
Noname manuscript No.
(will be inserted by the editor)

Differentially private nearest neighbor classification

Mehmet Emre Gursoy · Ali Inan ·
Mehmet Ercan Nergiz · Yucel Saygin

Received: date / Accepted: date

Abstract Instance-based learning, and the k-nearest neighbors algorithm (k-NN)
in particular, provide simple yet effective classification algorithms for data mining.
Classifiers are often executed on sensitive information such as medical or personal
data. Differential privacy has recently emerged as the accepted standard for privacy
protection in sensitive data. However, straightforward applications of differential
privacy to k-NN classification yield rather inaccurate results. Motivated by this,
we develop algorithms to increase the accuracy of private instance-based classi-
fication. We first describe the radius neighbors classifier (r-N) and show that its
accuracy under differential privacy can be greatly improved by a non-trivial sen-
sitivity analysis. Then, for k-NN classification, we build algorithms that convert
k-NN classifiers to r-N classifiers. We experimentally evaluate the accuracy of both
classifiers using various datasets. Experiments show that our proposed classifiers
significantly outperform baseline private classifiers (i.e., straightforward applica-
tions of differential privacy) and executing the classifiers on a dataset published
using differential privacy. In addition, the accuracy of our proposed k-NN classifiers
are at least comparable to, and in many cases better than, the other differentially
private machine learning techniques.

Keywords Data mining · differential privacy · k-nearest neighbors

This research was funded by The Scientific and Technological Research Council of Turkey
(TUBITAK) under grant number 114E261.
This is a post-peer-review, pre-copyedit version of an article published in Data Min-
ing and Knowledge Discovery. The final authenticated version is available online at:
https://doi.org/10.1007/s10618-017-0532-z

Mehmet Emre Gursoy
College of Computing, Georgia Institute of Technology. E-mail: memregursoy@gatech.edu

Ali Inan
Computer Engineering Department, Adana Science and Technology University, Turkey.
E-mail: ainan@adanabtu.edu.tr

Mehmet Ercan Nergiz
Acadsoft Research, Gaziantep, Turkey. E-mail: nergiz@gmail.com

Yucel Saygin
Faculty of Engineering and Natural Sciences, Sabanci University, Turkey.
E-mail: ysaygin@sabanciuniv.edu

2 Mehmet Emre Gursoy et al.

1 Introduction

Instance-based learning refers to algorithms that, instead of building explicit rules,
generalizations or models, compare new instances with instances seen in training.
They have several advantages over traditional learning methods, the greatest of
which is their lazy aspect [3]: Traditional methods create models that are my-
opic and not optimized towards specific test instances. Instance-based learning
overcomes this by creating models that are specific to each test instance. Among
instance-based learning algorithms, k-nearest neighbors (k-NN) is a simple yet
powerful classification algorithm. It was designed with the assumption that neigh-
boring (nearby) data points are likely to share the same label (class value). The
k-NN algorithm has found applications in various contexts including biological and
chemical data analysis [21], healthcare [36] and recommender systems. In [47], it
was identified as one of the top 10 most influential data mining algorithms.

k-NN must often be run on sensitive data such as medical records, user pref-
erences or personal information. The privacy of sensitive data is of utmost impor-
tance. In recent years, differential privacy (ε-DP) has emerged as the prominent
method in statistical data privacy. It states that the output of a computation
should not overly depend on any individual record. A popular method to achieve
ε-DP is to add random noise to an algorithm’s outputs, where the noise is scaled
according to the sensitivity of the algorithm.

In this paper, we propose algorithms for differentially private instance-based
learning. The scenario we consider is illustrated in Figure 1, and can be described
as follows: A private dataset containing sensitive information resides with the data
owner. This dataset contains training instances (i.e., observations) whose labels
are known. The data analyst, an untrusted third party, has a collection of instances
(called test instances here onwards) for which the labels are unknown. The data
analyst poses his test instances to the data owner, the owner applies a differentially
private instance-based learning algorithm to label each instance, and returns the
results. The goal of our work is to make the learning algorithm accurate, while
satisfying a certain level of privacy (ε). As we show in the next sections, the trivial
baseline approaches yield low accuracy due to the amount of noise that must
be added to satisfy ε-DP. Therefore we need more sophisticated algorithms that
calculate the lowest amount of noise that both satisfies ε-DP and yields accurate
classification results.

In our solution, we first show how to build accurate and private radius neighbors
(r-N) classifiers. The r-N classifier implements a majority vote among neighbors
within a fixed given radius (name is due to [1], [5], [6]). To make r-N classifiers
accurate, we perform sensitivity analysis on the proximity regions of test instances,
i.e., we determine the potential overlaps between the radii r of test instances, and
use this to calculate sensitivity. A novel graph structure, called the region overlap
graph, is employed to make sensitivity analysis efficient and scalable. With the
help of sensitivity analysis, we calculate the maximum potential effect of a record
on the classification results. This allows us to find a tight upper bound on the
amount of noise satisfying ε-DP.

Next, for k-NN classification, we convert from k-NN classification to r-N clas-
sification. In the non-private setting, this conversion is trivial: We can simply set
r to be the distance between the test instance and its k’th nearest neighbor in the
dataset. However, this clearly leaks the distances among the training instances,

Differentially private nearest neighbor classification 3

Fig. 1 Proposed scenario and privacy model.

and consequently the data distribution. To remedy this problem, we propose two
algorithms (one interactive, one non-interactive) that perform approximate con-
versions that satisfy ε-DP. We verbally and experimentally compare the two con-
version algorithms, and argue that they are appropriate in different settings.

Although there exist many works on ε-DP machine learning [22],[39], to the
best of our knowledge, ours is the first work on k-NN classification. We conjecture
that this surprising lack of work is due to the difficulty in relating the notion of
sensitivity in ε-DP with the k in k-NN. Note that in the worst case, removal of
one training instance from the private dataset may cause the proximity region
of a test instance to expand as much as to the boundaries of the data space.
This makes it difficult to bound the sensitivity of k-NN classification. However,
we naturally solve this problem by converting k-NN classifiers to r-N classifiers,
where we can heuristically find a good r given a test instance and k. Experiments
show that our proposed k-NN classifiers either outperform other ε-DP machine
learning algorithms, or they have comparable accuracy.

The rest of this paper is organized as follows: In Section 2, we give the pre-
liminary definitions concerning our data model, ε-DP and graph terminology. In
Section 3, we describe the baseline approach as well as our proposed approach
for private r-N classification. In Section 4, we describe baseline and proposed ap-
proaches for private k-NN classification. We present our experimental evaluation
in Section 5 and related work in Section 6. In Section 7, we discuss some of the
shortcomings of our work and propose future research directions. We conclude in
Section 8.

2 Preliminaries

Let D be a tabular dataset containing d attributes. The domain of each attribute
Ai is denoted Ω(Ai). One of the d attributes is designated as the label or class
attribute, denoted L. The remaining set F of attributes are called features. We
assume that the label is categorical, whereas the features are numeric (discrete or
continuous). Each row in the private dataset D constitutes a training instance. For
any instance t ∈ D, let t[L] denote the value of the label of t. We treat each instance
as a (d-1)-dimensional point in the data space. The data space is determined by
the cross product Ω(D) =

∏
Ai∈F Ω(Ai). We give a sample visualization in Figure

2 where d = 3.

