeHoratius and Raman (2008) report that the difference
between physical inventory and inventory record can be positive
or negative. They also find that the extent of errors increases with
sales volume, the number of stages in the supply chain, and
product variety. There are recent papers that investigate optimal
and effective inventory and inspection policies for single-stage
model, e.g., Kök and Shang (2007), DeHoratius, Mersereau, and
Schrage (2008), Sahin, Buzacott, and Dallery (2008), Deshpande,
Schwarz, and Raju (2009), Sahin and Dallery (2009), and Mersereau
(2012). To our knowledge, there has been no work on investigating
the impact of transaction errors on a multi-stage supply chain.

Misplaced or inaccessible inventory refers to inventory that is
physically at the facility, but its exact location is unknown. The
impact of misplaced inventory is also one-sided: it reduces actual
inventory levels. However, unlike shrinkage, misplaced inventory
is not permanently lost; it may be recovered and added to the actual
inventory after a cycle count. Rekik, Sahin, Jemai, and Dallery
(2008) investigate the impact of different types of misplacement
errors for a retailer–supplier system under a newsvednor frame-
work. Çamdereli and Swaminathan (2009) study inventory deci-
sions and coordination contracts for a system similar to Rekik et al.

Incorporating all error types in a model without any simplifying
assumptions is a difficult task even for single-stage systems. Atali,
Lee, and Özer (2005) and Bensoussan, Çakanyıldırım, and Sethi
(2007) consider multiple types of errors in a single-stage model.
The former assumes that errors occur independently from the
current inventory levels in order to derive inventory policies. The
latter develops a heuristic feedback policy due to the dimensionality
of the problem. We refer the reader to Chen and Mersereau (2013)
for a review on inventory inaccuracy issues and models.

Our research also pertains to the literature with RFID. One of the
benefits of RFID systems is greater visibility of material flow and
order progress. Gaukler, Özer, and Hausman (2008) and Kim,
Klabjan, and Simchi-Levi (2007) study expediting strategies given
the accurate order progress information from upstream stages.
Bottani, Montanari, and Volpi (2010) investigates the impact of
RFID on mitigating the bullwhip effect in the Italian FMCG supply
chain. Pei and Klabjan (2010) study the optimal inventory policy
for a serial system in which RFID systems provide order progress
information for replenishments and shipments. They compare
the expected costs of the model with different levels of RFID
deployment and find that broader deployment reduces costs. This
group of papers focuses on gaining visibility into order movements
that are usually modeled with a stochastic lead time. Our focus is
different in that we compare the benefit of reducing inaccuracy at
different stages in a supply chain. For a review of the literature on
RFID-related models and future applications, see Zipkin (2006)
and Lee and Özer (2007).

The present paper builds on the literature on multi-echelon
inventory systems, particularly the classical serial supply chain
model studied by Clark and Scarf (1960), Chen and Zheng (1994),
and many others. We incorporate inventory record inaccuracy
and cycle-count policies in the serial system by introducing
unobserved inventory errors at each stage. This leads to an
additional dimension in the inventory dynamics and expands the
set of decision variables.

Finally, this paper is related to inventory/production systems
with random yields. For single-stage yield models under periodic
review, Henig and Gerchak (1990) show that base-stock type
policies are optimal. Lee and Yano (1988) study a multi-stage mod-
el for a single production run to meet a single-period demand. Liu,
So, and Zhang (2010) consider the impact of supply reliability on
inventory and pricing decisions. On a related topic, Bollapragada,
Rao, and Zhang (2004) consider assembly systems with random
capacity at each location that are controlled with base-stock poli-
cies. In random yield and random capacity models, the uncertainty
at every stage is observable in each period after it is realized, which
removes any uncertainty about inventory levels in the supply
chain. In our model, however, the errors at a stage are not observed
and accumulate until a cycle count is performed.
3. Single-stage system

In this section we consider a single-stage system. We use this
model to illustrate the assumptions and the concept of nominal
and actual inventory variables. This discussion sets the stage for
the serial system.

Consider a periodic-review inventory system that orders accord-
ing to a base-stock policy. Time is divided into periods of length one
and the periods are numbered 0;1;2; . . .. There is a constant lead
time of L periods. Customer demand follows a Poisson process with
rate k. Let ½t; t þ rÞ and ½t; t þ r� denote the time interval over periods
t; t þ 1; . . . ; t þ r � 1 and periods t; t þ 1; . . . ; t þ r, respectively. Let
D½intt; t þ rÞ and D½t; t þ r� denote the total demand that occurs in
½t; t þ rÞ and ½t; t þ r�, respectively. We denote D½rÞ and D½r� the total
demand in r and r þ 1 periods for the long-run average cost calcu-
lations. We assume that a random loss of inventory occurs in each
period that reduces the level of actual inventory. We call the ran-
dom inventory loss an error and we assume that the errors follow
a Poisson process with rate l. Let n½t; t þ rÞ and n½t; t þ r� denote
the accumulated error in ½t; t þ rÞ and ½t; t þ r�, respectively, and
n½rÞ and n r½ � denote total error accumulated in r and r þ 1 periods
for the long-run average cost calculations. The system implements
a cycle-count policy to correct the inventory record. That is, the
stage conducts a cycle count every T periods, where T represents
the cycle-count interval. The system incurs a fixed cost of K every
time a cycle count is conducted. Errors in the system accumulate
and are not observed until a cycle count is conducted. As a result,
the discrepancy between actual and nominal inventory positions
is nondecreasing between two cycle counts. One may view this sys-
tem as consisting of two processes: (1) The actual inventory
dynamics and the cost evaluation process based on the actual
inventory and (2) the ordering process in which orders are placed
based on the nominal inventory order position (or inventory re-
cord). Below is the sequence of events in each period.
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(1) The stage receives a shipment at the beginning of a period,
(2) random error and random customer demand occurs during

the period,
(3) if the current period is a cycle-count period, then the stage

conducts a cycle count,
(4) the stage places an order according to the nominal inventory

order position,
(5) costs are evaluated at the end of the period.

We assume that the random demand and error processes dur-
ing the period are interleaving Poisson processes.1 The actual
inventory level at the end of a period is the beginning actual inven-
tory level minus the sum of the two Poisson random variables, i.e.,
one period of demand and one period of error, regardless of our
assumptions about the order of the two processes.

We now describe how these events affect the nominal and
actual inventory variables. We define the following inventory
variables to facilitate the subsequent discussion.

AIOP�ðtÞ ¼ Actual inventory order position at the beginning
of period t;

AIOPðtÞ ¼ Actual inventory order position after placing an
order at the end of period t;

AIL�ðtÞ ¼ Actual inventory level at the beginning of
period t after receiving a shipment;

AILðtÞ ¼ Actual inventory level after error and demand occur;
BðtÞ ¼ Actual backlogged consumer demand after error and

demand occur:

Let NIOP�ðtÞ, NIOPðtÞ, NIL�ðtÞ, and NILðtÞ denote the corresponding
nominal inventory variables. In event (1), both AIL�ðtÞ and NIL�ðtÞ
increase because of the arriving shipment. In event (2), random
error reduces the actual inventory variables and random demand
reduces the nominal and actual inventory variables. AILðtÞ and
AIOPðtÞ are determined by the total demand from the two random
processes. In event (3), the nominal inventory variables are aligned
with the actual ones if the stage conducts a cycle count. In event (4),
the stage places an order according to the nominal inventory order
position. That is, at the end of a period, if the nominal inventory
order position is less than the local base-stock level s, the stage
places an order that raises the nominal inventory order position
to s; otherwise, the stage does not order. Thus, event (4) determines
both NIOPðtÞ and AIOPðtÞ (or equivalently, NIOP�ðt þ 1Þ and
AIOP�ðt þ 1Þ). In event (5), costs are evaluated based on AILðtÞ. For
this purpose, define ½x�þ ¼maxfx; 0g and ½x�� ¼maxf0;�xg. A linear
holding cost h is incurred for each unit of actual on-hand inventory
½AILðtÞ�þ per period and a backorder cost b for each unit of actual
backlogged consumer demand BðtÞ per period. The system is back-
logged if AILðtÞ is negative. However, only a portion of that backlog
is caused by the customer demand process, while the rest is due to
the error process. The distribution of the actual backlogged demand
BðtÞ depends on the total backlog level ½AILðtÞ�� as described later in this
section. The objective is to minimize the average total cost per period.

We make the following remarks about the model assumptions.
First, the assumption of independent and identically distributed
errors implies that the error distribution is independent of the
inventory level. While certain types of inventory losses, such as
invisible demand may satisfy this assumption, other error types
such as shrinkage or spoilage can occur only when inventory level
is positive. We make this assumption for tractability of the model.
Modeling the dependence on inventory level would require
1 The model can be generalized to allow for general demand and error distributions
if periodic demand were realized first, depleted the inventory and then the error
occurred.
keeping track of periodic demand and error during lead time as a
vector. This would cause the size of the state space to grow intrac-
tably large, which is similar to the difficulty in the lost-sales system.
Second, for tractability, we assume that the discrepancy between
the actual inventory and nominal inventory is reconciled only
when a cycle count is performed. There is no correction of the
records due to the occurrence of a backorder. That is, if the computer
shows the item in stock but it is actually not available, the demand
is backlogged and the backorder information is not used to correct
the records. Because we ignore the occurrence of such corrections
in our characterization of the system state, the present model can
be seen as an approximation to the systems that utilize the backlog
information to correct records when the backlog probability is
small. Many companies either do not have proper systems in place
to update their computer records or do not allow line workers to
change system records to ensure data integrity. Third, demand ful-
fillment and cost calculation are based only on actual on-hand
inventory ðAILÞþ and actual backlogged demand B. In daily opera-
tions, a company may do its accounting based on the inventory
records. However, at the end of a year, the annual cost according
to the information system may be different from the actual annual
cost, which is realized based on the actual inventory dynamics.
This difference is due to the inaccuracy of the records. Therefore,
a reconciliation by the accounting department is always necessary.

