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his paper studies the assortment planning problem with multiple merchandise categories and basket shop-

ping consumers (i.e., consumers who desire to purchase from multiple categories). We present a duopoly
model in which retailers choose prices and variety level in each category and consumers make their store choice
between retail stores and a no-purchase alternative based on their utilities from each category. The common
practice of category management (CM) is an example of a decentralized regime for controlling assortment
because each category manager is responsible for maximizing his or her assigned category’s profit. Alterna-
tively, a retailer can make category decisions across the store with a centralized regime. We show that CM
never finds the optimal solution and provides both less variety and higher prices than optimal. In a numerical
study, we demonstrate that profit loss due to CM can be significant. Finally, we propose a decentralized regime
that uses basket profits, a new metric, rather than accounting profits. Basket profits are easily evaluated using
point-of-sale data, and the proposed method produces near-optimal solutions.
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Assortment planning is both extremely important
and challenging for retailers. No assortment planning
process is capable of accounting for all of the market-
ing and operational implications of its decisions due
to limited data and the complexity of the task. Orga-
nizational forms such as category management (CM)
(ACNielsen 1998) and assortment planning models
in the literature (e.g., Kok and Fisher 2004) focus on
the selection of products in a single category assum-
ing store traffic is exogenous, i.e., prices and vari-
ety within a category influence demand conditional
on a store visit, but does not influence store choice.
For example, many retailers are adopting an “effi-
cient assortment” strategy, which primarily seeks to
find the profit maximizing level of variety by elimi-
nating low-selling products (Kurt Salmon Associates
1993). However, if a retailer reduces variety in all cat-
egories based on single-category analyses, then the
store becomes less attractive and some customers are
likely to defect to other retailers, reducing store traffic.
This concern is particularly relevant with respect to
basket shoppers—consumers who desire to purchase
from multiple categories. If a basket shopper does not
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find an item that she wants in one category, she may
purchase her entire basket from another retailer (Bell
and Lattin 1998). Although retailers are well aware of
this interdependence across categories, there is little
research on what can be done to address it.

This paper develops a stylized model to evaluate
CM at two competing retailers in the presence of bas-
ket shopping consumers. Each retailer offers two mer-
chandise categories. Retailers determine prices and
variety level in each category. Single-category shop-
pers and basket shoppers choose between the two
retailers or a no-purchase option, depending on their
utilities in each category at each retailer. A retailer
can manage its merchandise categories with a central-
ized or a decentralized regime. The common practice
of CM is an example of a decentralized regime for
controlling assortment because each category man-
ager is charged with maximizing profit for his or
her assigned category. Because basket shoppers’ store
choice decision depends on the prices and variety
levels of other categories, one category’s optimal deci-
sions depends on the decisions of the other cate-
gories. Hence, a game-theoretic situation arises. CM
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can be interpreted as an explicit noncooperative game
between the category managers because each cate-
gory manager is responsible exclusively for the profits
of her own category. Alternatively, it can be inter-
preted as an iterative application of single-category
planning where each category’s variety level is opti-
mized assuming all other assortment decisions for
the retailer are fixed. Decentralized regimes such as
CM are analytically manageable but they ignore (in
their pure form) the impact of cross-category inter-
actions. Centralized regimes account for these effects,
but actually only in theory because they are not
implementable in practice: it is extremely difficult
to design a model to account for all cross-category
effects, to estimate its parameters with available data,
and solve it. Chen et al. (1999) also emphasize the
need for models that are solvable with parameters
that can be estimated from available data. As CM
and centralization are two extremes, merchandising
managers often create an intermediate approach by
adding constraints to the planning process based on
their own knowledge about the store’s categories and
customers: for example, include a particular prod-
uct, have at least two brands in a subgroup, and
ensure that the timing and depth of promotions are
coordinated across obviously complementary prod-
ucts such as chips and salsa or beer and pretzels. It
is not clear, however, if the appropriate constraints
are implemented (e.g., whether there should be two
brands or five brands) or whether all of the neces-
sary interactions are accounted for with this ad-hoc
approach.

Previous research shows that CM resulted in a more
profitable pricing structure by eliminating the com-
petitive pricing between brands. Zenor (1994) and
Basuroy et al. (2001) compare brand management (i.e.,
decentralized management of competing products) to
CM (centralized management of a category) in a sin-
gle category and find that CM leads to higher prices.
Our paper attempts to shift the discussion one level
higher by comparing CM with centralized store man-
agement. It is expected that decentralization will per-
form worse than centralization, so the question is
whether it performs well under certain conditions. It
is also important to assess whether the loss due to
decentralization is significant and whether decentral-
ized solutions have a consistent bias (too much or
too little variety, too high or too low prices). Finally,
is there a way to have the best of both worlds, i.e.,
are there easily solvable management regimes, based
on readily available data, that lead to nearly optimal
assortments?

We characterize the assortment chosen in a decen-
tralized regime, which we refer to as CM, as well
as the assortment in a centralized solution (OPT).
We show that if there are any basket shoppers, CM

provides less variety and higher prices than OPT. CM
can lead to poor decisions because the category man-
ager does not sufficiently account for how his or her
decisions influence total store traffic. With numeri-
cal examples, we demonstrate that the profit loss due
to CM can be significant. More importantly, the per-
formance worsens as the number of categories and
proportion of basket shoppers increase. These results
hold both for a single retailer and in duopoly com-
petition. The dominant strategy for each retailer is to
switch to centralized management (OPT). Our point
is that decentralization can be costly if there are bas-
ket shopping consumers and the interactions among
categories is not explicitly modeled. To address the
potential problem with a decentralized approach to
assortment planning, we propose a simple heuris-
tic that retains decentralized decision making (cate-
gory managers optimize their own categories’ profit)
but adjusts how profits are measured. To be specific,
instead of using an accounting measure of a cate-
gory’s profit, we define a new measure called basket
profits. Basket profits can be estimated using point-
of-sale data. It enables CM to approximately measure
the true marginal benefits of merchandising decisions
and lead to near-optimal profits. We believe that this
analytical approach is an attractive alternative relative
to ad-hoc coordination across category managers.

We review the related literature in the next section.
We introduce our model in §2. We present the anal-
ysis of the variety competition case (where prices are
exogenous) in §3, followed by the price and variety
competition case in §4. We present a brief numerical
study in §5, discuss alternative demand models in §6,
and conclude in §7. Appendix A presents a replen-
ishment system with convex costs. All proofs are pre-
sented in Appendix B.

1. Related Literature

Our consumer choice model is built on the random
utility approach (see Anderson et al. 1992). Each con-
sumer receives a random utility from each item in
the choice set and the highest utility item is chosen.
As a result, increasing the breadth and depth of the
assortment in our model increases total demand. The
findings in Dhar et al. (2001) are generally consistent
with that assumption. However, we recognize that
our model does not explicitly account for other pos-
sible factors that influence the relationship between
assortment variety and demand: the space devoted to
a category and the presence or absence of a favorite
item influence the perception of variety (Kahn and
Lehmann 1991, Broniarczyk et al. 1998) as well as the
arrangement, complexity, and presence of repeated
items in an assortment (Hoch et al. 1999, Huffman
and Kahn 1998, Simonson 1999).
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Although research has primarily focused on single-
category choice decisions, there is recent research that
examines multiple category purchases in a single-
shopping occasion by modeling the dependency
across multicategory items explicitly (see Russell et al.
1997 for a review). Manchanda et al. (1999) find that
two categories may co-occur in a consumer basket,
either due to their complementary nature (e.g., cake
mix and frosting) or due to coincidence (e.g., simi-
lar purchase cycles or unobserved factors). Bell and
Lattin (1998) show that consumers make their store
choice based on the total basket utility. Bodapati and
Srinivasan (1999) relates feature advertising to store
traffic effects using a nested logit framework. In these
papers and in ours, consumers first assign a utility
to an anticipated market basket and subsequently use
this utility to determine store choice.

Fixed costs for each store visit (e.g., search and
travel costs) provide an intuitive explanation for why
consumers basket shop. Bell et al. (1998) use mar-
ket basket data to analyze consumer store choices
and explicitly consider the roles of fixed and variable
costs of shopping. We do not explicitly derive optimal
baskets. We take them as given; however, consumers
make optimal store choice given their baskets. Some
consumers distribute their shopping across stores to
take advantage of discounts and different selections,
a behavior known as cherry-picking. Fox and Hoch
(2005) compare cherry-picking consumers with single-
store shoppers and find that consumers with lower
income and larger shopping baskets are more likely
to engage in cherry-picking.

Price competition across multiple categories has
been studied by several researchers using Hotelling
type models in which consumers travel and search
costs impact retailers” strategies and whether or not
consumers cherry-pick. Lal and Rao (1997) show that
in equilibrium one firm will adapt every day low
pricing, whereas the other firm adapts promotional
pricing strategy. The loss-leader literature suggests
offering promotions in one category to increase store
traffic and overall profit (see, for example, Lal and
Matutes 1989). From an empirical perspective, Walters
and Mackenzie (1988) report that loss-leader pric-
ing produced only a small increase in store traffic.
Recent empirical research in marketing (e.g., Bayus
and Putsis 1999, Draganska and Jain 2005) examines
the relation of prices with product variety and other
marketing mix variables that are endogenously deter-
mined by firms and their impact on market shares.