4 Mehmet Emre Gursoy et al.

2.1 Differential Privacy

Differential privacy ensures that the result of an algorithm is not overly dependent
on any instance. It states that there should be a strong probability of producing
the same output even if an instance was added to or removed from the dataset.

Definition 1 (Neighboring datasets) Two datasets D, D′ are called neigh-
boring datasets, denoted by |D∆D′| = 1, if one can be obtained from the other
by either adding or removing one instance, i.e., |(D −D′) ∪ (D′ −D)| = 1.

Definition 2 (ε-differential privacy) A randomized algorithmA is ε-differentially
private (ε-DP) if for all neighboring datasets D, D′ and for all subsets of possible
outcomes of the algorithm S ⊆ Range(A),

Pr[A(D) ∈ S] ≤ eε × Pr[A(D′) ∈ S]

where the probabilities are over the randomness of A.

Here, ε is the privacy parameter that controls how much an advesary can
distinguish between D and D′. Smaller ε yields higher privacy.

There are well-known, general-purpose building blocks that help in designing
differentially private algorithms. Next, we present these building blocks. We start
with the definition of sensitivity.

Definition 3 (Sensitivity) Let f : D → Rm be a function that maps a dataset
D into a fixed-size vector of m real numbers. The sensitivity of f is defined as:

∆f := max
D,D′

||f(D)− f(D′)||

for all |D∆D′| = 1, where ||.|| denotes the L1 norm.

A popular ε-DP algorithm for answering numeric queries is the Laplace Mech-
anism, defined formally as follows. In words, when answering a set of numeric
queries (e.g., a set of count queries) the Laplace Mechanism retrieves the true
answers of these queries, and then perturbs each answer by adding random noise
scaled according to their sensitivity.

Definition 4 (Laplace Mechanism) Let Lap(σ) denote a random variable sam-
pled from the Laplace distribution with mean 0 and scale parameter σ. For a
numeric-valued function f : D → Rs, the algorithm A that answers f by:

A(f,D) = f(D)+ < Y1, ..., Ys >

is ε-DP if Yi are i.i.d. random variables drawn from Lap(σ) where σ ≥ ∆f/ε [15].

We now consider the exponential mechanism for answering categorical queries
[30]. The exponential mechanism is useful for selecting a discrete output r from
a domain R in a differentially private manner. It employs a utility function (i.e.,
quality criterion) q that associates each output r ∈ R with a non-zero probability
of being selected. The sensitivity of the quality criterion q is defined as:

∆q := max
∀r∈R, |D∆D′|=1

||q(D, r)− q(D′, r)||

Differentially private nearest neighbor classification 5

Definition 5 (Exponential Mechanism) Let q : (D × R) → R be a utility
function for a dataset D and a domain of discrete outputs R. The algorithm A
that returns the output r ∈ R with probability proportional to e

εq(D,r)

2∆q satisfies
ε-DP [30].

Differentially private algorithms have the following composition properties,
which allow us to build more complex algorithms by combining the aforemen-
tioned building blocks [31].

Definition 6 (Composition properties) Let A1 and A2 be ε1 and ε2-DP al-
gorithms, respectively. Then, we have:

– Sequential Composition: Releasing the output of A1(D) and A2(D) satisfies
(ε1 + ε2)-DP.

– Parallel Composition: For D1∩D2 = ∅, releasing A1(D1) and A2(D2) satisfies
max(ε1, ε2)-DP.

– Immunity to Post-Processing: Post processing the output of A1(D) without
accessing D, and releasing the processed version satisfies ε1-DP.

Due to these properties, ε is also called the privacy budget. Given a total budget
ε, the goal is to create an ε-DP algorithm A by cleverly combining the building
blocks according to the composition properties. The goodness of A is measured
by its accuracy. In our case, since A is a classification algorithm, its goodness is
measured by the classification accuracy.

2.2 Graph Terminology

Since our solution involves graph modeling of classification queries, in this section
we give an introduction to graph terminology and the maximum clique problem.
Let G(V,E) be an undirected graph with vertex set V and edge set E ⊆ V × V .
A clique C of G is a subset of V such that every two vertices in C are adjacent,
i.e., ∀u, v ∈ C, (u, v) ∈ E. A clique is a maximum clique if its cardinality is the
largest among all the cliques of the graph. A graph may contain multiple maximum
cliques.

Definition 7 (Maximum clique problem) Given a graph G(V,E), the max-
imum clique problem is to find a clique C of G that has the highest cardinality.
We denote the cardinality of C, often called the clique number of G, by MCS(G).

For example, in Figure 3, vertices {5, 6} form a clique but this clique is not
the maximum clique. Vertices {1, 2, 3} form the maximum clique. For this graph,
MCS(G) = 3.

The maximum clique problem (MCP) has a wide range of applications, and
is among the most studied combinatorial problems. Even though MCP is NP-
complete [24], due to its practical relevance, there has been significant effort for
finding efficient solutions. We refer the interested reader to [46] for a recent survey
on solving the MCP.

6 Mehmet Emre Gursoy et al.

Fig. 2 Sample r-N classifier. Black and white dots are the training instances, and their color is
their label. The grey x denotes the test instance, and the dashed circle is its proximity region.

3 Private r-N Classifiers

We start by introducing r-N classifiers on non-private data, and then describe our
ε-DP algorithms for r-N classifiers on private data. Recall that D is the dataset
containing training instances, and we treat the instances in D as multi-dimensional
points in Ω(D). Let x denote a test instance for which x[L] is unknown, and r
denote a proximity parameter (i.e., radius). Here onwards we use the combination
(x, r) to refer to a test instance.

Definition 8 (Counting query) Let δ(·, ·) be a distance function between two
instances (i.e., points). The counting query cDx,r(I) returns the number of instances
t ∈ D such that δ(x, t) ≤ r and t[L] = I.

We remove the superscript D from cD when D is clear in the context. We
require the distance function δ(·, ·) to be a metric. Appropriate functions include
Euclidean distance, Manhattan distance etc. [11] Without loss of generality, we
use Euclidean distance in this work.

Definition 9 (Radius neighbors classifier) Let L be the set of all possible
labels, and the counting query c be defined as above. Then, given a test instance
(x, r), the r-N classifier assigns the following label to x:

x[L] = argmax
I∈L

cx,r(I)

An example is given in Figure 2. We plot the test instance (x, r) among the
training instances. In two dimensions and using Euclidean distance, the proximity
region of (x, r) boils down to a circle with center x and radius r. Then, the r-N
classifier performs a majority vote among the instances within the circle. In this
case, there are 3 black and 1 white instances in the proximity region of x, thus
the r-N classifier assigns x[L] = black. In case of ties, e.g., 2 black and 2 white
instances within the circle, we can randomly select one label.