An example

We use an example to illustrate the inventory dynamics under
the nominal and actual inventory schemes. Consider a single-stage
system with T ¼ 2, L ¼ 2, and s ¼ 10. Fig. 1(a) illustrates the
dynamics of the nominal inventory order position and inventory
level. Fig. 1(b) illustrates the corresponding actual inventory
variables. The demand and error levels in each period are
given in the figure. The system has conducted a cycle count at
the end of period t � 1, so there is no error in the system at the
beginning of period t. The future cycle-count periods are
ft þ 1; t þ 3; t þ 5; . . .g and the cycle-count periods are marked with
the ‘‘D’’ symbol.
Fig. 1. A single-stage system with L ¼ 2; T ¼ 2, and s ¼ 10. (a) The dynamics of the
nominal inventory order position and inventory level. (b) The dynamics of the
corresponding actual inventory variables.
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Let us first focus on the nominal inventory variables shown in
Fig. 1(a). We assume that NIOP�ðtÞ ¼ NIL�ðtÞ ¼ 10 at the beginning
of period t. Because the error in period t is not observed, NIOP and
NIL change in the same way as do those in the standard base-stock
policy with demand of two units, that is, NIOP�ðt þ 1Þ ¼ 10 and
NIL�t þ 1Þ ¼ 8. In period t þ 1, four units of demand is recorded
and an accumulated error of n½t; t þ 2Þ ¼ 2 is detected during the
cycle count. Hence, NILðt þ 1Þ ¼ 2. Finally, the stage places an order
of six units to bring NIOPðt þ 1Þ ¼ 10, which is equal to
NIOP�ðt þ 2Þ. The rest of the dynamics can be developed with the
same logic. Clearly, the actual inventory dynamics are different be-
cause the nominal system does not realize that the error affects the
physical inventory level in every period.

Fig. 1(b) presents the corresponding actual inventory variables.
At the beginning of period t;AIOP�ðtÞ ¼ AIL�ðtÞ ¼ 10. As a result of
two units of demand and one unit of error, we have AILðtÞ ¼ 7. The
stage orders two units according to the nominal inventory order
position, and we get AIOPðtÞ ¼ AIOP�ðt þ 1Þ ¼ 9. Now, consider
period t þ 5. At the beginning of the period, the stage receives ship-
ment of one unit sent at the end of period t þ 2. Hence,
AIL�ðt þ 5Þ ¼ AILðt þ 4Þ þ 1 ¼ 3. An error of two units and a
demand of three units are realized during the period and we have
AILðt þ 5Þ ¼ �2. Depending on the sequence of the error and de-
mand realization during the period, some or all of these two units
of backlogs may be due to customer demand. We discuss later how
we account for backlogs due to demand and error separately. At
the beginning of period t þ 6, the stage receives a shipment of five
units and AIL�ðt þ 6Þ ¼ �2þ 5 ¼ 3.

We now show how to evaluate the average system cost per
period. The inventory dynamics result in a regenerative process.
Specifically, if the system conducts a cycle count at the end of
period t � 1, the nominal inventory order position is set equal
to the actual position at the beginning of period t, i.e.,
NIOP�ðtÞ ¼ AIOP�ðtÞ. Because the errors are nonnegative, the nom-
inal inventory terms are always greater than or equal to the actual
terms. Hence, after a cycle count, the corrected nominal inventory
position cannot be more than the target base-stock level s and the
system can order up to the target level after aligning the nominal
terms with the actual ones. In order to analyze this regenerative
process that has a cycle length of T periods, we set the beginning
of periods t; t þ T; t þ 2T; . . . as the regenerative epochs. The long-
run average cost per period is equal to the expected cost between
two consecutive regenerative epochs divided by the cycle length.
The AIOP� in the cycle-count interval ½t; t þ TÞ determines AIL�

and AIL in ½t þ L; t þ Lþ TÞ as follows.

Proposition 1. For r ¼ 0; . . . ; T � 1,

NIOP�ðtþ rÞ¼ s;

AIOP�ðtþ rÞ¼ s�n t;tþ r½ Þ ð1Þ
AIL�ðtþLþ rÞ¼AIOP�ðtþ rÞ�D tþ r;tþLþ r½ Þ�n tþ r;tþLþ r½ Þ;
AILðtþLþ rÞ¼AIOP�ðtþ rÞ�D½tþ r;tþLþ r��n½tþ r;tþLþ r�; ð2Þ

and Bðt þ Lþ rÞ is binomially distributed with parameters
½AILðt þ Lþ rÞ�� and k=ðkþ lÞ.

The second equation is due to the replenishment policy that
orders to cover the demand in the no-cycle-count periods and
the demand and the accumulated error in the cycle-count period.
The third and fourth equations are similar to those in the standard
base-stock models and reflect the effect of the lead time. The last
statement gives the distribution of backlogged customer demand
given the total backlog level. From the moment AIL falls to zero
until the end of the period, two Poisson processes reduce AIL, but
only customer arrivals cause a backlog penalty. The process after
AIL falls to zero is independent of the demand and error realiza-
tions before that point because of the memoryless property of
the Poisson process. Hence, the fraction of total backlog that is
due to customer demand follows a Binomial distribution with
number of trials equal to AILðt þ Lþ rÞ½ �� and success probability
equal to the ratio of mean demand to mean error plus mean de-
mand. Thus, the expected value of Bðt þ Lþ rÞ given AILðt þ Lþ rÞ
is simply ðk=ðkþ lÞÞAILðt þ Lþ rÞ�. This accounts for the system
incurring the backorder penalty for only customer demands when
the actual inventory level is less than or equal to zero, but not for
the error process. In the example in Fig. 1, the actual inventory le-
vel in period t þ 5 is three units after replenishment and minus two
units at the end of the period (after two units of error and three
units of demand). The actual backlogged demand level, however,
depends on the realized sequence of the error and demand occur-
rences. Proposition 1 tells us that Bðt þ 5Þ is distributed according a
binomial distribution with parameters ð2; k=ðkþ lÞÞ.

For expositional simplicity, define b̂ ¼ bk=ðkþ lÞ. The average
inventory cost per period is given by

Gðs; TÞ ¼ 1
T

XT�1

r¼0

E hAILðt þ Lþ rÞþ þ bBðt þ Lþ rÞ
� � !

¼ 1
T

XT�1

r¼0

E hAILðt þ Lþ rÞ þ ðb̂þ hÞ AILðt þ Lþ rÞ�ð Þ
h i !

:

The distribution of AILðt þ Lþ rÞ is determined by AIOP�ðt þ rÞ
given by (1). Note that n½t þ br=TcT; t þ rÞ in that expression yields
r periods of error for r ¼ 0;1;2; . . . ; T � 1. Define

gðy;rÞ¼E hðy�n r½ Þ�D½L��n½L�Þþðb̂þhÞ y�n r½ Þ�D½L��n L½ Þð Þ�
h i

:

The average inventory cost per period, Gðs; TÞ, and the average total
cost per period including the counting cost, Cðs; TÞ, can be expressed
as follows.

Proposition 2. Gðs;TÞ¼ð1=TÞ
PT�1

r¼0 gðs;rÞ and Cðs; TÞ ¼ Gðs; TÞþ K=T.

Note that each gðy; rÞ function is the same as a single-period
inventory cost function with different demand variables. Because
each of them is convex, average cost Gðs; TÞ is also convex in the
base-stock level s for fixed T. Let sðTÞ ¼ arg minsCðs; TÞ be the
optimal base-stock level. Define GðTÞ ¼ GðsðTÞ; TÞ as the minimum
inventory cost and CðTÞ ¼ CðsðTÞ; TÞ as the optimal total cost for a
given cycle-count policy.

Proposition 3. For T P 2; ð1ÞsðT � 1Þ 6 sðTÞ; ð2ÞGðT � 1Þ 6 GðTÞ.

Proposition 3 states that the optimal base-stock level and the
optimal inventory cost increase with the cycle-count interval
length T. When the cycle-count interval is longer, more periods
of error accumulate in the system. Thus, the system has to
maintain a higher stock level to cover the inventory loss and
the additional uncertainty. The higher stock level leads to a
higher optimal system cost. The impact of the cycle-count
interval on CðTÞ depends on how K=T compares with inventory
related costs.

4. Series systems

We now consider an N-stage series system. Customer demand
occurs at stage 1. Stage 1 is replenished by stage 2, stage 2 by stage
3, and so on, and stage N by an outside source with ample supply.