Chen et al. (1999) also study the impact of bas-
ket shopping consumers. They show that merchandis-
ing decisions should not be governed by accounting
profits, but rather by a new construct they develop
called marketing profits. Like us, they argue that sim-
ple techniques, based on readily available data, are

needed to guide decision making. However, there are
some significant differences between their work and
ours. In their model, each consumer type bases its
store choice decision on the variety of a single cate-
gory, what they call the lead category. Hence, expand-
ing variety in category B has no influence on the
store choice decision of category A lead customers.
In contrast, our consumers base their decisions on
the utility of multiple categories. As a result, there
are minimal strategic interactions among categories
in their model. A second key difference is how they
improve decision making. They assume that a store
makes optimal shelf space decisions and infer mar-
keting profit parameters that would imply those deci-
sions are optimal. They then use those marketing
profit estimates to guide other merchandising deci-
sions, such as advertising allocation. We use point-of-
sales data to estimate basket profits and then derive
optimal assortment decisions.

Assortment planning has attracted researchers from
both operations and marketing fields. See Kok et al.
(2006) for a recent review of this literature. van Ryzin
and Mahajan (1999), Smith and Agrawal (2000), and
Kok and Fisher (2004) study assortment selection and
stocking decisions for a group of substitutable prod-
ucts in a single category assuming that store traffic
is exogenous. Agrawal and Smith (2003) extend this
work to the case with basket shopping consumers.
Cachon et al. (2005) partially relaxes the exogenous
store traffic assumption by considering consumer
search behavior. The customers can choose to pur-
chase an item at the store or to continue to search,
which means that the fraction of “no-purchase” cus-
tomers depends on the assortment. Chong et al. (2001)
present an empirically-based modeling framework
for managers to assess the revenue and lost sales
implication of alternative assortments. Dreze et al.
(1994) study the impact of shelf space on sales and
Boatwright and Nunes (2001) study assortment reduc-
tion by making sure that certain attributes are repre-
sented in the assortment. Hopp and Xu (2005) study
the impact of product modularity in the optimal prod-
uct line length from a manufacturer’s perspective.
Hopp and Xu (2006) study price, service, and assort-
ment competition in a single category between two
retailers and find that the retailers provide less variety
and lower prices in competition.

We use game theory to study competitive interac-
tions in the decentralized regime and between the
retailers. Gruca and Sudharshan (1991) and Basuroy
and Nguyen (1998) study a market share game based
on the multinomial logit (MNL) model and demon-
strate that certain conditions are needed for equilib-
rium to exist. Karnani (1985) studies a multiplicative
competitive interactions (MCI) model with several
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firms that compete in a single market through sev-
eral marketing decisions. Existence of equilibria is not
guaranteed in his model because the profit function
of a single firm is not jointly concave in the market-
ing variables. Our model has multiple customer types
which may be considered as multiple markets. Mon-
ahan (1987) studies a model in which two firms com-
pete with each other in several markets with an MCI
model with a single marketing variable. Our model
also has several markets, but the retailer’s shares in
different markets (customer types) are interdependent
and multiple marketing variables (i.e., price and vari-
ety levels in all categories) play a role in each market.

2. Model Basics

Consider two retailers X and Y that carry two cate-
gories of goods. The set of products in category j is
{1,2,...,I} for j=1,2, where [ is a large number. Let
subscript r denote retailer r, r = x, y. Retailer r offers
n,; products and sets its margin p,; in category j. The
unit procurement cost for product i in category j at
retailer 7 is denoted B,;. The selling price of a prod-
uct to the consumers at retailer r is category mar-
gin plus the unit procurement cost of the product,
ie., B, +p,- The prices of each product are set such
that the absolute margins for all products in a cate-
gory are identical. This is actually the optimal pricing
strategy of a firm: Anderson et al. (1992) prove that
when customers follow an MNL choice model, opti-
mal pricing policy for a group of products is an iden-
tical absolute mark-up policy. This pricing strategy is
also observed in some retail settings. For example, dif-
ferent color/size shirts of the same style often have
the same price tag.

The cost of providing an assortment with 7,; prod-
ucts is C,(n,), which is increasing, convex in 1,
and can be parameterized with a scalar ¢,; such that
dC,i(c,;)/dc,; > 0. We describe a realistic replenishment
system that yields convex costs in Appendix A.

The consumer choice model is based on a nested
MNL framework. A consumer’s utility from purchas-
ing product i in category j at retailer r is u,; = v,;; —
p, + & where v, is the expected utility from the
product less the unit cost of the product and ¢ is a
random variable representing the heterogeneity of the
utilities across consumers. We assume that ¢ are inde-
pendently and identically distribute random variables
following a Gumbel distribution with zero mean and
variance m2u?/6, i.e., F(y) = exp[—e~¥/¥*V], where vy
is Euler’s constant (y ~ 0.5722). We assume that u =1
for expositional simplicity. The products in each cate-
gory at each retailer are indexed in descending order
of their popularity, i.e., such that v,;; >v,, >--- > v,.

There are three types of consumers in the market
that are characterized by the contents of their shop-
ping baskets: type 1 consumers would like to buy a

product in category 1 only, type 2 consumers would
like to buy a product in category 2 only, type b con-
sumers are basket shoppers and would like to buy
a product from both categories. The number of con-
sumers in the market for types 1, 2, and b are A, A,
and A, respectively. Consumers buy exactly one unit
of one product in every category included in their bas-
ket. Consumers have perfect information about the
offerings at both retail stores.

Consider the choice mechanism of a type j con-
sumer for j =1, 2. She has three options: retailer X,
retailer Y, or nopurchase. She chooses the alterna-
tive that gives her the maximum utility. The util-
ity of the no-purchase option is u;,, which follows a
Gumbel distribution with mean v, and scale param-
eter 1. Let U,; be a consumer’s utility from the pur-
chase of one variant at retailer r in category j, ie.,
U,; = max{u,;: 1 <i <n,}. Because the Gumbel dis-
tribution is closed under maximization, U, follows a
Gumbel distribution with mean

E[Urj]zh’l Z e @rji=Pr)

1<i=n,;

and scale parameter 1 (Ben-Akiva and Lerman 1985).
The above computation is based on the assumption
that retailer r offers the n,; most popular products
when choosing from {1, 2, ..., I}. As shown in Propo-
sition 9 in Appendix B, offering the most popular
products is indeed the optimal strategy for a retailer,
because in our model replacing a less popular product
in the assortment with a more popular one increases
the retailer’s market share with no impact on costs.
(van Ryzin and Mahajan 1999 prove the same result
for a single category by explicitly modeling the inven-
tory costs of each product.)

According to the nested-MNL model, the probabil-
ity that a type j consumer chooses retailer r is

exp(E[U,])

1 = oxp(E[L]) + exp(EU, D +op(g)

Define the attractiveness function for each alterna-
tive as follows:
n,lv
A=l Y e forr=x,y,
i=1

Z; = exp(vj)-

Note that A,; is increasing and concave in 7, and
decreasing and convex in p,;. Because of the no-pur-
chase alternative in this share model, if both retailers
increase prices or decrease variety, their total share
decreases. We can rewrite each retailer’s share among
type j consumers:

A,

S, =—""——
T A+ A+ Z

forr=x,y,and j=1,2.
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Now, consider a type b consumer. A basket shopping
consumer chooses retailer v only if she prefers the
assortment at r for both categories. As a result, the
probability that a basket shopper chooses retailer r is

S, =545, forr=x,y. (2)

This is a multiplicative basket shopping model, as a
retailer’s share of basket shoppers is multiplicative
in its share in each category. We discuss alternative
demand models in §6, such as the additive utility
model introduced by Kok (2003).

The profit of category j at retailer r is

T = Prj(AjS, + Aysy,) — Cpi(my).

For the rest of this paper, a variable name in
bold letters denotes a vector of those variables: n, =
(nrll ”rz)/ P = (prll prZ)/ A, = (Arll Arz)/ ¢ = (Crll Cr2)/
and A = (A, Ay, Ay).

The variety decision n, is a vector of integers.
Hereafter, we work with the continuous version of
the problem because differentiability facilitates the
derivation of the results and allows comparative stat-
ics. Also, we redefine

Arj =e P Gr] (nrj) ’

where G,j is a continuous, increasing, and concave
function of n,, ie., G >0 and G” <0. For fixed Pris
A,j is a continuous, increasing, and concave func-
tion of n,; and there is a one-to-one correspondence
between A,; and n,;. For convenience, we work with
the attractiveness levels A,; as the decision variables.
Define C~,,]-(A,j) =C,i(G;'(e" A,;)). We show that C~,]» is
an increasing convex function of attractiveness level
in Proposition 10 in Appendix B. Rewriting the profit
of category j at retailer r, we get

7Trj = prj(/\jsrj + )‘bsrb) - CAfr](lqr])

Although category profit is a function of A,, A, n,,
n, p., and Py when referring to T in the rest of this
paper, we only include the variables that are being
optimized at the moment. Finally, a symmetric game
across categories (retailers) means that the data for all
categories (retailers) are identical, ie., A;, Z;, and é,j
are the same for any j(r). In a symmetric solution, the
decisions are identical across categories (retailers).

3. Variety Competition with Fixed

Prices

In this section, we take the retailers’ prices as given
and analyze their variety decisions. We start in §3.1 by
characterizing the best response of one retailer given
the variety choices of the other retailer. Section 3.2
presents our analysis of the competition between the
retailers and §3.3 presents the basket profit heuristic
as an alternative to CM.