3.1 First-Cut Solutions

We can implement the r-N classifier privately using either the exponential mech-
anism or the Laplace mechanism. The exponential mechanism chooses an answer
probabilistically while favoring the best candidate I ∈ L. The Laplace mechanism
obtains noisy counts ncI by adding random Laplace noise to the actual counts c(I),
and then deterministically chooses the best candidate based on the noisy counts. In

Differentially private nearest neighbor classification 7

this case, the two mechanisms perform comparably and can be used interchange-
ably [29]. We give the implementation with the Laplace mechanism in Algorithm
1 and the implementation with the exponential mechanism in Algorithm 2. The
Laplace implementation will be useful also in the next sections.

Algorithm 1 Private r-N classifier using the Laplace mechanism

Input: Private training dataset D, set of labels L, test instance (x, r), privacy budget ε′

Output: x[L]: the label of x
1: for I ∈ L do
2: Let ncI ← cx,r(I) + Lap(1/ε′)
3: end for
4: return argmaxI∈L ncI

Theorem 1 Algorithm 1 satisfies ε′-DP.

Proof Since cx,r is a count query, ∆c = 1. On line 2, actual counts are perturbed
using the Laplace mechanism. Every instance t ∈ D has a single label, and thus
each cx,r(I) for I ∈ L is executed on a disjoint subset of D. It follows from
the Laplace mechanism and the parallel composition property that Algorithm 1
satisfies ε′-DP. ut

Algorithm 2 Private r-N classifier using the exponential mechanism

Input: Private training dataset D, set of labels L, test instance (x, r), privacy budget ε′

Output: x[L]: the label of x

1: return I with probability ∝ e
ε′cx,r(I)

2 , for all I ∈ L

The proof that Algorithm 2 satisfies ε′-DP follows trivially from the exponential
mechanism with R = L, utility function q = cx,r, and ∆c = 1.

The baseline classifier. Now, we study the problem of classifying multiple test
instances with different proximity parameters. Let X denote a list of test instances
X = ((x1, r1), ..., (x|X|, r|X|)). We wish to obtain O = (L1, ..., L|X|) where Li =
xi[L] as predicted by an r-N classifier. The non-private r-N classifier simply uses
Definition 9 on each (xi, ri) independently.

Following this intuition, the baseline ε-DP r-N classifier is designed as follows:
Given X, the private training dataset D and privacy budget ε, the baseline clas-
sifier invokes Algorithm 1 (or 2) for each (xi, ri) ∈ X with ε′ = ε

|X| . That is, each

test instance is treated independently with an ε
|X| share of the privacy budget.

The baseline classifier satisfies ε-DP due to the sequential composition property.
As we will show in Section 5, the baseline classifier suffers from the over-

division of the privacy budget. With a budget of ε = 1.0 and a reasonable number
of test instances (e.g., |X| = 100), each test instance receives only ε′ = 0.01.
Consider the following example: For a binary class label (a/b) we have a test
instance (xi, ri) for which 80 training instances in x’s proximity vote a and 20
vote b. We expect the r-N classifier to clearly prefer a. However, if we follow
the calculations in Algorithm 2, we obtain that the baseline classifier returns a

with probability e
0.01×80

2

e
0.01×80

2 +e
0.01×20

2

≈ 57%, which is only marginally better than a

8 Mehmet Emre Gursoy et al.

random guess. If we instead had a larger ε′, we would have obtained a significant
preference towards a. This motivates our solution in the next section. 1

3.2 Proposed Solution

The baseline classifier suffers from a poor allocation of the privacy budget since it
classifies each test instance sequentially and independently. Our proposed solution
finds a better strategy using sensitivity analysis on the collection of test instances
instead of treating them independently. This requires a careful analysis of the
proximity regions of (xi, ri) to understand: (i) sets of test instances that can be
labeled in parallel, and (ii) the combined sensitivity of test instances that must be
labelled sequentially.

Algorithm 3 Proposed private r-N classifier
Input: Training dataset D, set of labels L, list of test instances X, total privacy budget ε
Output: List of predicted labels (L1, ..., L|X|)
1: Build region overlap graph G of X
2: for each disconnected subgraph Gsub in G do
3: Let ε′ ← ε/MCS(Gsub)
4: for (xi, ri) ∈ Gsub do
5: Li ← Invoke Alg. 1 with D, L, (xi, ri), ε

′

6: end for
7: end for
8: return (L1, ..., L|X|)

The overview of our solution is given in Algorithm 3. The solution can be
described in four steps: (i) First, we build a region overlap graph G. (ii) We find the
disconnected subgraphs Gsub in G, and assign a privacy budget of ε to each Gsub.
This is because disconnected subgraphs can be executed via parallel composition.
(iii) We show that the sensitivity of a subgraph Gsub is equal to its maximum
clique size, MCS(Gsub). (iv) Finally, we invoke the ε′-DP r-N classifier that uses
the Laplace mechanism with ε′ = ε/MCS(Gsub) to obtain labels.

Building a region overlap graph G. We define the region overlap graph be-
low. Its purpose is to provide a compact summary of the intersections between
the proximity regions of test instances. When the data dimensionality is high or
there are many test instances, searching through Ω(D) to find all intersections is
unfeasible. The region overlap graph enables us to perform efficient intersection
search using well-known graph and clique algorithms.

Definition 10 (Region overlap graph) Let X = ((x1, r1), ..., (x|X|, r|X|)) be
the list of test instances. The region overlap graph G of X is an undirected and
unweighted graph with vertex set V and edge set E, built as follows:

1 Note that Algorithm 2 satisfies ε′-DP even if there is only one training instance within
the specified radius, since it always returns an answer probabilistically. We illustrate with the
following example: For the binary classification task (a/b), and let there be 1 training instance
within the radius of the specified test instance, with label a. Let ε = 1.0. Then, the score of a

is: ε1×
1
2 = 1.65, and the score of b is ε1×

0
2 = 1. Thus, Algorithm 2 returns a with probability

1.65
1+1.65

and b with probability 1
1+1.65

. Hence, there is a significant probability of returning b

despite the only training instance within the radius has label a.

Differentially private nearest neighbor classification 9

Fig. 3 Conversion from test instances in Ω(D) (on the left) to a region overlap graph (on the
right).

– Each (xi, ri) ∈ X is represented by a vertex Vi ∈ V .
– There exists an edge e ∈ E between Vi and Vj if and only if the proximity

regions of (xi, ri) and (xj , rj) intersect, i.e., δ(xi, xj) ≤ ri + rj .

An example conversion is given in Fig. 3. The regions of x1, x2 and x3 intersect,
and therefore their vertices are adjacent in G. x5 and x6’s regions intersect, and
therefore their vertices are adjacent. x4’s region does not intersect with any other
instances, and therefore its vertex in G is disconnected from every other vertex.

Finding disconnected subgraphs in G. We say that two subgraphs G1sub and
G2sub are disconnected if there exists no path between any vertex v1 ∈ G1sub and
v2 ∈ G2sub. Given the full region overlap graph G, we divide G into its disconnected
subgraphs G1sub, ...,Gnsub using depth first search. Then, given the total privacy
budget ε for G, we assign ε to each Gsub, since there can be no intersections
between the proximity regions of the instances in different Gisub. The following
lemma proves the privacy guarantees of this procedure.

Lemma 1 Assigning a budget of ε per disconnected Gisub in G satisfies ε-DP.