The lead time between stage j and jþ 1 is Lj periods. Let Lj ¼
PN

i¼jLi,
the cumulative lead time from stage j to stage N. Each stage orders
according to a local base-stock policy. At the beginning of a period,
if stage j’s local inventory order position is lower than the
base-stock level sj, the stage places an order to raise its nominal
inventory order position to sj; otherwise, the stage does not order.
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Let Sj ¼
def Pj

i¼1si. Denote Dj½t; t þ rÞ and Dj½t; t þ r� the local demand
occurring in periods ½t; t þ rÞ and ½t; t þ r� for stage j, respectively.
Note that under a local base-stock policy, stage j� 1’s order is stage
j’s local demand. A nonnegative random inventory loss, or error,
occurs at each stage every period, reducing the physical inventory
level. We assume that the error at stage j is Poisson with rate lj

and is independent and identically distributed across periods. Also,
the error process at a stage is independent of the other stages. Let
nj½t; t þ rÞ and nj½t; t þ r� denote the accumulated error in periods
½t; t þ rÞ and ½t; t þ r� at stage j. We use nj½rÞ and nj½r� for the accumu-
lated error of r and r þ 1 periods in the long-run average cost cal-
culations, respectively. Each stage conducts a cycle-count policy to
correct its inventory record. Let Tj be the cycle-count interval for
stage j and Kj be the counting cost at stage j. We let variables in
bold font denote the vector of that variable for j ¼ 1; . . . ;N. That
is, s ¼ ðs1; . . . ; sNÞ, T ¼ ðT1; . . . ; TNÞ. Similarly for l; L;h, and K.

For stage 1, the sequence of events is the same as that for the
single-stage system. For stages j P 2, the sequence of events is
similar to stage 1. Specifically,

(1) at the beginning of a period, stage j receives a shipment sent
Lj periods ago,

(2) random error occurs during the period,
(3) downstream order (or local demand) arrives at the end of a

period,
(4) stage j sends a shipment to stage j� 1,
(5) stage j conducts a cycle count, if the current period is a cycle-

count period,
(6) stage j places an order according to the nominal inventory

order position at the end of a period,
(7) costs are evaluated based on the actual inventory level.

Below we discuss how to evaluate the average total cost per
period. In Section 4.1, we show how to evaluate the cost using local
inventory variables. In Section 4.2, we provide an alternative
approach, which evaluates the cost using the corresponding
echelon variables. This echelon approach simplifies the computa-
tion significantly and sets the stage for the subsequent analysis.
4.1. Evaluation: local approach

To explain how these events affect inventory variables, we
define the following local inventory variables.

AIOP0�j ðtÞ¼Actual local inventory order position at stage

j at the beginning of period t;

AIOP0jðtÞ¼Actual local inventory order position after ordering

at stage j at the end of period t;

AIL0�j ðtÞ¼Actual local inventory level at stage j at the beginning

of period t after receiving a shipment placed Lj periods ago;

AIL0jðtÞ¼Actual local inventory level at stage j at the end of period t:

The effect of the sequence of events on the actual inventory
variables is as follows. In event (1), stage j receives a shipment,
which raises the actual inventory level and determines AIL0�j ðtÞ. In

event (2), the error reduces AIOP0�j ðtÞ and AIL0�j ðtÞ. In event (3), a
downstream order (local demand) arrives, which reduces
AIOP0�j ðtÞ. In event (4), stage j ships as much as possible to fulfill

stage j� 1’s order, and AIL0jðtÞ is determined. In event (5), the nom-
inal and actual local inventory variables are aligned after a cycle
count is conducted. In event (6), AIOP0jðtÞ is determined after an or-

der is placed. This AIOP0j level is carried over to the next period, i.e.,
AIOP0jðtÞ ¼ AIOP0�j ðt þ 1Þ. In event (7), costs are evaluated based on

AIL0jðtÞ. Let hj denote the echelon holding cost, h0j ¼
PN

i¼jhi the local
holding cost for stage j, and b the backorder cost at stage 1. The
inventory holding cost for stage j at the end of period t is

h0j AIL0jðtÞ
h iþ

; j ¼ 1; . . . ;N, and the expected cost of backlogged cus-

tomer demand at stage 1 is bE½BðtÞ� ¼ b̂ AIL01ðtÞ
� ��, where

b̂ ¼ bk=kþ l1Þ.
We assume that all stages conduct a cycle count at the end of

period t � 1. Let T ¼ lcmfT1; . . . ; TNg, where lcmfg is an operator
that generates the least common multiplier. The common cycle-
count periods for all stages are t � 1; t þ T � 1; t þ 2T � 1; . . .. After
a common cycle-count period, all stages have zero error. Thus, we
set the beginning of periods t; t þ T; t þ 2T; . . . as regenerative
epochs. Without loss of generality, we will focus on a regenerative
cycle consisting of periods t þ r; r ¼ 0;1; . . . ; T � 1. For expositional
simplicity, define

rj ¼ r þ N � j; j ¼ 1;2; . . . ;N:

As we shall see, AIOP0�j ðt þ Ljþ1 þ rjÞ and the local demand Dj will
jointly determine the actual local inventory level AIL0jðt þ Lj þ rjÞ
for stage j; j ¼ N;N � 1; . . . ;1.

To illustrate this, we first characterize AIOP0�j . Similar to the
expression for the order position for the single-stage system in
(1), we need to adjust the order position down for the error accu-
mulated in the system since the last inspection. Let b�c be the
round-down operator. Under the considered inventory and cycle-
count policy, we have

AIOP0�j ðtþLjþ1þ rjÞ¼ sj�nj tþ ðLjþ1þ rjÞ
Tj

$ %
Tj;tþLjþ1þ rj

" !
: ð3Þ

We next characterize the local demand Dj for stage j. Note that
the local demand for stage j is the order placed by stage j� 1. Thus,
we can sequentially characterize these local demands from stage 1,
stage 2, etc., up to stage N. Let t be a regenerative epoch and ‘ be
any nonnegative integer. Clearly, D1 t; t þ ‘½ Þ ¼ D t; t þ ‘½ Þ. For stage
j ¼ 2;3; . . . ;N,

Dj t; t þ ‘½ Þ ¼ Dj�1 t; t þ ‘½ Þ þ nj�1
t

Tj�1

� �
Tj�1;

t þ ‘
Tj�1

� �
Tj�1

� �
:

Dj½t; t þ ‘� ¼ Dj�1½t; t þ ‘� þ nj�1
t

Tj�1

� �
Tj�1;

t þ ‘þ 1
Tj�1

� �
Tj�1

� �
:

As seen from these equations, stage j� 1 simply passes on all the
orders it receives from downstream to upstream stage j and, in
the cycle-count periods, the local errors that it observes (if any).
With these local demands and AIOP0�j , we can characterize
AIL0jðt þ Lj þ rjÞ as we did for the single-stage system in (2). This
process starts from stage N. Note that

AIL0�N ðt þ LN þ rNÞ ¼AIOP0�N ðt þ rNÞ � DN t þ rN ; t þ LN þ rN½ Þ
� nN t þ rN ; t þ LN þ rN½ Þ; ð4Þ

AIL0Nðt þ LN þ rNÞ ¼AIOP0�N ðt þ rNÞ � DN½t þ rN ; t þ LN þ rN�
� nN ½t þ rN ; t þ LN þ rN�: ð5Þ

It is more difficult to characterize AIL0jðt þ Lj þ rjÞ; j < N, because
stage j may not always receive what it orders. To reflect this fact,
we define the following inventory terms:

AIP0�j ðtÞ ¼ actual local inventory in-transit position at the

beginning of period t after a shipment is received;

AIP0jðtÞ ¼ actual local inventory in-transit position at the

Now, consider stage jð< NÞ at the end of period t þ Ljþ1 þ rjþ1. If
stage jþ 1 has fulfilled stage j’s order in this period,
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AIP0jðt þ Ljþ1 þ rjþ1Þ ¼ AIOP0jðt þ Ljþ1 þ rjþ1Þ:

On the other hand, if stage jþ 1 does not have sufficient stock to ful-
fill stage j’s order, then stage jþ 1 has a backlog. In this case,
AIL0jþ1ðt þ Ljþ1 þ rjþ1Þ < 0 and

AIP0jðt þ Ljþ1 þ rjþ1Þ ¼ AIOP0jðt þ Ljþ1 þ rjþ1Þ þ AIL0jþ1ðt þ Ljþ1 þ rjþ1Þ:
ð6Þ

Note that the backlog may be due to the error and local demand at
stage jþ 1 . The above equation suggests that this backlog reduces
the actual inventory in-transit position at stage j.2

Combining these two cases together, we have

AIP0jðt þ Ljþ1 þ rjþ1Þ ¼ AIOP0jðt þ Ljþ1 þ rjþ1Þ

þmin 0;AIL0jþ1ðt þ Ljþ1 þ rjþ1Þ
n o

; ð7Þ

or equivalently,

AIP0�j ðtþLjþ1þ rjÞ¼AIOP0�j ðtþLjþ1þ rjÞþminf0;AIL0jþ1ðtþLjþ1þ rjþ1Þg:
ð8Þ

Given the distribution of AIP0�j ðt þ Ljþ1 þ rjÞ, we can characterize the
distribution of future inventory levels similarly to stage N. We have

AIL0�j ðt þ Lj þ rjÞ ¼AIP0�j ðt þ Ljþ1 þ rjÞ � Dj t þ Ljþ1 þ rj; t þ Lj þ rj
� �

� nj t þ Ljþ1 þ rj; t þ Lj þ rj
� �

; ð9Þ
AIL0jðt þ Lj þ rjÞ ¼AIP0�j ðt þ Ljþ1 þ rjÞ � Dj½t þ Ljþ1 þ rj; t þ Lj þ rj�

� nj½t þ Ljþ1 þ rj; t þ Lj þ rj�: ð10Þ

In summary, we can characterize AIL0jðt þ Lj þ rjÞ through (3),
(8), (9) and ( 10) recursively, starting from stage N to stage 1. We
are able to characterize AIL0jðtÞ for any period t by repeating this
process for all regenerative cycles. The average inventory cost per
period is

Gðs;TÞ¼ 1
T

XT�1

r¼0

E
XN

j¼1

h0jðAIL0jðtþ rÞÞþ þh0jITj�1ðtþ rÞ
	 


þ b̂ðAIL01ðtþ rÞÞ�
 !" #

;

ð11Þ

where ITj�1ðtÞ is the total inventory in transit to stage j� 1 at the
end of period t, and IT0ðtÞ � 0. Because all customer demand will
be fulfilled and all errors will be recovered, E½ITj�1ðtÞ� ¼ ðE½D�þPj�1

i¼1E½ni�ÞLj�1.
We end this section with a connection to the literature on the

bullwhip phenomenon. Lee, Padmanabhan, and Whang (1997)
demonstrate four reasons that can lead to the bullwhip effect in
supply chains. The above characterization of the local demand for
each stage indicates that the mean and variance of Dj are larger
than those of Dj�1. Furthermore, the increase in variance is larger
if cycle-count interval of stage ðj� 1Þ is longer. Thus, inventory
loss across locations in a supply chain is another factor that may
contribute to the bullwhip effect.