3.1. Best Response of a Retailer

We study the best response of a retailer X with
two management regimes: With CM, each category is
managed as an independent unit. With OPT, a single
decision maker manages both categories to maximize
total profit.

3.1.1. Best Response of a Retailer with Cate-
gory Management. The common practice of CM is
an example of a decentralized regime for controlling
assortment because each category manager is charged
with maximizing profit with his or her assigned cate-
gory. With CM, category manager j sets n,; given the
variety levels at Y and the variety level in the other
category to maximize category j profit. The CM game
between the two categories at retailer X is defined as

max i (Myj | Mg, m,) st ny; >0,
5

for j=1,2, k#j. (CM)
Category managers do not actually need to know \
and the definition of share functions. We expect them
to find the variety level that maximizes category prof-
its (i.e., the best response function) given other cate-
gories’ variety levels. They would estimate a demand
function, say d(n,), as a proxy for (A;s,; + A,S,)
and then solve a single variable concave optimiza-
tion problem to find n,; that maximizes m,. Note
that d(n,) depends on the variety levels of other
categories.

CM can be interpreted as an explicit noncooper-
ative game between the category managers because
each category manager is responsible exclusively for
the profits of her own category. Alternatively, it can
be interpreted as an iterative application of single-
category planning where each category’s variety level
is optimized assuming that all other assortment deci-
sions for the retailer are fixed.

Before proceeding with our analysis of CM, we
rewrite CM with decision variables A,:

n}l;a_jx ij(ij | Axk/ Ay) s.t. ij >0,
forj=1,2and k#j. (CM)

The best response of retailer X is determined by the
equilibrium of the game between category managers
at X. The next theorem characterizes the equilibria of
CM. The following condition is needed for the second
part of the theorem that establishes the uniqueness of
the equilibrium:
40N, > A3, (A1)
THEOREM 1. (i) CM is a supermodular game with a
nonempty equilibrium set that has a largest and a smallest
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element. The equilibria, denoted ASM(A,) (equivalently
CM(ny)) are characterized by the solutzon to
+pX])\b

PxjA faA aA

fork;ﬁjandj:l,z. ©)]

The largest (smallest) element is the Pareto best (worst)
equilibrium. The largest and smallest equilibria are increas-
ing in p,, N, and —c,. If A,; < A,; +Z; for all j, then the
largest and smallest equilibria are decreasing in A, and n,,.
(ii) If (A1) holds, then the equilibrium is unique.
(iii) If the categories are symmetric, then there exists
only symmetric equilibria.

Supermodularity implies that the variety decisions
across the two categories are strategic complements.
This is not necessarily the case in every model with
basket shoppers. (In the additive model presented in
Kok (2003), categories can either be strategic comple-
ments or substitutes.) The variety level in each cate-
gory is increasing in the retailer’s margin and demand
and decreasing in the cost coefficients. The variety
level is decreasing in the competitor’s variety level
because it is more difficult to attract customers when
the variety levels at the competitor are high. It is pos-
sible to have a unique equilibrium even if condition
(A1) is not satisfied. Still, there are cases where CM
has multiple equilibria. The third part of Theorem 1
rules out asymmetric equilibria in a symmetric game.

The supermodularity of CM has strong implica-
tions on the stability of equilibria. Specifically, tattone-
ment type algorithms (computing the best response
of each category in an iterative manner) are guaran-
teed to converge to the largest or smallest equilibrium,
depending on the starting point. Therefore, the cen-
tralized iterative optimization algorithm that manxi-
mizes one category’s profits in each iteration is bound
to converge to one of the CM equilibria. In cases with
a unique equilibrium, the equilibrium point is a glob-
ally attracting equilibrium.

3.1.2. Best Response of a Centralized Retailer. In
the centralized system, total store profits at retailer X
are maximized given the variety levels at retailer Y.
We write this optimization problem with attractive-
ness levels of categories as decision variables:

maX Z r](Ax |Ay) s.t. ij >0,

‘“/12

for j=1,2. (OPT)

Store profits are not jointly concave in general. We
make the following assumption to ensure joint con-
cavity:

4paprtidy = (P +P0)*Ap. (A2)

When the margins of the two categories are equal,
A; = A, for j=1,2 implies (A2).

THEOREM 2. (i) The optimal solution to OPT denoted
AQ"(A,) (equivalently n$*"(n,)) is increasing in p,, N,
and —c,. If A,; < Ay +Z; for all j, then the optimal solu-
tion is decreasing in Ay and n,.

(ii) If (A2) holds, then A2""(A,) is characterized by the
unique solution to

A asxj 4 4 A asxj é/ AV—0
P oA, (P + Pr) bmsxk L (Ay) =

fork#jand j=1,2. (4)

The marginal effect of A,; on total profit is com-
posed of its impact on own and cross-category sales.
Hence, the first-order optimality conditions are based
on the total profit earned from each customer type,
whereas the CM solution is based on category profits.

3.1.3. Comparison of the Best Responses. If there
were no basket shoppers, then CM and OPT would
yield the same solution. Therefore, we assume that
Ay > 0. The following theorem establishes that CM
never finds the optimal solution and provides less
variety than the optimal solution.

THEOREM 3. A centralized retailer provides strictly
more attractive categories (equivalently, higher variety in
both categories) than a retailer with CM, i.e., AS"T > AM
and n&'T > nM,

The supermodularity and monotonicity results for
the decentralized and the centralized solutions can be
easily extended for more than two categories or for
integer variety level variables.

We classify categories into two types: A basket cat-
egory has a high co-occurrence rate in baskets with
other categories. An independent category has most of
its demand from single-category shoppers. We inves-
tigate whether basket categories or independent cate-
gories should be assigned more variety. Consider an
extension of our model with three symmetric cate-
gories j, k, and I. Let Ajs Ay, and A; denote the demand
rate of individual category shoppers and A;; ;; and

{] ,} denote the consumers with shopping baskets
{j, k} and {j, I}, respectively. Fix A; and suppose that
ANe=A+0, Aji=A-9, )\1=A—6, and A , =A+9,
where 6 < A. If 6 =0, categories k and | are identi-
cal; as 6 increases, demand to each category remains
constant, but I becomes more of a basket category.

By the implicit function theorem and the concavity
of the profit function, dA, /36 has the same sign as the

cross-partial
82
M(ij + Ty + M) = PSp — 2PSiS;.

The cross-partial is positive if and only if s; <1/2,
implying that dAP™T /46 > 0 and dAP"T /38 < 0. There-
fore, a centralized retailer with less than 50% market
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share among nonbasket shoppers should assign more
variety to individual categories and less variety to
basket categories. The reverse is true for retailers with
more than 50% market share. Similar analysis of CM
yields that the cross-partials of the category profits
with respect to A; and 6 are always positive, there-
fore, dIAT™ /38 > 0 and dA™ /98 < 0 holds for any mar-
ket share. To summarize, both CM and OPT retailers
prefer to assign more variety to individual categories
when the retailer has less than half the market share
among nonbasket shoppers. On the other hand, when
the retailer has more than half the market share, the
OPT retailer starts assigning more variety to basket
categories while CM does the reverse.

3.2. Duopoly Results

In this section, we analyze the variety competition
between two retailers. Two cases are of interest. In
the first case, denoted CM-CM, both retailers employ
category management. In the second case, denoted
OPT-OPT, both retailers are under centralized man-
agement. We characterize the equilibrium in each case
and compare the resulting variety levels and retailer
profits.

3.2.1. Competition Between Retailers with Cate-
gory Management. When both retailers are managed
with CM, each category manager maximizes his or
her category profits given the attractiveness levels of
all other categories:

n}‘ax Wr](Ar] | Ark/ Aq) s.t. evjo > Ar] > O/
7j

forj=1,2,k#j, r=x,y, q#r. (CM-CM)
The first-order conditions for equilibrium of CM-CM
are the same as (3) only stated for both retailers.

The decision variables of the CM-CM game are
(A;, Ay). We can redefine this game with variables
(A, A’y), where A;, = —Ay. Then, we can show that
the category profit functions are supermodular in
(A, A)), when A,; < ¢ for all r and j. This condition
implies that neither retailer can achieve more than 50%
market share alone and that their combined share can-
not exceed two thirds. Under this condition, we can
characterize the equilibria of the game as follows.

If (A1) holds, by part (ii) of Theorem 1, A™ is
a continuous decreasing function of A, for g # r.
Therefore, there exists a unique equilibrium of the
CM-CM game with symmetric categories and retail-
ers. In a symmetric equilibrium, the equilibrium con-
ditions are identical for retail-category combinations,
therefore, we drop retailer subscripts 7 and j. That is,
pi=p A=) Z =2, C;=C, and A, = A. Define
6=A+Zand p=A+A+Z.

THEOREM 4. (i) CM-CM is a supermodular game in
(Ay, —A,). There exists a largest and a smallest equilib-
rium that increase with (p,, —p,) and (—c,, c,).

(ii) If (A1) holds and categories and retailers are sym-
metric, then there exists a unique symmetric equilibrium
of the CM-CM game AMM = (A™M  A™M) that is char-
acterized by

pASG 2+ pAr,6p2A—C'(A)=0. (5)

3.2.2. Competition Between Centralized Retail-
ers. When both retailers are under OPT, each retailer
maximizes its total store profits given the attractive-
ness levels of the other retailer:

max > mi(AJA) ste=A;>0,
"oj=1,2

for j=1,2, r=x,y, g#r. (OPT-OPT)

The first-order conditions for equilibrium of OPT-OPT
are the same as (4) only stated for both retailers.