Proof Let G1sub and G2sub be two disconnected subgraphs in G. By definition of
disconnected subgraphs, we know that there does not exist an edge in G between
any v1 ∈ G1sub and any v2 ∈ G2sub. By construction of G (i.e., Def. 10) this implies
that there are no intersections between any pair of (x1, r1) ∈ G1sub and (x2, r2) ∈
G2sub. Thus, the test instances in G1sub and G2sub concern disjoint subsets of D. This
satisfies the parallel composition property in Def. 6. Following this and assuming a
total budget of ε, assigning ε to G1sub and ε to G2sub satisfies max(ε, ε) = ε-DP. ut

We exemplify this lemma using Figure 3. The three disconnected subgraphs
are: G1sub = {x1, x2, x3}, G2sub = {x4} and G3sub = {x5, x6}. As can be seen from
the spatial distribution of the test instances (on the left), the three disconnected
subgraphs concern disjoint subsets of the data space Ω(D).

Finding the sensitivity of a disconnected subgraph Gsub. According to Def-
inition 3, sensitivity measures the maximum possible change in the answers of a
function in case it was executed on a neighboring dataset (i.e., in case a training
instance was added to or removed from D). Without sensitivity analysis, the base-
line classifier assumes that one training instance can affect the classification of all
test instances in Gsub. However, this is often not true: Consider the example in
Figure 4. For the test instances on the left, we cannot add a new training instance
that would simultaneously affect all {x1, x2, x3}, since they do not have a com-
mon intersection. On the other hand, for the test instances on the right, adding

10 Mehmet Emre Gursoy et al.

Fig. 4 Intersections within a subgraph determine its sensitivity.

a new training instance to the common intersection of {x1, x2, x3} would affect
all three. From this, we observe that the intersections within each Gsub are also
important for sensitivity calculation. We also observe that the graphs of the two
cases are different - the graph on the left has MCS = 2 but the one on the right
has MCS = 3.

Lemma 2 For a set of test instances X ′ ⊆ X such that |X ′| > 1, if the instances’
proximity regions have a non-empty common intersection, then the vertices V rep-
resenting X ′ form a clique of G.

Proof Let X ′ = ((x1, r1), ..., (xn, rn)) be the set of test instances with non-empty
common intersection. This implies that ∀ pairs (xi, ri), (xj , rj) ∈ X ′, the proximity
regions of (xi, ri) and (xj , rj) intersect. In other words, all pairs of instances in
X ′ pairwise intersect. By Definition 10, this implies that the representation of X ′

in G, i.e., V ′ = (v1, ..., vn) ∈ G, there exists an edge between (vi, vj) for all pairs
vi, vj ∈ V ′. By the definition of cliques, V ′ formulates a clique of G. ut

Lemma 3 MCS(Gsub) is an upper bound on the number of test instances in Gsub
that can be affected by the addition or removal of a training instance.

Proof We prove by contradiction: Assume that the number of test instances in
Gsub that can be affected by one training instance is Gsub + m, where m is a
positive integer. Then, MCS(Gsub) +m test instances must have a common inter-
section to which we add/remove an instance so that we affect all of them simul-
taneously. However, a common intersection with MCS(Gsub) + m test instances
implies a clique of size MCS(Gsub)+m due to Lemma 2. This clique is larger than
MCS(Gsub), which, by definition of MCS yields a contradiction. ut

Recall that sensitivity is concerned with the maximum possible change by
adding or removing an instance. We observe that in order to cause the maximum
change, the instance should be added to/removed from the maximum common
intersection, i.e., the region in Ω(D) where the highest number of test instances
intersect. According to Lemma 3, MCS(Gsub) is an upper bound on the maximum
common intersection. Thus, it is also an upper bound for the sensitivity of Gsub.

We prove the privacy guarantee of Algorithm 3 formally in Theorem 2. But
first, we note the convenience of using the region overlap graph for finding sen-
sitivity: It allows us to bound sensitivity simply by finding the maximum clique
size. As benchmarked in [46], state of the art algorithms for finding a maximum
clique take less than 5 seconds even for large graphs (e.g., 400-600 vertices). This
makes our approach very efficient.

Theorem 2 Algorithm 3 satisfies ε-DP.

Differentially private nearest neighbor classification 11

Proof In Lemma 1 we showed that treating each disconnected subgraph Gsub in-
dividually and assigning budget ε satisfies ε-DP. Thus it suffices here to show that
the intra-Gsub allocation of the privacy budget (between lines 3-6) satisfies ε-DP.

We write the data accesses made by Algorithm 3 as a workload W . Let Gsub be
the subgraph of interest, and X = ((x1, r1), ..., (xn, rn)) denote the test instances
represented by Gsub. Then, Algorithm 3 calls Algorithm 1 (on line 5) for each
(xi, ri) ∈ X. Within each call, Algorithm 1 executes a count query cxi,ri(I) for
each I ∈ L. This yields the following workload:

W =
⋃

(xi,ri)∈X

(⋃
I∈L

cxi,ri(I)

)

=
⋃
I∈L

(⋃
(xi,ri)∈X

cxi,ri(I)

)
=
⋃
I∈L

fI

denoting fI := (cx1,r1(I), ..., cxn,rn(I)). By Theorem 1 and the fact that each
training instance has exactly one label, fI concern disjoint subsets of the data.
Therefore ∀I ∈ L functions fI can be executed using parallel composition, receiv-
ing budget ε′. It remains to show Algorithm 3’s selection of ε′ = ε/MCS(Gsub)
yields ε-DP.

The true answers of fI are perturbed with noise: Lap(1/ε′) = Lap(MCS(Gsub)/ε).
By Lemma 3 we have MCS(Gsub) ≥ ∆fI , and therefore MCS(Gsub)/ε ≥ ∆fI/ε.
Hence we conclude by Definition 4 that Algorithm 3 satisfies ε-DP.

ut

4 Private k-NN Classifiers

We now shift our direction towards our main goal, which is private k-NN classifiers.
First, we give a formal definition of non-private k-NN classifiers. Let D be the
dataset containing training instances, x be the test instance, k be the parameter
in k-NN (i.e., number of nearest neighbors considered by the classifier), and δ(·, ·)
be a distance function. Similar to the previous section, we use the combination
(x, k) to refer to a test instance, and drop the superscript D in the counting query
when D is clear in the context.

Definition 11 (k-NN counting query) Let Dx,k ⊆ D denote the collection of
k instances in D nearest to x according to a distance function δ. The counting
query qDx,k(I) returns the number of instances t ∈ Dx,k such that t[L] = I.

Definition 12 (k-NN classifier) Let L be the set of all possible labels, and the
k-NN counting query q be defined as above. Then, given a test instance (x, k), the
k-NN classifier assigns the following label to x:

x[L] = argmax
I∈L

qx,k(I)

12 Mehmet Emre Gursoy et al.

Fig. 5 Sample k-NN classifier, with k = 4. It can be trivially converted to an r-N classifier,
where r = δ(x, x4).

4.1 First-Cut Solution

Given a test instance (x, k), the k-NN classifier retrieves the k closest instances
to x an performs a majority vote among them. Similar to r-N, this procedure can
be implemented ε-DP using the Laplace or the exponential mechanism. A naive
first-cut implementation with the exponential mechanism is given in Algorithm 4.