4.2. Evaluation: echelon approach

The above procedure to obtain the total cost per period and the
computation is quite complicated because we need to compute
the distribution of the local demand Dj for all stages and periods.
We next provide a simple echelon scheme to evaluate the total
system cost. This scheme allows us to bypass the computation of
the distribution of Dj. Below we define the echelon inventory vari-
ables and present the relationships between the local and echelon
inventory variables. These relationships are standard and can be
found in Zipkin (2000).
2 This is because of the assumption that errors can occur when stage j + 1’s actual
inventory level is non-positive. When the backlog at stage j + 1 is filled after receiving
a shipment in subsequent periods, AIP0j will be restored back to AIOP0j .
AIOP�j ðtÞ ¼Actual echelon inventory-order position at stage j at

the beginning of period t ¼
Xj

i¼1

AIOP0�i ðtÞ;

AIL�j ðtÞ ¼Actual echelon inventory level at stage j at the

beginning of period t ¼ AIL0�j ðtÞ þ
Xj�1

i¼1

AIOP0�i ðtÞ;

AILjðtÞ¼Actual echelon inventory level at stage j at the end
of period t;

AIP�j ðtÞ¼Actual echelon inventory in-transit position at stage j at

the beginning of period t;¼AIP0�j ðtÞþ
Xj�1

i¼1

AIOP0�i ðtÞ:

The expression for AILjðtÞ can be similarly established by removing
‘‘–’’ in the variables in the equation for AIL�j ðtÞ.

With these definitions, the total cost per period Gðs;TÞ in (11)
can be expressed as follows.

Gðs;TÞ ¼ 1
T

XT�1

r¼0

E
XN

j¼1

hjAILjðt þ rÞ þ b̂þ h01
	 


ðAIL1ðt þ rÞÞ�
 !" #

:

ð12Þ

Note that this is equal to

Gðs;TÞ¼1
T

XT�1

r¼0

E
XN

j¼1

hjAILjðtþLjþrjÞþ b̂þh01
	 


ðAIL1ðtþL1þr1ÞÞ
�

 !" #
:

ð13Þ

The only difference between the above cost functions above is that
the time index for stage j is shifted by Lj þ rj � r periods in the sec-
ond equation. Nevertheless, every period is evaluated exactly once
and the long-run average total cost per period is the same with
either formulation.

Our next task is to provide a simple recursion to obtain
AILjðt þ Lj þ rjÞ. From the relationship between the local variables
given by (8)–(10) and the definitions of echelon variables, we can
derive the following.

Proposition 4. For j ¼ N;N � 1; . . . ;1,

AIP�j ðtþLjþ1þrjÞ¼min AIOP�j ðtþLjþ1þrjÞ;AILjþ1ðtþLjþ1þrjþ1Þ
n o

; ð14Þ

AIL�j ðtþLjþrjÞ¼AIP�j ðtþLjþ1þrjÞ�D tþLjþ1þrj;tþLjþrj
� �

�
Xj

i¼1

ni tþLjþ1þrj;tþLjþrj
� �

; ð15Þ

AILjðtþLjþrjÞ¼AIP�j ðtþLjþ1þrjÞ�D½tþLjþ1þrj;tþLjþrj�

�
Xj

i¼1

ni½tþLjþ1þrj;tþLjþrj�; ð16Þ

where LNþ1 ¼ 0 and AIL�Nþ1ðt þ rÞ ¼ 1.
Given AIOP�j ðt þ Ljþ1 þ rjÞ, we can use Proposition 4 to obtain

AIP�j ðt þ Ljþ1 þ rjÞ, which further determines AIL�j and AILj in period
t þ Lj þ rj. From (3) and the definition of the echelon order position,
we get

AIOP�j ðt þ Ljþ1 þ rjÞ ¼
Xj

i¼1

AIOP0�i ðt þ Ljþ1 þ rjÞ

¼ Sj �
Xj

i¼1

ni t þ ðLjþ1 þ rjÞ=Ti
� �

Ti; t þ Ljþ1 þ rj
� �

: ð17Þ

Thus, with Proposition 4 and (17), we can obtain the total cost in Eq.
(13).
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Below we provide a bottom-up recursion to evaluate the total
cost per period. The idea is to recursively evaluate the cost for ech-
elon j, for j ¼ 1; . . . ;N by assuming that echelon j has ample supply
from its upstream stage. Define the following notation to represent
the number of errors accumulated since the last cycle count at
stage j.

MTj
ð‘Þ ¼ t þ ‘� t þ ‘

Tj

� �
Tj


 �
:

This notation yields the number of periods since the last cycle count
at stage j, given a regenerative epoch t and a time length of ‘
periods.

Proposition 5. For r ¼ 0;1;2; . . . ; T � 1, define

g1ðy; rÞ ¼ E½h1ðy� n1 MT1 ðL2 þ r1Þ
� �

� D½L1� � n1½L1�Þ þ ðb̂
þ h01Þ y� n1 MT1 ðL2 þ r1Þ

� �
� D½L1� � n1½L1�

� ���: ð18Þ

For j ¼ 2; . . . ;N and r ¼ 0;1;2; . . . ; T � 1, define

gjðy; rÞ ¼ E hj y�
Xj

i¼1

ni½MTi
ðLjþ1 þ rjÞÞ � D½Lj� �

Xj

i¼1

ni½Lj�
 !

gj�1

"

� min Sj�1; y�
Xj

i¼1

ni½MTi
ðLjþ1 þ rjÞÞ

( 

þ
Xj�1

i¼1

ni½MTi
ðLj þ rj�1ÞÞ � D½Lj� �

Xj

i¼1

ni½Lj�
)
; r

!#
: ð19Þ

Then, Gðs; TÞ ¼ ð1=TÞ
PT�1

r¼0 gNðSN; rÞ and Cðs; TÞ ¼
PN

j¼1
Kj

Tj
þ Gðs;TÞ.

The recursion in the proposition enables us to easily evaluate
the system cost for a given set of base-stock levels. In the next
section, we use this recursion to generate a heuristic solution for
the optimal base-stock levels and develop a lower bound on the
optimal cost.
5. Lower bound and heuristic

The above bottom-up recursion is similar to that for the classic
multi-echelon inventory problem (e.g., Chen, 1999; Chen & Zheng,
1994). However, unlike the classic problem, the optimal solution

cannot be obtained by minimizing ð1=TÞ
PT�1

r¼0 gjðSj; rÞ recursively.
The reason is as follows. In the first stage, each g1ðy; rÞ function
is convex, but we choose a single S1 that minimizesPT�1

r¼0 g1ðS1; rÞ. In the second stage, g2ðy; rÞ calls g1ðminfS1; yg; rÞ,
and g2 is no longer convex, because S1 is not the minimizer of
individual g1ðy; rÞ functions. As a result, we cannot guarantee
the convexity or unimodality of the functions gjðy; rÞ for j P 2.
In Section 5.1, we derive a lower bound on the total cost per
period for any local base-stock policy. In Section 5.2, we present
a heuristic algorithm based on the recursion above. As we shall
show in a numerical study, the heuristic solution is near-optimal
and therefore can be used to draw insights about supply chains
with inventory record inaccuracy.

5.1. Lower bound

We establish a lower bound to the total cost under any local
base-stock policy, i.e., a lower bound to the minimal cost that
can be achieved. We compute the lower bound by replacing Sj in
(19) with the minimizer of each gjðy; rÞ function, which yields
convex cost functions at each recursion step. Define a series of gj

functions recursively: Let g1ðy; rÞ ¼ g1ðy; rÞ and

S1ðrÞ ¼ arg min
y

g1ðy; rÞ: ð20Þ
Define

g1;1ðy; rÞ ¼
g1ðy; rÞ; if y 6 S1ðrÞ
g1ðS1ðrÞ; rÞ; otherwise:

(

Note that g1;1ðy; rÞ function is decreasing and convex if y 6 S1ðrÞ and
is constant if y > S1ðrÞ. Also, g1;1ðy; rÞ ¼ g1ðminfS1ðrÞ; yg; rÞ.