Similar to the CM-CM game, we can redefine OPT-
OPT with decision variables (A,, —A,) and show that
the game is supermodular. If (A2) holds, by Theo-
rem 2, A9 is a continuous decreasing function of A,
for q # r. Therefore, there exists a unique equilib-
rium of the OPT-OPT game with symmetric categories
and retailers. The following theorem characterizes the
equilibria of the game.

THEOREM 5. (i) OPT-OPT is a supermodular game in
(A, —A,). There exists a largest and a smallest equilib-
rium that increase with (p,, —p,) and (—c, ¢,).

(ii) If (A2) holds and categories and retailers are sym-
metric, then there exists a unique symmetric equilibrium
of the OPT-OPT game ATTOPT = (ACFT AOPT) that is
characterized by

pASH 2+ (2p)A, 83 A — C'(A) =0.

Part (ii) of Theorems 4 and 5 can be slightly gener-
alized by not requiring categories to be symmetric as
long as retailers are symmetric.

3.2.3. Comparison of Equilibria. The following
theorem compares the unique symmetric equilibrium
of CM-CM with that of OPT-OPT when categories
and retailers are symmetric.

THEOREM 6. If (A2) holds, then
(i) ACM-CM o AOPT-OPT g1 nCM-CM _ nOPT-OPT

(ii) 77.( ACM-CM) > ( AOPT—OPT).

This theorem shows that CM retailers provide less
variety than the centralized retailers in equilibrium.
The first part of the theorem can be generalized to
asymmetric categories and retailers, as the proof does
not require symmetry assumptions.
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In OPT-OPT, because of the competition, retailers
offer more attractive categories than they would if
they colluded. In the CM-CM game, however, the lack
of coordination between categories in CM reduces
variety and balances some of the effect of competition.

Consider the management regime choice game (CM
or OPT) between the retailers. In this two-by-two nor-
mal form game, a prisoner’s dilemma type of sit-
uation arises: The retailer profits are higher in the
CM-CM game than the OPT-OPT game. Nevertheless,
each retailer has an incentive to switch to central-
ized management because OPT maximizes the store
profits given the other retailer’s variety levels. OPT
is the dominant strategy for each retailer. As a result,
the Nash equilibrium of the regime choice game is
OPT-OPT.

This dilemma arises in all competitive games. Take
differentiated Bertrand price competition, for exam-
ple. It is clear that in equilibrium players charge lower
prices and generate lower profits compared to joint
profit maximization. Therefore, if both players can
adopt a pricing policy that is less aggressive (analo-
gous to CM in our case) than their best response (OPT
in our case), they can generate higher profits. How-
ever, given that we are analyzing a competitive sce-
nario, collusion is not possible and the player’s correct
strategy is to follow its best response.

3.3. Category Management with Basket Profits

In this subsection, we discuss the extension of our
results to settings with more than two categories and
propose a heuristic solution that provides near-opti-
mal solutions with decentralized regimes. Suppose
that retailers carry more than two categories indexed
by je]={1,..., N}. The notation for cost, price, vari-
ety, and attractiveness variables carries over. How-
ever, now there can be more than three types of
consumers in the market. Specifically, consumers are
characterized by the contents of their shopping bas-
kets or the shopping list. Let t be the index of the ele-
ments of the power set of |, {B: BC J}. B, C ] denotes
a shopping basket that contains categories j € B,. The
number of type t consumers in the market is A,.
A consumer of type t purchases exactly one unit of
a product from each category in her shopping list B,.
Similar to the share function (2) for basket shop-
pers, the probability of a type t consumer choosing
retailer r is given by

t__ —
s;=[[ s, forr=xy.
jeB(®)

The expected profit in category j is

7Trj = p‘/j Z )\tsrt' - ér](Ar])

t|jeB;

A retailer’s best response with centralized and decen-
tralized regimes are defined by (CM) and (OPT) with
the modification that j is now defined over J. All
our results for CM and OPT (Theorems 1 through 3)
except for the uniqueness results extend to the N > 2
case.

The CM solution A{™(A,) emerges as the outcome
of a natural iterative process: category managers set
variety levels, store traffic and sales are realized, cate-
gory managers reassess the demand function for their
category and choose new assortments, etc. The same
process occurs if the retailer does category by cate-
gory optimization in an iterative manner. The pro-
cess always converges to one of the CM equilibria
because of the supermodularity of the game. Despite
its simplicity, we show in the numerical results sec-
tion that ASM can significantly deviate from the opti-
mal solution AY"T. On the other hand, it is not
easy to implement the centralized optimal solution: it
involves estimating the number of customers for all
2N basket types and an N-dimensional optimization
of a function that is not necessarily well behaved.

We now introduce a decentralized heuristic that
promises the best of both worlds (i.e., the simplicity
of CM and a profit level close to that of the opti-
mal solution). CM’s main weakness is that it fails
to recognize the intercategory effects of variety deci-
sions while underestimating the marginal benefit of
variety. From the perspective of the manager of cate-
gory j, an additional sale is only worth p;, but from
the retailer’s perspective it is worth more. We approx-
imate the true marginal benefit to the retailer with
the weighted average of the gross margins across bas-
ket types. We call this new metric basket profit because
it measures the total profit earned from a customer.
Specifically, let p,; be the basket profit from category j:

ﬁij Z <)‘tsz1)/

t|jeB, leB;

> (6)

t|jeB,

The manager for category j at retailer X then maxi-
mizes the following profit function:

ﬁxj = ﬁa; Z )\tsﬁtc - éx](AY])

t|jeB,

Each CM then chooses the attractiveness (or variety)
level of her own category,

max T (Ayj | Axas ey Ay Ay s - A Ay)
x]

st. A,;>0, forje]andk#j. (CM-B)
Note that all our results on the CM equilibria apply
directly to the CM-B heuristic. Comparing the profit
functions with CM-B and OPT, we see that CM-B uses

a weighted average p,; for all consumer types instead
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Table 1 Attachment Rate of the Television Category at an Electronics Retailer with Other Categories
Basket of television category Total
Category 282 602 383 281 321 384 190 389 604 376

Attachment rate (%) 3.9 3.7 3.7 35

2.8 2.8 2.6 2.3 2.2 2.1 29.6

of using } ;g Py for consumer type t. We test the
effectiveness of this heuristic in §5 and show that it
yields near-optimal results.

From a practical perspective, note that the bas-
ket profit for each category is easily computed from
point of sale (POS) data: it is the average gross mar-
gin earned from customers who purchased a basket
including that category. Alternatively, basket profit
from category j can be computed by using a con-
struct called attachment rate. The attachment rate of
categories j and k, a;, is the percentage of category j
customers who also bought from category k:

= ¥ M T A

t1{j, kleB; t]jeB;

It is possible to compute p,; with this data as follows:

Paj =P+ D Pur- )
k#j

It can be verified that (6) and (7) are equivalent. How-
ever, the use of (7) can be more convenient because
attachment rate is a metric that is currently used by
some retailers. Consider the example for the television
category at an electronics retail chain (Circuit City) in
Table 1. The table shows the attachment rate of this
category with other categories.

4. Price and Variety Competition
This section analyzes the competition between retail-
ers with endogenous prices. Retailers choose prices
and variety levels in each category to optimize store
or category profits depending on the management
regime. Again, we analyze the CM-CM and OPT-
OPT games. In both cases, we show that the inter-
action between categories (within or across retailers)
depends on the price and the variety level of each cat-
egory only through an aggregate attractiveness func-
tion A. For any given vector of attractiveness levels,
each category can choose its optimal price and variety
level independent of other categories and indepen-
dent of the management regime. Therefore, we con-
sider the attractiveness levels in the analysis of the
games. Then, for any given equilibrium, we compute
the variety level and price of each category.

The CM-CM game is defined as follows. For j =

1,2,k5£j, 7’=x/yr q#r/

;ne}ix er(Prjl nrj | Pricr Mykes Pq/ nq)
rj s M

st. A, =G(n,)e .

Equivalently,

max er(Prj, Ay, | Prics Ak Py Aq)

ijIAY/
1 .
s. t. 1’17] = G (Ar]-ep’/).

We omit the expression for n,; hereafter. Because m,;
does not depend on the prices of the other categories
at any retailer, we have

max er(Prj/ Arj | Ark’ Aq)

Prjs Ay
Rewriting the problem for each category as a two-
stage optimization problem,

n}xax n}]ax 7Trj (pr]‘/ Arj | Ark/ Aq)
] 7

= n}\ax 7Trj (pr](Arl Aq) | Ark/ Aq)/ (PCM_CM)
1

where

p:j (A, A) = argpmax Py | A, A, ®)
iy

(A, A)) =G (Ae). ©)

The above derivation leads to two important obser-
vations. First, the interaction between categories and
retailers is through the attractiveness levels A,; only
(a composite variable of price and variety levels).
Second, given the attractiveness levels of all cate-
gories, the price optimization is separable across cat-
egories. That is, each category profit is independent
of the prices in other categories. Given (A,, A,), both
the price and variety level of each category rj are
uniquely determined from Equations (8) and (9).