Algorithm 4 Private k-NN classifier using the exponential mechanism

Input: Private training dataset D, set of labels L, test instance (x, k), privacy budget ε′

Output: x[L]: the label of x

1: return I with probability ∝ e
ε′qx,k(I)

2 , for all I ∈ L

The baseline classifier. For the non-private k-NN classifier, the straightforward
method to classify a list of test instances X = ((x1, k1), ..., (x|X|, k|X|)) is by
independently running the k-NN classifier on each instance.

The baseline ε-DP k-NN classifier is designed as follows: Given X, the private
training dataset D and privacy budget ε, the baseline classifier invokes Algorithm
4 for each (xi, ki) ∈ X with ε′ = ε

|X| . The output of Algorithm 4 is assigned as

the label of xi, i.e., xi[L]. The baseline k-NN classifier is similar to the baseline
r-N classifier, and thus suffers from the over-division of the privacy budget.

4.2 Proposed Solution

Our proposed solution converts a k-NN classifier with (x, k) to an r-N classifier
with (x, r). In the non-private setting, this conversion is trivial, using the following
procedure: (1) Find the kth nearest neighbor of x in D. Let xk denote this instance.
(2) Set r = δ(x, xk) and run the r-N classifier with (x, r). An example is given in
Figure 5. Given a test instance x and k = 4, we find the 4th nearest instance to x
and set r according to the distance between x and the 4th nearest instance. Then,
the r-N classifier can run seamlessly.

In the non-private setting, the conversion can be done with perfect accuracy
using the procedure above. That is, the converted r-N classifier would behave the
same as the original k-NN classifier. (For simplicity, we ignore cases where there

might be other training instances xk
′

with distance δ(x, xk
′
) = δ(x, xk).) However,

perfect conversion is not possible in the private setting since we need to access
the private data D to learn the appropriate r, and access is only granted through
an ε-DP interface. Hence, during the conversion process we will have to introduce
some randomness or noise to satisfy ε-DP.

Differentially private nearest neighbor classification 13

Then, given a test instance (x, k) our task becomes to find an accurate r
differentially privately, for which the k-NN classifier with (x, k) would behave
similarly to the r-N classifier with (x, r). Consider the trivial approach of adding
Laplace noise: We retrieve the actual r and add Laplace noise to it. This approach
is greatly inaccurate because in practice, we expect r to be very small compared to
the amount of Laplace noise we are adding. For example, consider several thousand
training instances distributed uniformly in Ω(D), which is a unit square of size 1.
Assuming we have a reasonable k, e.g., k = 50, the actual r would be small, e.g.,
r = 0.01. The variance of the Laplace noise, however, would be proportional to the
size of Ω(D), and a random sample from this noise could easily be significantly
larger than 1. Adding this to r = 0.01 would destroy its accuracy, and lead to
results that are far too inaccurate.

As a result, we need to spend some effort in designing algorithms that find r
accurately. In the next section, we describe two algorithms (one interactive and one
non-interactive) to accomplish this task. For now, let us assume that conversion
is done using either of the two algorithms. Then, our proposed solution for ε-DP
k-NN classification is given in Algorithm 5. The idea is to convert each k-NN
instance to an r-N instance with some portion of the privacy budget, and then
spend the rest of the budget to classify the converted r-N instances. The division
of the budget is controlled by the weight parameter, w. In our experiments we use
w = 0.5 for an equal budget share. Algorithm 5 satisfies ε-DP due to the sequential
composition property, as long as our conversion algorithms (Algorithm 6 and 7)
satisfy ε̂-DP, where ε̂ = w · ε.

Algorithm 5 Proposed private k-NN classifier
Input: Private training dataset D, set of labels L, list of k-NN test instances X =

((x1, k1), ..., (x|X|, k|X|)), total privacy budget ε, weight parameter w
Output: List of predicted labels (L1, ..., L|X|)

1: Invoke Algorithm 6 or 7 with D, L, X and ε̂ = w · ε to obtain X′, the list of corresponding
r-N test instances

2: return Invoke Algorithm 3 with D, L, X′ and (1− w) · ε

At this point, we reiterate the advantages of converting k-NN to r-N: (1) As
stated in Section 1, the worst case sensitivity of k-NN classification is hard to
bound, and can be as large as the data space. This is because the removal of a
record may cause the k’th nearest neighbor of a test instance to be arbitrarily far:
In the worst case the new distance could be equal to the largest distance in Ω(D),
which implies large sensitivity (and high amounts of noise) compared to typical
values of r. However, via conversion to an r-N classifier, we can approximate and
fix r, circumventing this problem. (2) In Section 3.2, we proposed a solution that
increases the classification accuracy of r-N classifiers using sensitivity analysis.
Conversion from k-NN to r-N means k-NN classifiers can also benefit from the
same sensitivity analysis and its accuracy benefits.

4.3 Conversion From k-NN To r-N

Interactive (per-instance) algorithm. The pseudocode for the algorithm is
given in Algorithm 6. Recall that for a dataset D, F denotes its set of features.

14 Mehmet Emre Gursoy et al.

Given a list of k-NN test instances X, the algorithm proceeds by iterating over
the list and converting each instance in X to an r-N test instance, by performing
the following. First, on line 3 it finds rUNIF, the most suitable radius if the data
D was uniformly distributed in Ω(D). For this, we note that a hypersphere in |F|
dimensions with radius rUNIF has volume equal to:

π|F|/2

Γ (|F|2 + 1)
· r|F|UNIF

where Γ () is the Gamma function. If the data distribution in Ω(D) was completely
uniform, then its density would be equal to: |D|/vol(Ω(D)), where vol(Ω(D))
denotes the volume of the smallest hyper-cube containing the whole allowed data
space. For a particular test instance with (xi, ki), we desire to have ki instances
in its hypersphere so that the conversion from a k-NN instance to an r-N instance
is accurate. Thus, ki becomes the mass. Setting mass = density× volume, we get:

ki =
|D|

vol(Ω(D))
· π|F|/2

Γ (|F|2 + 1)
· r|F|UNIF

Solving for rUNIF, we obtain the rUNIF on line 3 of Algorithm 6. However, this
rUNIF is not exactly accurate due to two reasons: (1) It assumes a perfectly uniform
data distribution, which is almost never the case. (2) It requires apriori knowledge
of the number of training instances, i.e., |D|. Some works in differential privacy
allow this to be public information (e.g., [54]) but for our purposes, a crude esti-
mate suffices. A small privacy budget can be allocated to obtain the a noisy ε-DP
estimate for |D| using the Laplace mechanism.