With these definitions, the inventory cost part of the total cost
in (13) can be expressed as

Gðs;TÞ¼1
T

XT�1

r¼0

E
XN

j¼2

hjAILjðtþLjþ rjÞþg1 AIP�1 ðtþL2þ r1Þ
��"

þn1½MT1 ðL2þ r1ÞÞ
�
;r
�#

P
1
T

XT�1

r¼0

E
XN

j¼2

hjAILjðtþLjþ rjÞþg1;1 AIP�1 ðtþL2þ r1Þ
��"

þn1½MT1 ðL2þ r1ÞÞ
�
;r
�#

P
1
T

XT�1

r¼0

E
XN

j¼2

hjAILjðtþLjþ rjÞþg1;1 AIL2ðtþL2þ r2Þ
��"

þn1½MT1 ðL2þ r1ÞÞ
�
;r
�#

¼1
T

XT�1

r¼0

E
XN

j¼2

hjAILjðtþLjþ rjÞþg1 min S1ðrÞ;ðAIL2ðtþL2þ r2Þ
��"

þn1½MT1 ðL2þ r1ÞÞÞ
�
;r
�#
: ð21Þ

The first equality follows from (16) and (18). The last inequality
holds because AIL2ðt þ L2 þ r2ÞP AIP�1 ðt þ L2 þ r1Þ and g1;1 is a
decreasing function.

For j ¼ 2; . . . ;N � 1, suppose that Sj�1ðrÞ is known. We substitute
Sj�1ðrÞ for Sj�1 in (19), and define the resulting function as gjðy; rÞ. In
this case, because we are replacing Sj�1ðrÞ, the minimizer of each
individual function, in gj�1ðminfSj�1; yg; rÞ, the resulting gjðy; rÞ
functions are convex in y. Let

SjðrÞ ¼ arg min
y

gjðy; rÞ:

Define

gj;jðy; rÞ ¼
gjðy; rÞ; if y 6 SjðrÞ
gjðSjðrÞ; rÞ; otherwise:

(

Also, gj;jðy; rÞ ¼ gjðminfSjðrÞ; ygÞ; rÞ.
With these definitions, (21) can be continued as

ð21Þ¼1
T

XT�1

r¼0

E
XN

j¼3

hjAILjðtþLjþ rjÞþg2 AIP�2 ðtþL3þ r2Þþn2½MT2 ðL3þ r2ÞÞ
� �

;r
� �" #

P . . .

¼1
T

XT�1

r¼0

E hNðAILNðtþLNþ rNÞÞ½

þgN�1 min SN�1ðrÞ; AILNðtþLNþ rNÞþ
XN�1

i¼1

ni½MTi
LNþ rN�1ÞÞ
� � )

;r

( ! #

¼1
T

XT�1

r¼0

gNðSN ;rÞ:

Clearly, ð1=TÞ
PT�1

r¼0 gNðSN ; rÞ is convex. Define

S�N ¼ arg min
SN

XT�1

r¼0

gNðSN; rÞ:

Define CðTÞ ¼def PN
j¼1

Kj

Tj
þ 1

T

PT�1
r¼0 gNðS�N; rÞ. This provides a lower bound

to the optimal total supply chain cost given the class of static local



3 We tested another set of experiment with normal demand and error distribu-
tions. All the subsequent insights remain valid. For the normal distribution case, we
assume that the error and demand distributions are i.i.d between periods, and an
error occurs at the beginning of a period, followed by the demand.
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base-stock policies, that is, CðTÞ 6 Cðs;TÞ for any s. This lower-
bound cost function reduces to the one in Chen and Zheng (1994)
when there are no errors in the system. Proposition 6 summarizes
these results.

Proposition 6. For fixed T,

(1) gjðy; rÞ is convex in y, for j ¼ 1; . . . ;N.
(2) CðTÞ is a lower bound on Cðs;TÞ for any s.

In summary, we can use the recursion defined in (18) and (19)
to obtain the lower bound. For stage 1, set g1ðy; rÞ ¼ g1ðy; rÞ and let
S1ðrÞ ¼ arg minyg1ðy; rÞ. For j ¼ 2; . . . ;N � 1, suppose that Sj�1ðrÞ is
known. We substitute Sj�1ðrÞ for Sj�1 in (19), and define the result-
ing function as gjðy; rÞ and let SjðrÞ ¼ arg minygjðy; rÞ. We compute

gNðy; rÞ function with SN�1ðrÞ and set S�N ¼ arg miny
1
T

PT�1
r¼0 gNðy; rÞ.

The lower bound is given by CðTÞ.

5.2. Heuristic

The lower bound cost is strictly less than the optimal total cost
because we are not able to find a single Sj to represent SjðrÞ in each
iteration during the construction of the lower bound. We present
an algorithm that recursively solves (18) and (19) to obtain a

heuristic solution eSj. Specifically, let ~g1ðy; rÞ ¼ g1ðy; rÞ; g1ðyÞ ¼PT�1
r¼0 ~g1ðy; rÞ, andeS1 ¼ arg min

y
g1ðyÞ:

For j ¼ 2; . . . ;N, suppose that eSj�1 is known. We substitute eSj�1 for
Sj�1 in (19), and define the resulting function as ~gjðy; rÞ. We define

gjðyÞ ¼
PT�1

r¼0 ~gjðy; rÞ and find its first minimizer, eSj. Because gjðyÞ is

not necessarily convex, we find eSj via a line search. The heuristic
solution is given by

~s1 ¼ eS1; ~sj ¼ eSj � eSj�1; j ¼ 2; . . . ;N:

Define CðTÞ ¼ Cð~s; TÞ, as the heuristic cost. Notice that the proposed
heuristic generates the optimal base-stock level for stage 1 because
g1ðyÞ is convex, and g1ð~s1Þ ¼

P
rg1ð~s1; rÞ gives the minimum possible

cost for stage 1. The heuristic also generates the exact optimal
solution when Tj ¼ 1 for j < N, because the resulting heuristic cost
is equal to the lower bound cost.

We now provide an analytical result on the impact of cycle-
count policy for a two-stage system.

Theorem 1. For a two-stage system with identical error distribution
and identical counting costs at both stages (i.e., l1 ¼ l2 and K1 ¼ K2),
we have Cð1; TÞ < CðT;1Þ for T > 1.

Theorem 1 states that it is more effective to conduct more
frequent cycle counts at a downstream stage for a two-stage
system with identical error distributions. Intuitively, when stage
1 conducts a cycle count, it will order the demand plus the error
from stage 2. From the perspective of stage 2, this error will reduce
stage 2’s inventory position in the same fashion as if it had con-
ducted a cycle count and the same amount of error was identified.
Thus, conducting a cycle count at stage 1 essentially mitigates the
impact of error at both stages. This result holds for any ðL1; L2Þ and
ðh1;h2Þ. In addition, this result holds for any K1 6 K2, but may not
hold otherwise, depending on the scale of counting costs relative to
the scale of inventory costs. Notice that Theorem 1 holds for the
optimal base-stock levels, because the heuristic yields the optimal
base-stock level for stage 1, and the proof shows the result for any
echelon inventory level y in the stage 2 cost function. This result
demonstrates that, all else being equal, more attention should be
paid to the downstream location. Nevertheless, designing an effec-
tive cycle-count policy requires an understanding of how the rela-
tive impact changes with supply chain properties such as the lead
times and the supply chain length. We conduct a numerical study
to answer these questions in Section 6.

6. Numerical study

This section provides a numerical study to investigate how sys-
tem parameters affect cycle-count policies. These numerical obser-
vations will lead to guidelines for designing effective cycle-count
policies.

We use our heuristic base-stock policy to answer these ques-
tions through a sensitivity analysis study. We focus our discussion
on both two-stage and four-stage systems. The parameters we use
in the sensitivity analysis are as follows: For the two-stage system,
the parameters3 are

k¼20; ðh1;h2Þ 2 fð1;3Þ;ð2;2Þ;ð3;1Þg; ðL1;L2Þ 2 fð1;5Þ;ð3;3Þ;ð5;1Þg;
ðl1;l2Þ 2 ð1;0Þ;ð0;1Þ;ð1;1Þ;ð2;2Þf g; Kj 2 2;6;10;14;18;22;26;30f g for all j:

These parameters are chosen to represent various supply chain
configurations. In addition, we consider three service levels
a ¼ f0:8;0:9;0:95g, and set b̂ ¼ ðh1 þ h2Þa=ð1� aÞ. Finally, we con-
sider the following 16 cycle-count policies:

ðT1;T2Þ2
ð1;1Þ;ð1;3Þ;ð3;1Þ;ð1;6Þ;ð6;1Þ;ð1;12Þ;ð12;1Þ;ð2;2Þ;
ð2;4Þ;ð3;3Þ;ð2;12Þ;ð4;4Þ;ð3;12Þ;ð6;6Þ;ð6;12Þ;ð12;12Þ

� �
:

The largest cycle-count interval, 12, corresponds to annual inven-
tory counts if the inventory review period is a month.

For the four-stage system, the parameters are

k ¼20; h 2 fð1;1;3;3Þ; ð2;2;2;2Þ; ð3;3;1;1Þg;
L 2 fð1;1;5;5Þ; ð3;3;3;3Þ; ð5;5;1;1Þg;
l 2 ð1;1;1;1Þ; ð1;1;2;1Þf g; K ¼ ð10;10;10;10Þ:

In addition, we set b̂ ¼ 72, representing 90% service level. For this
test, we consider 36 cycle-count policies listed in Table 1 ranging
from ð1;1;1;1Þ to ð12;12;12;12Þ.