Next, we show that OPT-OPT game with endoge-
nous pricing possesses the same properties:

ll;naAXZ er(Pr/ Ar | Pq/ Aq)
rs T ]

= maxz er(prj/ Ar | Aq)
prrAr ]
= max er;ax i (P Ay | A,)
r j rj

=max Y m,(py(A,, A, A, |A,). (P:OPT-OPT)
g

Again, the interaction between categories are
through attractiveness levels only. Moreover, given
(A,,A,), the price and the variety levels in each
category are uniquely determined by the same set of
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equations in CM-CM, namely, (8) and (9). Thus, given
attractiveness levels, the optimal price and the variety
levels in P:OPT-OPT and P:CM-CM are identical. This
property simplifies the analysis of the duopoly game
significantly.

For analytical tractability, we assume that the cost
of variety is linear and candidate products in a cate-
gory are equally popular.! That is,

C;(n,)=c,n,; and G(n,)=gn, forallr, j. (A3)

rjtrj

In this case, the optimal price and variety levels in
each category given (A,, A)) are given by the follow-
ing. Define D; = A;s,; + A5,

MV WES argpmax pyD,j —C
v

rj(Gil (eprjArj))
=argmaxp,D,; —(c,;/g)e A,
Prj

=In(g/c,;) +InD,;—InA,;,
ntj(Ar/ Aq) = Drj/crj'

Substituting these in the category profit function, we
obtain

Wr](pj](Ar’ Aq)! Ar | Aq) = (p;f] - 1)Dr]

Because we are interested in cases where profits
are nonnegative, hereafter we assume that P = 1.
We now characterize the best response of a retailer
in (P:CM-CM) and in (P:OPT-OPT). A™™ and A9'T
denote the solution to (P:CM-CM) and (P:OPT-OPT),
respectively.

THEOREM 7. Best response of a retailer v in (P:CM-
CM) and (P:OPT-OPT) facing A, where (A, = Ap): If
(A3) holds and A,; <Z;, then

(i) A™M(A,) and APTT(A,) are decreasing in A,, A,
and c,,

(i) ASM(A,) is the unique equilibrium response if
Ay > A2,

(iii) ATM(A,) < AOT(A,),

(iv) m(AP(A,), A)) <7 (ATT(A,) A,),

(V) If /\] = . )\b/ then pt(Ar '(Aq)IAq) >
p;(APTT(A)), A,) in symmetric solutions (i.e., A,; = A).

This theorem shows that most of our results on
the best response of a retailer in variety competition
extends to the endogenous prices case. Supermodu-
larity of the payoff functions and the monotonicity
in demand and cost parameters are established in
part (i). Further, in the best response of a retailer, the
attractiveness levels of its categories are decreasing in
the attractiveness of the competitor’s categories. For

! For general concave G and convex C functions, we were not able
to show unimodality of ,;, which is a sufficient condition to guar-
antee the existence of equilibria. However, we found ,; to be uni-
modal in all numerical examples we tested.

CM, we can also show that there is a unique equilib-
rium to the CM game with pricing that determines
the retailer’s best response. However, we cannot show
joint concavity of OPT with pricing.

Parts (iii) and (iv) indicate that with CM a retailer
provides less attractive categories and less variety
than a centralized retailer. The impact of an increase
in A, on p, is negative, while the impact of an
increase in A, is positive, therefore a definite com-
parison of prices in CM and OPT cannot be made
in general. However, part (v) shows that in symmet-
ric solutions, a retailer with CM charges lower prices
than a centralized retailer. To summarize, a retailer
with CM offers lower variety and higher prices, lead-
ing to less attractive categories overall.

The next theorem summarizes our results on duopoly
price and variety competition. Let AXM™ denote the
equilibrium solution to (P:CM-CM), and n“™M and
p™MM denote the optimal variety and price levels at
the equilibrium. Similarly, let AOFTOPT nOPTOPT “and
p rTOrT denote the solution to (P:OPT-OPT).

THEOREM 8. Consider the duopoly games (P:CM-CM)
and (P:OPT-OPT) restricted to symmetric strategies, i.e.,
Ay = A, forall r. If (A3) holds and A,; < Z;, then

(i) (P:CM-CM) is a supermodular game in (A,, —A,)
and (P:OPT-OPT) is a supermodular game in (A, —A,).

(if) There exist a largest and a smallest equilibria in both
duopoly games. In CM-CM, there exists a unique symmet-
ric equilibrium if all categories are symmetric.

(iif) Assuming a symmetric solution characterized by
the first-order conditions in each case: ASMM < AOPT-OPT)
nCM-CM _ [ OPT-OPT_ If A, > A, then, PCM-CM . POPT—OPT’
W(ACM—CM) > ,n.(AOPT—OP )

The third part of the theorem states that the variety
level and the overall attractiveness levels are lower,
similar to the variety competition case, and the prices
and category profits are higher in the CM-CM equi-
librium than the OPT-OPT equilibrium.

4.1. Category Management with Basket Profits
The basket profits heuristic introduced in §3.3 enabled
us to achieve near-optimal solutions in a decentral-
ized regime by using basket profits instead of cat-
egory profits. Because the prices (or margins) are
endogenous in the price and variety competition case,
the heuristic cannot be directly applied and requires
some modification.

Given the price vector at retailer X, basket profit
can be computed using Equation (7). However, p,; is
now a decision variable and therefore p,; is no longer
a constant. In CM with basket profits, each category
manager faces the following problem:

max_ 7/T\xj = <ij + prkajk) Z )‘tsxt(Axl Ay) - éxj(ij)
P T k#j tljeB,

for all j. (P:CM-B)
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Some clarifications are in order. First, (P:CM-B) uses
basket profits while computing profits given shares,
but computes the attractiveness of categories (and
market shares among different customer types) using
category profits. That is, both CM and (P:CM-B) use
pyj in computing A,; and s,. Second, (P:CM-B) is a
different game from CM because decision variables
for other categories (i.e., p,) are now included in
the basket profit of category j. Therefore, the game
is more involved and analytical properties of CM do
not necessarily carry over. We found in our numerical
experiments that the iterative process converged to an
equilibrium in all cases. We report the performance of
this heuristic in the next section.

5. Numerical Results

The numerical study in this section is composed of
two parts. The first part focuses on variety compe-
tition with fixed prices and the performance of the
basket profits heuristic. The second part focuses on
price and variety competition and the performance of
the basket heuristic in comparison to CM.

5.1. Variety Competition

Table 2 presents the best response of a retailer with
CM and OPT. For cases with multiple equilibria in
CM, we only report (the largest and the best) equi-
librium. All categories are symmetric, costs are linear,
and attractiveness functions are linear in the variety
level (e, A,;=n,;). As seen from the table, CM pro-
vides, on average, 26% less variety than OPT. The
profit loss due to CM ranges from 0% to 100% with
an average of 13%.

Table 2 Variety Competition. Best Response of a Retailer with CM
and OPT. Two Symmetric Categories, p; =1
1— ,n.CM/,n.OPT

NN Ay g Ag}m AS}’T M g0 (%)

20 80 5 15 05 328 54.0 538 604 11

20 80 15 15 05 30.0 564 300 379 21

20 80 5 15 1 112 274 126 218 42

20 80 15 15 A 00 205 00 16 100

20 80 5 15 2 00 00 00 00 0

20 80 15 15 2 00 00 00 00 0

50 50 15 15 05 384 526 493 516
50 50 15 15 1 146 229 143 162

50 50 15 15 2 00 00 00 0.0

80 20 15 15 0:5 443 493 653 656

80 20 15 15

—_ a2 a0 00 ORMNOOTW

80 20 15 15

Table 3 Effect of Problem Parameters in Variety Competition. Best
Response of a Retailer with CM and OPT. Two Symmetric
Categories, p; =1
1— ﬂ.CM/,n.OPT (%) 1— ncm/nopT (%)
()\/! )‘b)
(20, 80) 1 10
(50, 50) 6 29
(80, 20) 42 60
Competition (A, 4+ Z;)
20 13 31
30 22 37
Total cost (3, ¢;)
1 7 26
15 14 31
45 30 43

Table 3 illustrates the effect of problem parameters
on the deviation in variety level and profit loss. The
proportion of basket shoppers in this data set is 80%,
50%, and 20% when (A;, A,) is (20, 80), (50, 50), and
(80, 20), respectively. As one can expect, the loss due
to CM is larger with a higher proportion of basket
shoppers, higher cost of providing variety (c;), and
stronger competition (higher A, +Z)).

Table 4 compares the results of CM and the basket
profits heuristic (CM-B) with the best response of a
retailer with OPT. The data set consists of 12 symmet-
ric and 24 asymmetric category instances for N =2,
and 18 symmetric category examples for N = 3. CM-B,
denoted with superscript B in the table, reduces the
average profit loss of CM from 21% to 2%. CM-B
works equally well for asymmetric and symmetric
scenarios. In the N =3 case, the performance of CM-B
with respect to OPT is worse than the N =2 case,
however, the performance of CM is even worse. In all
cases, CM-B recovers more than 85% of the profit loss
due to CM.