Algorithm 6 Interactive algorithm to find radius
Input: Private training dataset D, set of labels L, list of k-NN test instances X =

((x1, k1), ..., (x|X|, k|X|)), privacy budget for conversion ε̂, candidate count n

Output: List of r-N test instances X′ = ((x1, r1), ..., (x|X|, r|X|))

1: Initialize X′ as empty list
2: for i = 1 to |X| do

3: Let rUNIF =
|F|
√
Γ (
|F|
2

+1)·ki·vol(Ω(D))

|D|·π|F|/2

4: Let the set of candidates be R = {o1, ..., on}, where oj = 2 · j · rUNIF
n

5: Define c
∑
xi,oj =

∑
I∈L cxi,oj (I)

6: Define quality function u(D, oj) = −|c
∑
xi,oj − ki|

7: For oj ∈ R, set ri = oj with prob. ∝ e
ε̂u(D,oj)

2|X|

8: Add (xi, ri) to X′

9: end for
10: return X′

To account for these, we do not directly set the radius of a test instance ri to
be equal to rUNIF. Instead, on line 4 of Algorithm 6 we initialize a set of candidates
R = {o1, ..., on}, such that each oj is a possible candidate for ri. The size of R
is determined by n, which is an input parameter. We specify oj = 2 · j · rUNIF

n ,
e.g., if we had rUNIF = 0.5 and n = 4, we would build the set of candidates
R = {0.25, 0.5, 0.75, 1.0}. The upper bound of 2 · rUNIF is a heuristic decision so

Differentially private nearest neighbor classification 15

Fig. 6 Building a 2 × 2 noisy uniform grid (on the left) and conversion from k-NN to r-N
using the grid (on the right).

that even if the data in the proximity of the test instance xi is sparse, we can have
a reasonably large (but not too large) radius ri for that test instance. Next, on
line 5, Algorithm 6 defines c

∑
xi,oj as the total number of training instances within

the hypersphere with center xi and radius oj . On line 6, the quality function
u(D, oj) is defined as u(D, oj) = −|c

∑
xi,oj − ki|, which assigns a penalty to each

oj ∈ R proportional to the difference between c
∑
xi,oj and ki (recall that having ki

training instances in the proximity region is our end goal). Then, line 7 uses the
exponential mechanism to probabilistically choose a candidate and assign it as ri.
This completes the conversion for one test instance (xi, ki).

A privacy budget of ε̂ is given to Algorithm 6 as an input. The data access
on line 7 is through the exponential mechanism, and is repeated for every test
instance (i.e., a total of |X| times). Each access uses a privacy budget of ε̂/|X|, so
that the sequential composition of all accesses satisfies ε̂-DP.

Non-interactive algorithm. The approach taken by this algorithm is to create a
data-dependent global index structure such that all conversions can be performed
using that index structure. For this, we turn to ε-DP spatial decompositions.

Given a set of instances D on a domain Ω(D), spatial decompositions aim to
accurately and privately approximate the data distribution, i.e., the distribution
of the training instances in D over Ω(D). Existing solutions in the literature
hierarchically decompose Ω(D) into cells according to the counts of each cell - if a
cell contains very few instances, then it is not beneficial to decompose it further;
but if it contains many instances then we should further zoom into that cell. This
intuition stems from the trade-off between two sources of error: (i) noise error,
i.e., having many cells means we have to divide the privacy budget many times
and add noise to each cell separately, and (ii) approximation error, i.e., having few
cells means we end up with a very coarse understanding of the data distribution
and we have to approximate the data distribution within a cell.

This trade-off in choosing the right number of cells in a spatial decomposition
has fueled many recent works in ε-DP literature. In [10], Cormode et al. intro-
duced private kd-trees, quad-trees and R-trees. In [34], Qardaji et al. showed that
simple uniform or adaptive grids yield higher accuracy than the previous methods,
especially on low-dimensional data. Su et al. extended Qardaji et al.’s analysis to
high-dimensional data and offered extended uniform grids in [42]. To the best of
our knowledge, this is the state of the art method in building spatial decomposi-
tions on high-dimensional data. Thus, we employ it in our work.

The pseudocode for the non-interactive algorithm is presented in Algorithm 7.
On the first line, we build U , an m ×m uniform grid on Ω(D). The choice of m
should be dependent on D, Ω(D) and ε̂, as demonstrated in [42]. In general, m
is positively correlated with |D|, ε̂ and data dimensionality. For example, let the

16 Mehmet Emre Gursoy et al.

leftmost image in Figure 6 depict the dataset and let m = 2. Then, the process of
building the ε-DP uniform grid U is illustrated in Figure 6. For each cell in the
grid (i.e., C ∈ U), we denote by |C| the number of training instances in C, and by
vol(Ω(C)) the volume of C.

After the grid is built, we convert each k-NN instance to an r-N instance using
the for loop between lines 3-18. For each instance (xi, ki) ∈ X, we place xi on
the grid as shown in the rightmost portion of Figure 6. We initialize its radius
ri = γ, where γ is an input parameter to Algorithm 7. At each iteration of the
while loop (lines 5-17), we increment ri by γ and perform the following: We build
the hypersphere with center xi and radius equal to current ri. Between lines 7-10,
we find the expected number of training instances in this hypersphere according
to the grid. This is done by calculating the volume of intersection between the
hypersphere and each cell, and multiplying this volume by the density of that cell.
This inherently assumes that the data distribution within each cell is uniform.
The total number of instances is stored in the variable called mass. Between lines
11-16, we check if the mass contains or exceeds ki, the desired number of training
instances in the hypersphere. If it does, then we stop the search and add (xi, ri)
to X ′, and the conversion process for this test instance is complete. Otherwise, we
continue by incrementing ri by γ.

Algorithm 7 Non-interactive algorithm to find radius
Input: Private training dataset D, set of labels L, list of k-NN test instances X =

((x1, k1), ..., (x|X|, k|X|)), privacy budget for conversion ε̂, increment parameter γ

Output: List of r-N test instances X′ = ((x1, r1), ..., (x|X|, r|X|))
1: Let U denote the uniform grid built over D with privacy budget ε̂
2: Initialize X′ as empty list
3: for i = 1 to |X| do
4: ri ← γ
5: while ri does not exceed |Ω(D)| do
6: mass ← 0
7: for each cell C ∈ U do
8: Let V denote the volume of intersection between C and the hypersphere with

center xi and radius ri
9: mass ← mass + V × |C|

vol(Ω(C))

10: end for
11: if mass ≥ ki then
12: Add (xi, ri) to X′

13: break
14: else
15: ri ← ri + γ
16: end if
17: end while
18: end for
19: return X′

Comparison of the two algorithms. The interactive and the non-interactive
algorithms are essentially two alternatives that serve the same purpose: Convert-
ing a set of k-NN instances to a set of r-N instances, given a privacy budget ε̂
for conversion. Although we experimentally compare them in Section 5, here we
provide a verbal comparison.

Differentially private nearest neighbor classification 17

First, the non-interactive algorithm relies on an index structure (in our case,
a uniform grid) that approximates the distribution of the private data. The index
structure is built independently of X (the set of test instances). As such, it does
not take into account the distribution of the test instances. For instance, in Figure
6 all test instances could be located in the lower right cell. In that case, it could
be advantageous to zoom more in the lower right cell of the grid; but the grid does
not consider this. Yet, being independent of X is not always disadvantageous -
consider that after answering X, a new batch of test instances, X̂, is issued. Then,
the previously built grid can be re-used instead of building a new grid.