We first verify the effectiveness of our heuristic solution under
the above chosen parameters. We define the percentage difference
between the heuristic cost and the lower bound cost as

Cð~s;TÞ � CðTÞ
CðTÞ � 100%:

In this study, we find that the average difference is 0.22% and
0.65% for the two-stage systems with error rates ð1;1Þ and with er-
ror rates ð2;2Þ, respectively. The average difference is 0.29% for
four-stage systems. We conclude that our heuristic base-stock lev-
els are near optimal. We therefore use it to answer the above re-
search questions.

6.1. Sensitivity analysis and observations

The purpose of the sensitivity analysis study is to examine the
impact of varying one specific parameter on the total cost. There-
fore, we need to select a base case as a reference point. We select
the following two-stage system as our base case: l ¼ ð1;1Þ,
L ¼ ð3;3Þ, h ¼ ð2;2Þ, K ¼ ð10;10Þ, and b̂ ¼ 36. Similarly, we choose
the following base case for the four-stage system: l ¼ ð1;1;1;1Þ,
L ¼ ð3;3;3;3Þ, h ¼ ð2;2;2;2Þ, K ¼ ð10;10;10;10Þ, and b̂ ¼ 72. We



Table 1
Optimal cycle-count policy for a two-stage system with base case parameters.

K2

2 6 10 14 18 22 26 30

2 2,3 2,6 2,6 2,6 2,6 2,6 2,12 2,12
6 3,4 3,4 4,6 4,6 4,6 4,6 3,12 3,12

10 4,3 4,6 4,6 4,6 4,6 4,6 4,6 4,12
K1 14 4,3 4,6 4,6 4,6 4,6 4,6 4,6 4,12

18 6,4 6,4 4,6 4,6 4,6 4,6 4,6 4,12
22 6,4 6,4 6,4 4,6 4,6 4,6 4,6 6,12
26 6,4 6,4 6,4 6,4 6,6 6,6 6,12 6,12
30 6,4 6,4 6,4 6,4 6,6 6,6 6,12 6,12

Fig. 3. Impact of lead times (N = 2).
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measure the impact of cycle-count policies by computing the per-
centage reduction in the optimal cost relative to the worst case,
Cð12; . . . ;12Þ, which has minimal correction of errors. Define

DðTÞ ¼ Cð12; . . . ;12Þ � CðTÞ
Cð12; . . . ;12Þ � 100%:

For simplicity, we use T0 � T00 to denote that a cycle-count
policy T0 achieves more percentage cost reduction than policy T00.
Clearly, different parameter sets may lead to larger or smaller
magnitude of the effects. However, we are interested more in the
insights obtained by observing the direction of the change in the
total cost in response to the system parameters.

6.2. Observations

We summarize main observations from the numerical study be-
low. Notice that a curve in Figs. 2–7 is obtained by starting with a
base case and changing only the variable specified in the horizontal
axis. For example, in Fig. 2, the ‘‘diamond’’ shape curve shows the
cost reduction for the four-stage base case under different cycle-
count policies; the ‘‘square’’ shape curve shows the same when
we increase the error rate at stage 3 in the same four-stage case.

1. Fig. 2 shows the impact of conducting cycle counts on different
locations in four-stage systems. We find that the result in The-
orem 1 holds for longer supply chains as well: With identical
error rates and counting costs, a downstream cycle count is
more effective than an upstream cycle count. A cycle count at
an upstream stage could be more beneficial to the system only
when the error rate at that location is significantly higher than
the downstream locations.
Fig. 2. Impact of error rates.
2. Fig. 3 shows the benefit of conducting cycle counts under vari-
ous lead time ratios for the two-stage base case. We particularly
consider two cycle-count policies: ðT1; T2Þ ¼ ð1;12Þ and (12,1).
The former (the latter) represents conducting more frequent
counts at stage 1 (stage 2). From the top curve, we observe that
the benefit of cycle counts at the downstream location
decreases as the share of the downstream lead time increases.
Since a shorter lead time implies less stock, this result suggests
that a leaner downstream stage is more vulnerable to the error.

3. Fig. 4(a) and (b) illustrate the two conclusions observed above
for the four-stage base system.

4. The benefit of cycle counts at a location increases if the ratio of
the holding cost to the total holding cost increases. Intuitively,
when the holding cost is larger, the stage will carry less inven-
tory, making the impact of errors more significant.

5. Fig. 5 illustrates the impact of cycle counts on the number of
stages for both N ¼ 2 and N ¼ 4 cases. To make a fair compari-
son, we change the lead time parameters of the two-stage
system by setting L ¼ ð6;6Þ and h ¼ ð4;4Þ. This ensures that
total lead time and total holding cost of two-stage system are
the same as the four-stage system. We find that the impact of
conducting cycle count at the most upstream stage relative to
the impact of conducting cycle counts at stage 1 for N ¼ 4
(i.e., 0.1–1.2%) is smaller than that for N ¼ 2 (i.e., 2.1–3.5%). This
observation suggests that cycle counts should be focused on
both stage 1 and stage 2 (on stage 1) when N ¼ 4 (N ¼ 2). Thus,
a rough guideline based on this conclusion for systems with
similar error rates and counting costs is that cycle counts
should be focused more on the downstream half of the supply
chain.

6. Fig. 6 shows the marginal benefit of assigning more than one
cycle count for the base example. Starting from T ¼ ð12;12Þ,
we change T1 ðT2Þ only to increase the downstream (upstream)
counts. As shown, both upstream and downstream counts exhi-
bit diminishing rates of return. More importantly, the first addi-
tional upstream cycle count may be more beneficial to the
system than the third additional downstream count. This result
immediately suggests that it is not a good strategy to allocate
all cycle counts to a single location. Instead, cycle counts should
be allocated across locations in a dynamic way.

7. Based on observation 6, an effective cycle-count policy must
assign the first few cycle counts downstream but then keep a
reasonably balanced allocation of the total cycle counts avail-
able. Fig. 7(a) shows that ð2;2Þ � ð1;12Þ, where the former
has 12 counts and the latter has 13 counts per year. (Note that
this comparison holds even when K1 ¼ K2 ¼ 0, indicating that
the difference is mostly due to the inventory costs.) Hence, a
balanced policy is usually better than a policy that heavily



(a) (b)

Fig. 4. Impact of lead times (N = 4).

Fig. 5. Impact of cycle count location.

Fig. 6. Impact of number of cycle counts.
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favors downstream locations. Nevertheless, we know that as
the downstream lead time share decreases downstream counts
have a larger impact. Fig. 7(b) compares policies ð4;12Þ and
ð6;6Þ, both with four counts per year. While ð6;6Þ � ð4;12Þ
when L1=ðL1 þ L2ÞP 1=2, we have ð4;12Þ � ð6;6Þ as that ratio
decreases. Hence, the balance should be tilted slightly towards
downstream locations in supply chains with short downstream
lead times. These guidelines carry over to longer supply chains.

8. The above observations are drawn from the base cases, in which
each stage has identical counting cost. Clearly, stage counting
costs directly affect cycle-count decisions. While observation
1 suggests that downstream counts are more beneficial to the
system when counting costs are identical, the result will be
reversed if downstream counting costs are significantly higher
than upstream counting costs. Table 1 illustrates the optimal
cycle-count policies for various counting cost combinations in
a two-stage system. The optimal cycle-count policy is obtained
by searching over all 36 feasible policies with
Tj 2 f1;2;3;4;6;12g. For example, as shown in the table, the
best cycle-count policy for the base case example with
K1 ¼ K2 ¼ 10 is T ¼ ð4;6Þ. As K1 increases, downstream cycle-
count frequency decreases. To compensate for that, the
upstream cycle-count frequency may increase. Similarly, as K2

increases, upstream cycle-count frequency decreases and
downstream cycle-count frequency generally increases. Note
that it is optimal to count more frequently at the upstream
stage rather than the downstream stage only when K2 is signif-
icantly lower than K1. In most cases, even when K1=K2 > 2, it is
optimal to count more frequently downstream, indicating that
location in the supply chain should play a very significant role
in counting decisions. In addition, the optimal cycle-count pol-
icy is ð4;6Þ for the base case and a wide range of counting costs
around that, indicating that optimal cycle-count policy is not
very sensitive to the counting cost structure.

Based on these observations, we categorize the factors that af-
fect cycle-count decisions into two groups. Primary factors deter-
mine which stages should get priority (i.e., higher cycle-count
frequency). These factors are ðiÞ stage (position in the supply chain)
ðiiÞ error rate, and ðiiiÞ counting cost. Secondary factors determine
whether the policy should strongly favor the high-priority stages
or allocate counts in a somewhat balanced way. These are ðiÞ lead
time structure, ðiiÞ holding cost structure, and ðiiiÞ the length of the
supply chain.

These two groups of factors can be used to provide the follow-
ing guidelines for designing effective cycle-count policies. When
allocating a fixed budget or a fixed number of cycle countsin a
supply chain, a manager should first consider primary factors by
allocating first few cycle counts to downstream locations and
locations with significantly higher error rate or low counting cost.
Then, the manager should consider the secondary factors to
allocate the remaining cycle counts. For example, if the ratio of
the lead time of a downstream stage to the total system lead time
is large, the manager should allocate the remaining cycle counts to
keep a more balanced distribution rather than focusing on the
downstream stage. On the other hand, if the supply chain is long,



(a) (b)

Fig. 7. Effectiveness of balanced cycle count policies.
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the manager should allocate the remaining counts to favor the few
downstream stages.