One drawback of the basket profits heuristic is
that like CM, it can converge to a bad equilibrium
in the case of multiple equilibria, especially when
all categories have zero variety in the worst equilib-
rium. In the 26 instances for N = 2, there were three
cases where CM had multiple equilibria. CM-B had
a unique equilibrium in all 26 instances, which elim-
inated the possibility of a worst case. In general, if

Table 4 Basket Profits Heuristic in the Best Response of a Retailer in
Variety Competition
Average deviation in
Average profit loss (%) variety levels (%)
N Data 1 — g/ qOPT { _ 7B/ OPT  { _ M /pOPT  { _ B /OPT
2 Symmetric 16.9 2.6 33.7 -8.7
Asymmetric 15.9 0.4 32.5 —741

3 Symmetric 324 4.8 47.8 —-121
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Table 5 Variety Competition. Comparison of Equilibria with CM or
OPT. Symmetric Categories, p;, =1

)\/ )‘b Z/ C/ ACM-CM AOPT»OPT ,n.CM-CM 77.OPT-OPT
50 50 30 0.5 29.5 40.0 14.6 9.6
50 50 30 1 9.1 13.1 4.2 2.5
50 50 30 2 0.0 0.0 0.0 0.0
50 50 60 0.5 18.2 26.2 4.2 2.5
50 50 60 1 0.0 0.0 0.0 0.0
50 50 60 0.0 0.0 0.0 0.0
80 20 30 0.5 40.5 445 23.2 21.0
80 20 30 1 16.5 18.0 1.7 10.6
80 20 30 2 3.5 3.9 1.5 1.3
80 20 60 0.5 329 36.1 1.7 10.6
80 20 60 1 71 7.7 1.5 1.3
80 20 60 2 0.0 0.0 0.0 0.0

there are multiple equilibria, starting with a high vari-
ety level when a category is first introduced ensures
that CM-B (or CM) converges to the best equilibrium.

Table 5 presents the equilibrium results in the du-
opolistic variety competition. The variety levels are,
on average, 11% lower in the CM-CM competition
than OPT-OPT.

5.2. Price and Variety Competition

Table 6 presents the best response of a retailer with
CM and OPT. Similar to the variety competition, CM
provides less attractive categories and results in an
average profit loss of 21%. We can see that variety
levels are lower and prices are higher with CM in all
examples. The variety level with CM is 31% less, and
prices with CM are 6% higher compared to those with
OPT.

Table 7 compares the performance of the basket
profits heuristic (P:CM-B) with the best response of
a retailer with OPT. The data set is the same as
Table 6. P:CM-B, denoted with superscript B in the
table, achieves near-optimal solutions in almost all
instances except for one case. The average profit loss
was 4%, whereas the average loss due to CM was
21%. It can be seen from Tables 4 and 7 that the

gap between the heuristic and the optimal solution
increases as the number of categories and the cost of
providing variety increase or the market share of the
retailer decreases. It can also be observed that the gap
is higher with a medium proportion of basket shop-
pers. This is due to the fact that CM-B is optimal when
there are no basket shoppers or no individual cate-
gory shoppers.

Table 8 presents the equilibrium results in the du-
opolistic price and variety competition. The attrac-
tiveness levels are, on average, 19% lower in CM-CM
competition than OPT-OPT. The variety levels are, on
average, 7% lower in CM-CM than OPT-OPT. The
prices are, on average, 12% higher in CM-CM than
OPT-OPT.

To summarize, the numerical study confirmed our
analytical findings on the comparison of different
management regimes, showed that the profit impact of
the management regime can be significant, and dem-
onstrated that the basket-profit heuristic can be an
effective tool to coordinate categories in all settings.

6. Additive Basket Utility and

Cherry-Picking Consumers
As mentioned earlier in §2, the multiplicative choice
behavior defined by (2) can be replaced with alter-
native models to refine the consumer choice model.
A basket shopper may choose a retailer when her
total expected utility at that retailer is higher than
other alternatives, even if the retailer is not her first
choice in both categories. Kok (2003) develop an addi-
tive utility demand model for basket shoppers. In
the additive model, a basket shopping consumer’s
total utility at retailer r is U, + U, and the con-
sumer chooses the retailer with the maximum total
expected utility. Kok (2003) develop an approximate
closed-form formula for the share equations and ana-
lyze the best response of a retailer with centralized
and decentralized management. They establish that

Table 6 Price and Variety Competition. Best Response of a Retailer with CM or OPT. Two Symmetric Categories
)‘/ )‘b ij_ Zj Cj AE}(;\A AE/PT p*CM p*OPT n*CNI n*OPT 71.CM 71.OPT 1 _ 71.CM/WOPT (0/0)
40 160 5 150 05 164 360 182 163 1008 183.8 825 1156 29
40 160 15 150 05 123 378 141 1.34 50.1 144.2 20.5 48.7 58
40 160 5 15 1.0 00 169 069 1.12 0.0 52.0 0.0 12.6 100
40 160 15 15 1.0 0.0 00 029 029 0.0 0.0 0.0 0.0 0
100 100 5 15 05 202 308 201 1.84  151.1 1948 1528 1645 7
100 100 15 15 05 213 334 1.7 157 1173 160.9 83.1 92.0 10
100 100 5 150 1.0 99 163 149 138 44.0 65.0 434 50.0 13
100 100 15 150 1.0 54 110 118 113 17.6 341 6.4 8.8 28
160 40 5 15 05 228 264 214 206 1930 208.0 2196 2213 1
160 40 15 15 05 257 298 186 179 1647 1793 1412 1425 1
160 40 5 15 1.0 133 154 166 1.61 70.3 77.2 93.4 94.4 1
160 40 15 15 1.0 121 140 140 137 494 55.1 39.9 40.4 1
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Table 7 Basket Profits Heuristic in the Best Response of a Retailer in Price and Variety Competition. Two Symmetric
Categories

1— ,n.CM/,n.OPT 1— TrB/ﬂ.OPT
A Ay A, Z; ¢ A A5 AYT M w8 0T (%) (%)
40 160 5 150 05 164 379 360 825 1154 1156 29 0
40 160 15 150 05 123 411 378 20.5 48.3 48.7 58 1
40 160 5 15 1.0 0.0 197 169 0.0 12.0 12.6 100 5
40 160 15 15 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
100 100 5 15 05 202 340 308 1528 163.7 1645 7 0
100 100 15 15 05 213 384 334 83.1 90.9 92.0 10 1
100 100 5 150 1.0 99 198 163 434 48.5 50.0 13 3
100 100 15 150 1.0 54 176 11.0 6.4 5.8 8.8 28 34
160 40 5 15 05 228 285 264 2196 2208 2213 1 0
160 40 15 15 05 257 33.0 298 1412 1419 1425 1 0
160 40 5 15 1.0 133 175 154 93.4 93.6 94.4 1 1
160 40 15 15 1.0 121 171 140 39.9 39.2 40.4 1 3

a retailer with CM provides less variety than the
optimal. Most of our results (specifically, the results
in variety competition and the results on the best
response of a retailer in price and variety competition)
can be shown to hold with the additive utility model
but require more restrictive conditions. For example,
the analog of Theorem 1 (i.e., supermodularity of CM)
holds only when Arj < e,

Consumers may also split their shopping between
two alternatives (e.g., buy 1 at X and buy 2 at Y or
buy 1 at X and don’t buy 2) if the benefit of doing so
exceeds the disutility of having to visit more than one
store. This is called cherry-picking. A basket shopping
consumer evaluates the total utility associated with
different alternatives and chooses the one that maxi-
mizes her total basket utility:

max
r,q€lx,y, z}

q},

U, + Uy —nl{r

where 7 is the disutility of visiting an extra store, and
1{r =g} is an indicator function equal to one if r =g

and zero otherwise. Clearly, the interdependency of
the categories is weaker with this model than the
additive model because a category may still attract
cherry-pickers even if it cannot attract full baskets.
Because of the correlation between the utilities of the
alternatives, obtaining closed-form expressions for the
probabilities associated with each alternative is not
possible. Although an analytical analysis of the vari-
ety competition between retailers or including pric-
ing does not seem possible, it is possible to show
that the best response of a retailer with CM provides
less variety than OPT. The loss due to CM, however,
may be less severe than it is with the multiplica-
tive and additive models, depending on the value
of n. If 7 =0, then there is no interaction between
categories and this model reduces to a case where
there are no basket shoppers. If 7 is very large, no
customers will cherry-pick, and this model reduces
to the additive model in Kok (2003). Fox and Hoch
(2005) report that the percentage of shopping trips
where consumers cherry-pick is not very high: While

Table 8 Price and Variety Competition. Comparison of Equilibria with CM or OPT. Two Symmetric
Categories

)\/ )‘D Z/- C/ ACNI-CM AOPT—OPT p*CNI-CM p*OPT-OPT n*CM-CM n*OPT—OPT 7TCI\/\-CM ,)TOPT-OPT
100 100 10 05 212 32.0 1.68 1.35 113.6 123.9 77.2 43.8
100 100 10 1 9.9 14.6 1.50 1.25 443 51.1 44.0 25.9
100 100 10 2 35 5.3 1.26 1.12 12.5 16.1 13.1 7.6
100 100 20 05 198 29.2 1.50 1.25 88.5 102.2 44.0 25.9
100 100 20 1 71 10.6 1.26 1.12 25.1 32.3 13.1 7.6
100 100 20 2 0.0 0.0 0.0 0.0 0.0 0.0
160 40 10 05 265 30.8 1.73 1.60 148.7 152.5 108.0 91.4
160 40 10 1 13.2 15.0 1.57 1.47 63.3 65.7 71.9 62.3
160 40 10 2 5.9 6.6 1.37 1.31 23.0 24.3 34.0 30.1
160 40 20 05 264 30.1 1.57 1.47 126.5 131.3 71.9 62.3
160 40 20 1 1.7 13.1 1.37 1.31 461 48.6 34.0 30.1
160 40 20 2 3.2 35 1.14 1.12 10.0 10.8 5.5 5.0
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the top-decile cherry-pick about 32% of the time, the
mean and median are only 7.2% and 4.2%. This may
be considered as partial support for the validity of
models in which cherry-picking is not allowed.