The main advantage of the interactive algorithm is that it directly takes into
account the test instances in X within the conversion process. However, this algo-
rithm is most suitable in cases where: (i) the non-interactive algorithm performs
poorly, e.g., due to excessive data dimensionality, or very limited privacy budget
that inhibits the creation of an accurate index structure, and (ii) the number of test
instances, |X|, is small. Otherwise, if |X| is high and ε̂ is divided into many test
instances, then each instance gets a tiny budget, thus the exponential mechanism
on line 7 does not yield accurate results.

Finally, we note that both Alg. 6 and Alg. 7 are parametric. Alg. 6 has a
candidate count parameter denoted n and Alg. 7 has an increment parameter
denoted γ. Both n and γ control the trade-off between the accuracy and efficiency
of the algorithms. In Alg. 6, n should be high enough that at least some candidates
in R are close to the actual ri; but also small enough that R does not contain too
many candidates (the latter would hurt efficiency). In our experiments, we saw
that n = 10 often yields a good trade-off. In Alg. 7, γ should be small enough such
that ri can be precisely found; but also high enough that the algorithm can find
ri efficiently (i.e., an excess number of iterations of the while loop on line 5 is not
needed). In our experiments we often set γ to be approximately 0.01% of |Ω(D)|.

5 Experimental Evaluation

Implementation Details. We implemented our algorithms in Java. Experiments
were conducted on a commodity laptop with Intel i7 2.40 GHz CPU and 16 GB
main memory.

Evaluation Metrics. We use classification accuracy as our metric to quantify
the utility of our algorithms. Classification accuracy measures the percentage of
test instances that were correctly classified. Given a particular test setting (i.e.,
training dataset, test instances and ε) the classifier that yields the highest accuracy
is the most desirable.

Datasets. We obtained four numeric datasets from the UCI Machine Learning2

and KEEL3 repositories: banana, phoneme, banknote and thyroid. We only consid-
ered these numeric datasets since we can easily map records to Euclidean space
and Euclidean distance (our choice of distance metric) is well-defined. Whereas
for non-ordinal, categorical or text data, distance metrics are often subjective or
application-dependent. We randomly divided each dataset into a private training
dataset (containing 80% of the whole data) and test instances (containing the

2 http://archive.ics.uci.edu/ml/datasets.html
3 http://sci2s.ugr.es/keel/datasets.php

18 Mehmet Emre Gursoy et al.

remaining 20% of the data). We used 5-fold cross validation in our experiments.
Next, we briefly explain our datasets.

The banana dataset contains 2 features (both continuous, real-valued), 2 labels
and 5300 instances. It is an artificial dataset where instances belong to banana-
shaped clusters. The labels represent the banana shapes in the dataset.

The phoneme dataset contains 5 features (all continuous), 2 labels and 5404
instances. It is a real-world dataset. The classification task is to distinguish between
nasal sounds and oral sounds, given five phonemes as features.

The banknote dataset contains 4 features (all continuous), 2 labels and 1372
instances. Its classification task is to distinguish between genuine and forged ban-
knote specimens. The features consist of information extracted from the images of
the specimens.

The thyroid dataset contains 21 features (15 binary, 6 continuous), 3 labels and
7200 instances. Its classification task is to determine whether a patient referred
to a clinic is hypothroid. The 3 labels signify normal (not hypothyroid), hyper-
function and subnormal functioning. The features include health-related readings
from patients, e.g., age, sex, pregnancy status, past thyroid surgeries.

In addition to implementing our algorithms, we obtained the implementation
of PrivBayes [54] from its authors4. PrivBayes is a state of the art differentially
private data publishing algorithm. We compare with PrivBayes, since instead of
running a k-NN classifier on private data, the data owner may publish his data
first and perform classification on the published data. Our private k-NN classifi-
cation algorithms should outperform this approach so that they remain useful wrt
the state of the art. We choose PrivBayes rather than the other data publishing al-
gorithms, because: (i) its authors experimentally show that they outperform prior
work in ε-DP data publishing, and (ii) unlike most other work, PrivBayes does
not require data to be discretized. The latter implies that PrivBayes can work
with co-existing real and discrete-valued attributes. This is critical for meaningful
k-NN classification with Euclidean distance. Since ε-DP is probabilistic, and so is
PrivBayes; in each experiment we run PrivBayes 5 times and average its results.

5.1 Evaluation of r-N Classifiers

First, we evaluate our algorithms for differentially private r-N classification. For
each of the datasets, we set the radius r so that on average, a test instance would
have between 5-20 training instances in its proximity region.

We illustrate the results in Figures 7, 8 and 9, for ε = 0.5, 1.0 and 2.0 respec-
tively. In these figures, we denote by non-private the actual classification result
without privacy, baseline the baseline ε-DP classifier presented in Section 3.1, pro-
posed the proposed ε-DP classifier presented in Section 3.2, and PrivBayes the
classification after ε-DP data publishing approach.

In Figures 7, 8 and 9, we show how classification accuracy changes according
to the number of test instances. Our motivation in Section 3.1 was that as we have
more test instances, our budget per instance gets smaller, and thus we suffer from
an over-division of the privacy budget. The results agree with this motivation, es-
pecially when ε = 0.5. When our budget per instance is small, the baseline solution

4 https://sourceforge.net/projects/privbayes/

Differentially private nearest neighbor classification 19

Fig. 7 r-N classification on banana, phoneme, banknote and thyroid datasets, with ε = 0.5.

Fig. 8 r-N classification on banana, phoneme, banknote and thyroid datasets, with ε = 1.0.

Fig. 9 r-N classification on banana, phoneme, banknote and thyroid datasets, with ε = 2.0.

has only 50% accuracy on the phoneme and banknote datasets, and approaches
33% accuracy on the thyroid dataset. Recalling that phoneme and banknote have
2 labels and thyroid has 3, we can conclude that the baseline solution’s behavior
approaches a random guess. Our proposed solution is also affected by an increase
in the number of test instances, but not as much as the baseline solution. Even
though the proposed solution performs sensitivity analysis, more test instances
means higher probability of intersection, thus higher sensitivity. As a result, some
adverse effect is expected. These effects are visible when ε = 0.5 and 1.0 (e.g., on
banknote), but almost negligible when ε = 2.0. On the other hand, since PrivBayes
performs a one-time publishing of the private data, its classification accuracy is
not affected by the number of instances.

Overall, the proposed solution clearly outperforms the baseline solution and
PrivBayes. With ε = 1.0, on the average we obtain 5-10% accuracy loss (dis-
crepancy with the non-private classifier) using the proposed solution. Using the
baseline solution or PrivBayes, this amount is usually doubled or tripled. ε = 1.0
and 2.0 are reasonable values in ε-DP machine learning, considering that in many
recent works, experiment results are given with ε = 1.0 to 4.0. (Recall that lower
ε yields better privacy protection by the definition of ε-DP.) In that regard, we
achieve good accuracy under strict privacy. Finally, we note the increase in classifi-
cation accuracy as ε is increased, e.g., on the banknote dataset, accuracy is roughly

20 Mehmet Emre Gursoy et al.

0.75 when ε = 0.5. It increases to 0.85 and 0.9-0.95 respectively when ε = 1.0 and
ε = 2.0 using the proposed solution.