Finally, our model and analysis also provide implications on
RFID investments from the perspective of reducing inventory inac-
curacy. Consider the following settings with RFID. ðiÞ In some set-
tings with tagged products, RFID provides perpetual information in
locations where readers are installed. This scenario can be evalu-
ated with our framework. For example, for a production line at a
factory with a six-stage process, a reader in stages 3 and 5 is equiv-
alent to a cycle-count policy ð12;12;1;12;1;12Þ. ðiiÞ In some other
settings, the cost of readers may be small relative to the cost of
RFID tags. In that case, the problem is to decide the at which stage
the tags should be put on the products. For example, if stage 3 and
its downstream stages have tagged products, this is equivalent to
policy ð1;1;1;12;12;12Þ. ðiiiÞ In the apparel industry, it is common
to use hand-held RFID readers to do cycle-counts. In this case, the
store staff performs cycle counts using the handheld readers near
shelves or hangers. These cycle counts are faster (less costly) and
possibly more accurate than manual counts. Our results on cycle-
count policies are directly relevant for this setting. RFID invest-
ment determines which stages have relatively low counting costs
and therefore count more often. In any of these scenarios, a supply
chain manager needs to do a cost-benefit analysis for the RFID
investment. It has been suggested in the literature that from the
perspective of labor cost savings, upstream stages (back-end oper-
ations) should be RFID-enabled first (Chopra & Sodhi, 2007). Our
results suggest that, from the perspective of record inaccuracy,
all else being equal, downstream stages should get priority.
7. Conclusion

Inventory record inaccuracy is a prevalent issue that affects
supply chain performance. While common mitigation approaches
such as conducting cycle counts and installing inventory tracking
systems have been adopted by many firms, there are no clear
guidelines in the literature on how to design cycle-count policies
from the perspective of the entire supply chain. This paper aims
to shed light on this issue.

For a two-stage system, we prove that with identical errors and
counting costs at both stages, it is always more effective to conduct
more frequent cycle counts at the downstream stage. In a numer-
ical study, we find that the above conclusion holds for more gen-
eral systems unless an upstream stage has a significantly higher
error rate or lower counting cost. In particular, more cycle counts
should be allocated to a downstream stage if the proportion of
its lead time to the system lead time is small, the proportion of
its holding cost to the total holding cost is large, or the number
of stages in the supply chain is large. However, because the mar-
ginal benefit of cycle counts is decreasing in its frequency, it is
not a good strategy to assign all the cycle counts to the down-
stream stages. Based on our analytical and numerical results, we
conclude that, in addition to the existing attributes such as volume,
error rates, value and counting costs suggested by practitioners,
companies should consider the following attributes when design-
ing system-wide cycle-count programs: location in the supply
chain, lead times, holding costs, and the number of stages in the
supply chain.

There are several interesting future research directions from
both an academic and practical point of view. First, for tractability,
we assume that the errors are independent of the on-hand inven-
tory levels. While in practice errors should depend on the on-hand
inventory level, we believe that our key insight remains valid. This
is because the downstream stage in general holds more inventory
at optimality in a supply chain, which implies that the error is
larger at downstream stages. Thus, more cycle counts should be
allocated to downstream stages. Nevertheless, from a practical
perspective, it remains an open question how to optimize the
system with inventory-dependent errors. Second, we assume that
record inaccuracy is removed only if a cycle-count is performed.
Some companies may have systems in place to correct inventory
records even in the no-cycle-count periods if a backorder occurs
and the record shows the product in-stock. It would be interesting
to generalize the current model to accommodate such practice.
Third, we consider only stationary base-stock policies However,
other replenishment policies that depend on accumulated errors
should be more effective. It would be interesting to investigate
the value yielded from a more sophisticated error-dependent
policy. Finally, the serial system is a special case of supply chain
systems. It is important to study the cycle count policies for more
general systems, such as assembly and distribution systems. The
modeling approach (i.e., inventory shrinkage and cycle counts),
evaluation schemes and the optimization procedure may be useful
for analyzing these general systems.
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Appendix A. Proofs

Proposition 3. Let D denote the difference of a function, i.e.,
Df ðyÞ ¼ f ðyþ 1Þ � f ðyÞ. We only show T ¼ 2 case as the general T
case can be proven similarly. Note that

Cðy;2Þ ¼1
2

gðy;0Þ þ gðy;1Þð Þ;

Cðy;1Þ ¼gðy;0Þ ¼ 1
2

gðy;0Þ þ gðy; 0Þð Þ:

To show part (1), we only need to show Dgðy;0Þ þ Dgðy;0ÞP
Dgðy;0Þ þ Dgðy;1Þ, or equivalently, Dgðy;0ÞP Dgðy;1Þ for all y.

Dgðy;0Þ ¼h1 � ðb̂þ h01ÞPðD½L� þ n½L� > yÞ;

Dgðy;1Þ ¼h1 � ðb̂þ h01ÞPðD½L� þ n½L� þ n½1Þ > yÞ:

Because D½L� þ n½L� þ n½1ÞPstD½L� þ n½L�, we have PðD½L� þ n½L� > yÞ 6
PðD½L� þ n½L� þ n½1Þ > yÞ, for all y. Thus, the inequality Dgðy;0ÞP
Dgðy;1Þ holds.

For part (2),

gðy;1Þ¼E½hðy�D½L��n½L��n½1ÞÞþ þ b̂ðy�D½L��n½L��n½1ÞÞ��

PE½hðy�D½L��n½L��E½n½1Þ�Þþ þ b̂ðy�D½L��n½L��E½n½1Þ�Þ��� g0ðyÞ

for all y due to Jensen’s inequality. Let s0 be the minimizer of g0ðyÞ. It is
easy to see that g0ðs0Þ ¼ gðsð1Þ;0Þ. Thus, we have

Cð2Þ¼ð1=2Þðgðsð2Þ;1Þþgðsð2Þ;0ÞÞP ð1=2Þðg0ðsð2ÞÞþgðsð2Þ;0ÞÞ
Pð1=2Þðg0ðs0Þþgðsð2Þ;0ÞÞP ð1=2Þðgðsð1Þ;0Þþgðsð1Þ;0ÞÞ¼Cð1Þ:
Proposition 4. We first show (14). By definition, AIPjðtÞ ¼
AIP0jðtÞ þ AIOPj�1ðtÞ. Adding AIOPj�1ðt þ Ljþ1 þ rjþ1Þ on both sides of
(6) yields

AIPjðtþLjþ1þ rjþ1Þ¼AIOP0jðtþLjþ1þ rjþ1Þþminf0;AIL0jþ1ðtþLjþ1þ rjþ1Þg

þAIOPj�1ðtþLjþ1þ rjþ1Þ

¼AIOPjðtþLjþ1þ rjþ1Þþminf0;AIL0jþ1ðtþLjþ1þ rjþ1Þg

¼minfAIOPjðtþLjþ1þ rjþ1Þ;AILjþ1ðtþLjþ1þ rjþ1Þg:

Eq. (14) follows immediately.
We next show (16). Eq. (15) can be proved similarly.
For notational simplicity, let tjþ1 ¼ t þ Ljþ1 þ rj and tj ¼ t þ Lj þ rj.

By definition, AILjðtÞ ¼ AIL0jðtÞ þ
Pj�1

i¼1AIOP0iðtÞ. Thus,

AILjðtjÞ ¼AIL0jðtjÞ þ
Xj�1

i¼1

AIOP0iðtjÞ

¼AIP0�j ðtjþ1Þ � Dj½tjþ1; tj� � nj½tjþ1; tj�

þ
Xj�1

i¼1

AIOP0iðtjþ1Þ � Di½tjþ1; tj� þ Diþ1½tjþ1; tj� � ni½tjþ1; tj�
� �

¼AIP0�j ðtjþ1Þ þ
Xj�1

i¼1

AIOP0�i ðtjþ1Þ � D½tjþ1; tj� �
Xj

i¼1

ni½tjþ1; tj�

¼AIP�j ðtjþ1Þ � D½tjþ1; tj� �
Xj

i¼1

ni½tjþ1; tj�:
Proposition 5. We only prove the N ¼ 2 case. The general N case can
be proved similarly. When N ¼ 2; L3 ¼ 0; L2 ¼ L2 and L1 ¼ L1 þ L2. The
total cost per period in (13) becomes
1
T

XT�1

r¼0

E h2AIL2ðtþL2þ r2Þþh1AIL1ðtþL1þ r1Þþðb̂þh01ÞðAIL1ðtþL1þ r1ÞÞ
�h i

¼1
T

XT�1

r¼0

E h2 AIOP�2 ðtþ r2Þ�D½tþ r2;tþL2þ r2��
X2

i¼1

ni½tþ r2;tþL2þ r2�
 !"