7. Conclusion

We study the assortment planning problem with
two competing retailers, each carrying multiple cat-
egories. Basket shopping consumers, i.e., consumers
who desire to make a purchase in multiple categories,
choose between two retailers and a no-purchase
option. We investigate the retailers” assortment deci-
sions across categories with centralized and decentral-
ized management regimes. We find that decentralized
assortment planning, as in CM, where category man-
agers are responsible for their own category’s profit,
is likely to lead to lower variety, higher prices, and
significantly lower profits than optimal. However,
a centralized optimal solution is almost surely not
implementable in practice due to the complexity of
the required data estimation and optimization. There-
fore, we propose a decentralized regime, like CM,
but instead of evaluating each category manager’s
accounting profit, we measure their basket profits,
where basket profits can be estimated using point-
of-sale data. We find that our basket profit approach
provides near-optimal solutions for a retailer. Hence,
although the presence of basket shopping consumers
is known to create significant analytical complications
for the assortment planning problem, a robust and
simple analytical solution exists.
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Appendix A. Example of a Replenishment System
with Convex Operating Cost

Consider a single category with x products and demand
Ax) = A(x)(A(x) + A(z)) !, where A’'(x) >0 and A”(x) <0.
Item i’s demand rate is A;(x), where >; A;(x) = A(x). Total
shelf-space capacity is S and assume that each item’s max-
imum inventory level is proportional to its demand rate,
S; = 5A;(x)/A(x). There are commercial algorithms that allo-
cate shelf space in this way (see Bultez and Naert 1988 for
references). In a continuous review inventory system with
zero lead time, an order is placed whenever the inventory
level is zero and the average inventory level for a single
product is S;/2. Total average inventory is S/2, hence, inven-
tory holding cost is independent of x. The number of orders
per unit time for item 7 is A;(x)/S;(x) = A(x)/S, i.e., the order
frequency is identical across all items. The total number of

orders in the category is xA(x)/S, whose second derivative is

2N (x) +xA” (x)

S
__AB , |
= A1 AGy A AR +AR) - x4 ()
+A"(@)(A(X) +A®@)
A@)

(A(x) T AQ) (A (x)A(z) + A" (x)(A(x) + A(2))).
The inequality is due to the concavity of A(x). A”(x) <0 and
A(0) =0 implies A(x) > xA’(x). If the x products have simi-
lar demand rates, A(x) is linear. A”(x) =0 and the cost func-
tion is convex in x. The cost function is still convex if A(x)
is not too concave. For example, if A(x) =1Inx, the sign of
the second derivative is determined by A(z)(—1+2x) —Inx,
which is strictly positive for z> e and x > 1/2.

Appendix B. Proofs
PROPOSITION 9. The retailer’s optimal assortment in cate-
gory j is of the type {0, 1,2, ..., n,}, where n,; <N.

Proor. The proof is by contradiction. Suppose that the
optimal assortment at retailer r is S,; € S; such that I €S,

i¢S, and i <l Let S, =S, U{if\{l}. Because vj; > vy,

e P Zme% evim > 7P Zmes,,» e’in. Hence, share of retailer r
for any consumer type and the category profit increase
when [ is replaced with i. This contradicts with the optimal-
ity of §,;. O

Prorosttion 10. C,; i(A,;) is a convex increasing function.
Proor.
Ci(Ay) = Cy(GH " A)G (G (" Ay)) e =0,
’ CH(G (@ A)(G (G (e A,) ™
)= ( CH(G e A)(G (G (e A) G (G (1A, >>>
e >0. O

Proor oF THEOREM 1. Define ¢; =
qu +Z, where g #r

AX]+Ay] +Z] and 5}‘] =

sy 5625 0
E = x,‘¢j >Y,
25,
8A2 = 28,(]([) <0,
[‘JZSX/ 05 ) B
aAy]aA x]d) +¢ _d) ( d)])
_ _ 43
=—¢;(Z;+ A, — Ay). (B1)
(i) Take the second derivative of 7,; with respect to A,;.
g ~
aA (p;\j)\] +p\'j/\bs,\k) aAz - C ( x/) <0. (BZ)
xj

Therefore, category profit 7,; is concave in A,;. Existence of

an equilibrium follows from Theorem 1.2 in Fudenberg and
Tirole (2000).

827ij _ dsy; ds,
0A A, =Pt Y9A,, aA



Cachon and Kok: Category Management and Coordination in Retail Assortment Planning

948

Management Science 53(6), pp. 934-951, © 2007 INFORMS

Applying the implicit function theorem to (3), we can show
that the best response function A,; of category j is increas-
ing in A, of category k. The feasible action space {0 < A,; <
e Pi G(Nj), j=1,2} is a nonempty, convex, and compact set.
The payoff function ,; is continuous in A,; for any A,; and
supermodular in (A,;, A,;). Supermodularity of 7/ implies
that it has increasing differences in the feasible set. There-
fore, (CM) is a supermodular game. Then, by Topkis (1998,
Theorem 4.2.1), the set of equilibrium points is a nonempty
complete lattice; a greatest and a least equilibrium point
exist. Because the payoff to a player is increasing in other
players’ strategies, i.e., dm,;/dA, > 0 for k # j, the largest
element is the Pareto best and the smallest element is the
Pareto worst equilibrium. This result follows from a simple
stepwise improvement argument; see Vives (1999, §2.2.3).
It is easy to show that m,; is continuous in A, for every
(p:, N, —A,,, —¢,) and it has increasing differences in A,;
and (p,, N, —A,,, —¢,). By Topkis (1998, Theorem 4.2.2), we
obtain the monotonicity results.

(ii) To prove uniqueness, we show that the Jacobian of (3)
is a negative semidefinite matrix:

2
82779(1 9 T
8A§1 dAj0A
2 Py
A 0A,  9AZ
s, dsy; ds
xj Xj xk
> npxj)\jiz - l_[ pxj/\b
HPatigan, — 1L PTGA oA,

2
= Px1Px2 ()‘1)\2 1_[ 28%](1")]_3 - /\i 1_[ 8§]¢;4)

j=1,2 j=1,2
>0 under (Al).
(iii) The proof is by contradiction. Let A, be an asymmet-

ric equilibrium with A,; > A,,. By definition of equilibrium,
A, satisfies (3). Because

05,1 - 0S,»

A, " 9A,’ S <8q, and  —Cy(Ay) < —Cyh(Ay),

the left-hand side of the condition for j =1 is strictly
less than that for j =2. As a result, both conditions can-
not be satisfied at the same time and A, can not be an
equilibrium. O

Proor oF THEOREM 2. (i) Because m,; are supermodular
in (A, Ay,) for j=1,2, so is total store profit. The mono-
tonicity results follow from the optimization of a supermod-
ular function.

(ii) To prove joint concavity, we show that the Jacobian
of (4) is negative semidefinite. The diagonal entries in the
Jacobian are negative because the profit function is con-
cave in each decision variable. By following steps similar
to the proof of Theorem 1, we can show that (A2) is a suf-
ficient condition for the determinant of the Jacobian to be
positive. [

Proor or THEOREM 3. Compare the first-order conditions
to the optimization problem (OPT) and the game (CM):

s,
4) - 3) =puars msxk/

which is always positive if A, > 0. Therefore, the two sets
of equations can never have the same solution. This also
implies that AXO]-PT(Axk) > A%M(Axk) for all j # k. The proof
of the second part is by contradiction.

Case 1. Suppose that AT < ASM. Then,

OPT OPT OPT CM CM OPT
Z ij(Axl 7 sz ) < Ty (Axl ’ Ax2 ) + 71-.’52(143:1 ’ AxZ
j

< Ty (A%M/ Sé\/l) + WxZ(ASIM’ AS%V[)
This contradicts the optimality of A,. The first inequality
follows from 9r,;/dA, > 0 for k # j and the second inequal-
ity follows from the definition of the equilibrium, i.e., AEJM =
argmax, i (Ayj s Axi)-

Case 2. Now suppose that ASM > ATT and AT > AM.
Define the solution to (3) for j as AE]M(AX,(), the best response
of category j to the other category’s attractiveness level in
CM, and the solution to (4) for j as A_?jP T(A), the opti-
mal attractiveness level in j given A,. Because ASM(A,;)
is increasing and AYT > ASM, we have AM(AYT) >
AADM) = A", Because AQ(AGT) < AFT(AGT) = AYT,
then we have AXT > ASM, a contradiction. O

Proor OF THEOREM 4. (i) The results follow from the
supermodularity of the payoff functions. We have shown
that m,; is supermodular in (A,,A,) in Theorem 1.
From (3) and (Bl), we see that m,; is supermodular in
(A, —Ay) for r#4,if Z; + A,; > A,j, which holds because
A,j < Z; for any j by assumption. To show supermodularity
in (A, —Ag) r#4q, j #k, take the derivative of (3) with
respect to A,

ds; 05,k 0

px')\b
1MAA,; 9A,,

For monotonicity results, it is sufficient to show the super-
modularity of m,; in the following pairs of variables:
(Ayj, pu) for any j and k, (A,, —py) for any j and k,
(A, —cy) for any j and k, (A,;, ¢) for any j and k.

(ii) Because the categories are symmetric, the best re-
sponse of retailer r is the unique symmetric equilibrium
of CM (Theorem 1). Due to symmetry, we can focus on
only one component of A™M(A,) = (AT™M(A,), ATM(A,)). The
best response AT™(A,) is a decreasing continuous function
because it is uniquely characterized by the first-order con-
ditions in Theorem 1. Symmetric decreasing best-response
functions intersect at the 45° line only once. The first-order
condition is the same as (3) stated for symmetric retailers
and categories. [

Proor oF THEOREM 5. The proof is similar to that of The-
orem 4. O

ProoF ofF THEOREM 6. (i) The first part of the theorem
follows from the supermodularity of CM-CM and OPT-
OPT. Replacing p,;A, with (p,; +pn)A, in the first-order con-
dition r, j of CM-CM results in the first-order conditions
for OPT-OPT. Because m,; are supermodular in A,; and the
coefficient of A, for all r, j, the equilibrium, is increasing in
that coefficient. Therefore, the largest equilibrium of OPT-
OPT is larger than that of CM-CM.

(ii) To compare the profits, we need to investigate the
case where retailers jointly maximize the sum of their prof-
its. This case provides a benchmark to compare with the
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outcomes of the equilibria of the above two cases,

maxz o

Vr X,y j=1,2

s.t. Ar]- >0,

forr=x,y,and j=1,2. (B3)

The first-order conditions for optimality are as follows: For
j:l 2,k#j,r=x,y, and q#r

p] j 8A (Sr]+5q,)+(p]+Pk)Ab aA (SV]S k+sq]5qk) Cr](Ar]) 0.
We cannot show joint concavity in the four variables, there-
fore we focus on symmetric solutions at the retailers, that is,
A,=A,=A. (Note that this does not imply that A,; = A,,.)
A sufficient condition for concavity is (A2). First-order con-
ditions are as follows: For j=1,2, k#,

PNZi$ + (0 + PONZ 2 Aty — C(A) =0.
Diagonal entries of the Jacobian are
—20,0,Z;67° = 2(p; + PN Z b Ayt — G (A)A <0.
Cross-partials are
(r;+ Pk))\sz‘f’fzzk¢;2~

The Jacobian is negative semidefinite and the total profit
is jointly concave if (A2) holds. If (A2) holds, then the
global optimal solution of (B3) subject to A, = A, is denoted
(A“CL, A“OL) and is the unique solution to

C'(A)=0. (B4)
Compare this with the first-order conditions in CM-CM:
(5) — (B4) = po>(X;$(8 — Z) + 1, A(8 —22))
= pdp AP+ M (A~ 2))
— pd P A(ARA + 1) + Z(A; — )
> 0 if and only if A/Z
> (4= )/ (A, +24)),

which holds under (A2). (5)—(B4) > 0 implies that ASMM >
ACOL. Because AM ™M ig closer to the collusion outcome,
the profit of each retailer with CM-CM is higher than OPT-
OPT. O

Proor oF THEOREM 7. The proof of part (i) is due to the
supermodularity of the category profits in (A,;, A,) and
(A);, Ay) and is similar to the proofs of Theorems 1-3. Note
that

PAZG 2 +2pN, ZAP > —

D,
dA,;

v =A Sr]d) +Ab6r/¢ 2Ark¢k _Dr/Ar]1¢ 16r]!

apr; 1 dD,; 1
i i 141 -1 -1
=— ——=A ¢ 6, - A =—¢.,
A, D, A, A, K v ¢

(97T,] _ pr] D +( * _1) aDr] _ 1k
9A,  0A, Pi = aA, T oA,
2 2
Fmy 0y 0D, #D, .
GA0A,,  9A, 0A, T 9ALIA, L
2
__ Tl (9Dr] + aiDr]p*
1 9A, T aAALT

=—¢: (A 18k ?) + (M8, 28 Py
= X028, (8,1 — Ay) = 0

because pj; > 1 and 8,; > Z; > A,; by our assumptions.
Further, assume that Aj; = A, = A

2
0, i(f)Drj . D,,j)

7

= py—
0A9A, ~ 9A \aA, T A,
_ #D; | iD;dpy 1 D,
C AIA, IA,; IA, A, 0A,
#D; _ aD,;(oD, 1 1
= 9A0A,7T A, <6A D, A,]->
D, .
] * "] -1 4-1
= TP e D payoig
aA0A T 9A, ¢4
-3
MDA, — 8,) A bl — 6728, AP,
-1 4-1 -2
Ay 7 A5 Ay
+ A A2 (e + ¢7) <0

because A;¢7°((A,; —8,))py; +A,) <0 and

N b Al (A = )i = &;8,)pr; + Ay (b1 + 6))
= Ab(b;a(ﬁ}:zArk((ﬁk((Arj - 61’])p:] + Aq)
+éj(=8,py+A4,) <0,
027Trk _ i aDrk * _
sA0A, ~ aA, \9A, ") T oA

J
e (AbArk¢E15rj ¢>/’2P1‘k)
q
= AbArkptk(_d)k_zﬁrjd)y_jz + d)k_ r]

zd)k 18r]¢r]3)

+)‘b rkd)klér]d) 2 rkD

= )\bArkij@?z(f’fs(—Srj‘f’j + drd; —25,;¢;)

aD
rk D

+ Ah rkd’klar](b 2

The first part is negative because 24,; > qS] and the second
part is negative because D,; is decreasing in A,. Therefore,
AM and AP are decreasing in A,.

(ii) First-order conditions for CM are

om,; 14D, 1 ...,
]=<7 J_qu])Dr]_‘_(pr]_l) !

iA,;  \D, A, 3A,,
_9y . Dy _,
ToA T A T
azﬂ'rl’ 82Drj * 8D,j -1 -2 -1
942 = Fye pr— IA, d + (A + A d)

= ;2 (=2p);8, + A) (N + A Ay ) <0

Therefore, the category profits are concave in its own attrac-
tiveness and best-response functions are continuous. For
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uniqueness, the determinant of the Jacobian is positive if
Ao 48,8, (8, — A Bkl — A
<77 (298, — Ay) (2P0 — Awp)
S+ A d D A+ A AT < A

(iii) The first-order conditions for P:CM-CM and P:OPT-
OPT are, respectively, the following:

apy;

P _ e P Do, (85)

0= D.. *
oA, i+ (P oA, T9A, A
aD,; D, oD
O=p—2L — —T 4o~k ksiforallr, ] B6
pr]aAU_ A rkéAr]_ 7&] orallr,j ( )

The first-order conditions for P:OPT-OPT (B6) are always
greater than that of P:CM-CM (B5).
(iv) Part (i) implies that

D,;(ATM(A,), A,) <D, (A?"T(A)), A,),

which implies the result, because nj; =D,;/c,;.

(v) The impact of an increase 1n A, on p is negative
(c?pj] [0A,; = d); <0) and the impact of an increase in A,
is positive (dp;;/dA,, > 0). However, when we consider sym-
metric solut1ons (AGM = AGM) < (AJFT = ATTT), we have

Wi i _ g1y LDy
A, " A, 17D, 9A,
A Ar'(ﬁilsr (1)72
— _¢;1+ b k%K

/\jArj¢j_l + /\bArjd)]'_lArkd)k_l .

Assume that A; = A,. The above expression is equal to

-1
¢ + ¢k o0 + A <0,

and for A > Ay, the positive term is decreasing. Therefore,
for )\]- > Ay, 8p:‘j /dA <0, which implies that prices are higher
in CM than OPT. O

Proor oF THEOREM 8. (i) and (ii): We showed in The-
orem 7 that the category profits and retailer profits are
supermodular in (4,;, —A,) for any j. Therefore, CM-CM
and OPT-OPT games are supermodular. (iii) Compare the
first-order conditions of P:CM-CM and P:OPT-OPT Equa-
tions ((B5) and (B6)). CM and OPT comparisons follow from
0D, /3A,; >0

The first-order conditions for the joint profit maximiza-
tion problem in this setting are the following:

D, D, aD,, aD

0z p* BDqk
- pr/ aA A prk aA

+pﬁ] BA

rsﬁq, k#j. (B7)

Let ASL denote the solution to (B7). First-order conditions
for P:CM-CM less (B7) at a symmetric equilibrium yields
. <5Drk IDy; Dy

— ) = p* (A AP P+ NP PAB—A—A
94, aA,jJ’aA,j) Pr(=AAG"+ A A( )

= p*Ad)_
if and only if A/Z > (A,

Y(=Ajp+A,(Z—A) >0
— X))/ 2A 4+ A)),

ACM-CM ACOL

which implies that when the condition is
satisfied. Results on n directly follow because n,; = D,;/c,
and D,; increases with A.

The impact of an increase in A, on py; is negative
(9py;/0A,; = —d)]?l) and the impact of an increase in A,; is
positive (dpy;/dA,;) > 0. However, when we consider sym-
metric solutions ( ACM M ACMCM) _ ( AOPT OPT _ AOPT-OPT)
and /\j =0, then

dpy Oy 9Py dpy
A, A, A, 0A,

oig L (8D,/- oD, aD,j>
=—¢;'+— +—+
1 "D, oA, T aA, T 0A,

==+ (NA; ;8 — N A b = M A b Ay
—MAb Agdi?)
S(NAT AT A D

MNZ 2 A7, b2
Aj+ M Ao A+ NA b
=-2¢:"+¢;" <0 (assuming A; = \;).

¢k + Ark

Similar to the proof of Theorem 7, for Aj > Ay, prices de-
crease with A. O
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