þh1 AIP�1 ðtþL2þ r1Þ�D½tþL2þ r1;tþL1þ r1��n1½tþL2þ r1; tþL1þ r1�
� � ð22Þ

þðb̂þh01Þ AIP�1 ðtþL2þ r1Þ�D½tþL2þ r1; tþL1þ r1��n1½tþL2þ r1;tþL1þ r1�
� ��i

;

where

AIP�1 ðt þ L2 þ r1Þ ¼minfAIOP�1 ðt þ L2 þ r1Þ;AIL2ðt þ L2 þ r2Þg:

Eq. (22) is due to Proposition 4.
Note that from (17) and Proposition 4,

AIOP�2 ðtþ r2Þ¼ S2�
X2

i¼1

ni tþ r2

Ti

� �
Ti;tþ r2

� �
¼ S2�

X2

i¼1

ni MTi
ðr2Þ

� �
;

AIOP�1 ðtþL2þ r1Þ¼ s1�n1 MT1 ðL2þ r1Þ
� �

;

AIL2ðtþL2þ r2Þ¼ S2�
X2

i¼1

ni MTi
ðr2Þ

� �
�D½L2��

X2

i¼1

ni½L2�:

We can substitute these values into (22) and obtain the total
cost as a function system parameters. It can be verified that the
recursion yields the same total cost.

Theorem 1. For simplicity, we only prove the result for T ¼ 2. The
general T case can be proven in a similar manner. Define ða ^ bÞ ¼
minfa; bg;D1

1 ¼ D L1½ � þ n1 L1½ �, and D1;2
2 ¼ D L2½ � þ n1 L2½ � þ n2 L2½ �. We

use superscripts ‘‘A’’ and ‘‘B’’ to represent the cost functions and
the optimal base-stock levels associated with Cð1;2Þ and Cð2;1Þ,
respectively. Define

sA
1 ¼ arg min

y
fgA

1ðy;0Þ þ gA
1ðy;1Þg;

sB
1 ¼ arg min

y
fgB

1ðy;0Þ þ gB
1ðy;1Þg:

Showing Cð2;1Þ > Cð1;2Þ is equivalent to showing

gB
2ðy;0Þ þ gB

2ðy;1ÞP gA
2ðy;0Þ þ gA

2ðy;1Þ; 8y: ð23Þ

For A, n1½MT1 ðtÞ� ¼ 0 for any t; L2 ¼ L2; L3 ¼ 0; r2 ¼ r; r1 ¼ r þ 1. We
have

gA
1ðy;0Þ ¼E½h1ðy� D1

1Þ þ ðbþ h01Þðy� D1
1Þ
��;

gA
1ðy;1Þ ¼E½h1ðy� D1

1Þ þ ðbþ h01Þðy� D1
1Þ
��;

gA
2ðy;0Þ ¼E½h2ðy� D12

2 � n2½MT2 ðL3 þ rÞÞÞ

þ gA
1ðsA

1 ^ ðy� D12
2 � n2½MT2 ðL3 þ rÞÞÞ;0Þ�

¼E½h2ðy� D12
2 Þ þ gA

1ðsA
1 ^ ðy� D12

2 Þ;0Þ�;

gA
2ðy;1Þ ¼E½h2ðy� D12

2 � n2½1ÞÞ þ gA
1ððsA

1 ^ ðy� D12
2 � n2½1ÞÞÞ;1Þ�;

For B, T1 ¼ 2, T2 ¼ 1, L2 ¼ L2, L3 ¼ 0, r2 ¼ r, r1 ¼ r þ 1. Hence,
n2½MT2 ðtÞ� ¼ 0 for any t. We have

gB
1ðy;0Þ¼E½h1ðy�D1

1�n1 MT1 ðL2þ1Þ
� �

Þ

þðbþh01Þ y�D1
1�n1 MT1 ðL2þ1Þ

� �	 
�
�;

gB
1ðy;1Þ¼E½h1ðy�D1

1�n1 MT1 ðL2þ2Þ
� �

Þ

þðbþh01Þ y�D1
1�n1 MT1 ðL2þ2Þ

� �	 
�
�;

gB
2ðy;0Þ¼E½h2ðy�D12

2 �n1 MT1 ðL2þ r2Þ
� �

Þ

þgB
1 ðsB

1^ðy�D12
2 �n1 MT1 ðL2þ r2Þ

� �
þn1 MT1 ðL2þ r1Þ

� �
Þ;0Þ

	 i
¼E½h2ðy�D12

2 ÞþgB
1 sB

1^ðy�D12
2 þn1 M2ðL2þ1Þ½ Þ;0ÞÞ

	 i
;

gB
2ðy;1Þ¼E½h2ðy�D12

2 �n1 1½ ÞÞþgB
1ðsB

1^ðy�D12
2 �n1 1½ Þ

þn1 M2ðL2þ2Þ½ ÞÞ;1Þ�:
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Plugging these into (23), we get

E h2 y�D12
2

	 

þE½h1 sB

1^ðy�D12
2 þn1 M2ðL2þ1Þ½ Þ

	 
	 
h
�D1

1�n1 M2ðL2þ1Þ½ Þ


þðbþh01Þ ðsB

1^ðy�D12
2 þn1 M2ðL2þ1Þ½ ÞÞÞ

	
�D1

1�n1 M2ðL2þ1Þ½ Þ

�
�þE½h2ðy�D12

2 �n1 1½ ÞÞ

þE½h1ððsB
1^ðy�D12

2 �n1 1½ Þþn1 M2ðL2þ2Þ½ ÞÞÞ�D1
1

�n1 M2ðL2þ2Þ½ ÞÞþðbþh01Þ ðsB
1^ðy�D12

2 �n1 1½ Þ
	

þn1 M2ðL2þ2Þ½ ÞÞÞ�D1
1�n1 M2ðL2þ2Þ½ Þ


�
�PE½h2ðy�D12

2 Þ

þE½h1 sA
1 ^ y�D12

2

	 
	 

�D1

1

	 

þ bþh01
� �

ðsA
1 ^ðy�D12

2 ÞÞ�D1
1

	 
�
��

þE½h2ðy�D12
2 �n2 1½ ÞÞþE½h1ððsA

1 ^ðy�D12
2 �n2 1½ ÞÞÞ�D1

1Þ

þ bþh01
� �

ðsA
1 ^ðy�D12

2 �n2 1½ ÞÞÞ�D1
1

	 
�
�:

Canceling the common terms from both sides and noting that (1)
n2½1Þ and n1½1Þ follow the same distribution, (2) the two
n1½M2ðL2 þ 1ÞÞÞ terms in the first line and the second line and the
two n1½M2ðL2 þ 2ÞÞÞ terms in the third line and fourth line of the
inequality come from the same time period (i.e., t þ L2 þ r1), we get
the following:

E½E½h1ðððsB
1 � n1 M2ðL2 þ 1Þ½ ÞÞ ^ ðy� D12

2 ÞÞ � D1
1Þ

þ ðbþ h01Þ ððsB
1 � n1 M2ðL2 þ 1Þ½ ÞÞ ^ ðy� D12

2 ÞÞ � D1
1

	 
�
�

þ E½E½h1ðððsB
1 � n1 M2ðL2 þ 2Þ½ ÞÞ ^ ðy� 212 � n1 1½ ÞÞÞ � D1

1Þ

þ bþ h01
� �

ððsB
1 � n1 M2ðL2 þ 2Þ½ ÞÞ ^ ðy� D12

2 � n1 1½ ÞÞÞ � D1
1

	 
�
�

>E½E½h1ððsA
1 ^ ðy� D12

2 ÞÞ � D1
1Þ þ bþ h01

� �
ðsA

1 ^ ðy� D12
2 ÞÞ � D1

1

	 
�
��

þ E½E½h1ððsA
1 ^ ðy� D12

2 � n2 1½ ÞÞÞ � D1
1Þ

þ ðbþ h01Þ ðsA
1 ^ ðy� D12

2 � n2 1½ ÞÞÞ � D1
1

	 
�
�:

This is, in turn, equivalent to

E½gA
1ððsB

1 � n1½M2ðL2 þ 1ÞÞÞ ^ ðy� D12
2 Þ;0Þ� þ E½gA

1ððsB
1 � n1½M2ðL2

þ 2ÞÞÞ ^ ðy� D12
2 � n1½1ÞÞ;0Þ�

> E½gA
1ðsA

1 ^ ðy� D12
2 Þ;0Þ� þ E½gA

1ðsA
1 ^ ðy� D12

2 � n2½1ÞÞ;0Þ�:

Note that sA
1 ¼ arg minðgA

1ðy;0Þ þ gA
1ðy;1ÞÞ ¼ arg minðgA

1ðy;0ÞÞ
because gA

1ðy;0Þ ¼ gA
1ðy;1Þ. We also have that sB

1 P sA
1 because sB

1 ¼
arg minðgB

1ðy;0Þ þ gB
1ðy;1ÞÞ. For the first terms on both side of the

inequality, fixing D12
2 and n1 M2ðL2 þ 1Þ½ Þ, we get gA

1ðsA
1 ^ y� D12

2 ;

0Þ 6 gA
1ðsB

1 � n1 M2ðL2 þ 1Þ½ Þ ^ y� D12
2 ;0Þ�, because gA

1ðy;0Þ is a
decreasing function for y < sA

1 and n1 is nonnegative.
For the second terms on both side of the inequality, because n1 1½ Þ

and n2 1½ Þ follow the same distribution and they are in separate
expectations, we can compare the terms for fixed n1 1½ Þ ¼ n2 1½ Þ. We have

gA
1ððsB

1�n1 M2ðL2þ2Þ½ ÞÞ^ðy�D12
2 �n1 1½ ÞÞ;0ÞPgA

1ðsA
1^ðy�D12

2 �n2 1½ ÞÞ;0Þ,
because gA

1ðy;0Þ is a decreasing function for y < sA
1 . This completes the

proof. h
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