To validate the statistical significance of these findings, we also analyzed the
confidence intervals, ranges and variances of the classifiers’ accuracy. For this pur-
pose, we repeated each experiment 20 times and obtained 95% confidence intervals.
The non-private and proposed private classifiers have small standard deviation
(roughly 0.03) and low margins of error, e.g., accuracy of the non-private classifier
on banana is 0.94± 0.015 and the proposed classifier is 0.9± 0.016. PrivBayes has
accuracy 0.77 ± 0.013. However, the baseline classifier has accuracy 0.78 ± 0.024,
and has almost double the standard deviation. Hence, it can be deduced that the
baseline classifier is more sensitive to randomization in the experiment setup. The
margins of error differ slightly on other datasets, e.g., on thyroid they increase by
roughly 0.01 for all classifiers. Given that the proposed method often has more
than 0.1-0.15 accuracy gain compared to the baseline and PrivBayes, such small
error margins imply strong statistical confidence that the proposed algorithm in-
deed outperforms its competitors.

5.2 Evaluation of k-NN to r-N Conversion

An important step in our approach for k-NN classification is to privately convert
a k-NN test instance to an r-N instance. For this purpose, we proposed the inter-
active algorithm (Algorithm 6) and the non-interactive algorithm (Algorithm 7).
We compare the two under different conditions (i.e., different datasets and con-
version budget ε̂). For completeness, we also convert instances using the output
of PrivBayes. We use two evaluation metrics: The first metric measures error in
terms of the conversion result r, and the second metric measures error in terms of
the discrepancy in k caused by an erroneous r.

Given a list X of k-NN instances, we first convert them to r-N instances non-
privately: For each (x, k) ∈ X, we set its r = δ(x, xk), where δ(x, xk) is the
distance between x and its kth nearest neighbor. These r values constitute our
ground truth. Then, we apply our private conversion algorithms (i.e., Algorithm
6, 7 and PrivBayes) to obtain r′, a noisy radius, for each (x, k) ∈ X. We compute
the percentage of average relative error (AvRE) in r as follows:

AvRE =

∑
(x,k)∈X

|r′−r|
r · 100%

|X|

An erroneous radius will also yield a discrepancy in k. Recall that c
∑
x,r denotes

the number of training instances t in the dataset such that δ(x, t) ≤ r. Then,
given that we would like to perform classification with k nearest neighbors, the
non-private conversion yields c

∑
x,r = k. However, since we obtain r′ instead of r,

we will perform classification with noisy k′, where c
∑
x,r′ = k′. Our second metric

below measures how much k′ deviates from k using the Root Mean Square Error
(RMSE). The reason we opt for RMSE instead of AvRE is because RMSE assigns
a higher (super-linear) penalty to a higher discrepancy.

RMSE =

√√√√ ∑
(x,k)∈X

(c
∑
x,r − c

∑
x,r′)

2

|X|

Differentially private nearest neighbor classification 21

Fig. 10 Conversion from k-NN to r-N on banana, phoneme, banknote and thyroid datasets,
with k = 30. Error measured using AvRE in r.

Fig. 11 Conversion from k-NN to r-N on banana, phoneme, banknote and thyroid datasets,
with k = 30. Error measured using RMSE in k.

The results with respect to the AvRE in r is given in Figure 10, and the results
with respect to RMSE in k is given in Figure 11. The AvRE is high when ε̂ is as
low as 0.01, but as we move to more realistic ε̂ (e.g., 0.5 or 1) at least one of our
algorithms (interactive and non-interactive) yields below 30% error an all datasets.
With ε̂ = 1 we achieve AvRE as low as 10-20%. The exception to this is the thyroid
dataset which has 21 features. This causes high dimensionality, yet the number
of instances is relatively low. As such, it suffers from the curse of dimensionality
especially for the non-interactive algorithm: The grid ends up being too coarse,
dividing data space into very few cells. A coarse grid does not suffice to understand
the underlying data distribution well, thus the non-interactive algorithm performs
particularly bad on this dataset. However, on the remaining 3 datasets, the non-
interactive algorithm outperforms the interactive algorithm and PrivBayes. Both
of our algorithms are often better than PrivBayes.

The results we have in Figure 11 agree with the results in Figure 10. In partic-
ular, when one algorithm performs better than the other wrt to r, it also performs
better wrt to k. Thus, our discussion regarding which algorithm beats the other
applies to this figure as well. On the other hand, the super-linear increase in RMSE
becomes apparent with ε ≤ 0.05. When the AvRE in r ≥ 70-100%, the RMSE in
k increases significantly; whereas for AvRE ≤ 50%, RMSE shows an almost linear
trend.

The conclusions we draw from these experiments are twofold: (1) If data di-
mensionality is not high, for realistic ε̂ = 0.5, 1.0, 2.0, the non-interactive algorithm
is the better choice. (2) For realistic ε̂, our conversion is reasonably accurate, with
relative errors of 20% or less in many cases.

22 Mehmet Emre Gursoy et al.

Fig. 12 k-NN classification on banana, phoneme, banknote and thyroid datasets, with ε = 0.5.

Fig. 13 k-NN classification on banana, phoneme, banknote and thyroid datasets, with ε = 1.0.

Fig. 14 k-NN classification on banana, phoneme, banknote and thyroid datasets, with ε = 2.0.

5.3 Evaluation of k-NN Classifiers

Next, we evaluate our algorithms for differentially private k-NN classification. In
Section 5.1 we fixed r and varied the number of test instances. Orthogonal to that,
in this section we fix the number of test instances to 100 and vary k, the number
of neighbors.

We illustrate the results in Figures 12, 13 and 14. In these figures, non-private
denotes the results of k-NN classification without ε-DP, private-INT denotes the
results of Algorithm 5 with Algorithm 6 (our proposed solution with interactive
algorithm for conversion), private-NONINT denotes the results of Algorithm 5
with Algorithm 7 (our proposed solution with non-interactive algorithm for con-
version), private-baseline denotes the results of baseline ε-DP k-NN classification
(in Section 4.1), and PrivBayes denotes the results of publishing the data with
PrivBayes and performing k-NN classification on the published data.

First, we observe that non-private k-NN classification is accurate on all four
datasets (accuracy is higher than 0.85). Thus, k-NN is a good fit for these datasets.
Then, we observe that when ε = 0.5, our algorithms perform better than PrivBayes
on banana and banknote, head-to-head on phoneme, and worse on thyroid. However,
when ε = 1.0 or 2.0, at least one of private-INT or private-NONINT significantly

Differentially private nearest neighbor classification 23

Fig. 15 Comparison of different differentially private classification techniques on banana,
phoneme and banknote datasets.

outperforms PrivBayes. Note that the thyroid dataset is naturally challenging due
to its high dimensionality. The high errors in k-NN to r-N conversion (described
in the previous section) play a role in this section: When conversion is inaccurate,
classification also becomes inaccurate. Lowest conversion errors are obtained on
the banana dataset, which also happens to have the largest discrepancy between
our proposed algorithms and PrivBayes. The baseline approach performs poorly
on all datasets, which motivates the need for advanced algorithms for ε-DP k-NN
classification.

The margins of error (with 95% confidence intervals) are similar to those of
the r-N classifiers. The non-private and non-interactive private algorithms have the
lowest variances and margins of error (roughly ±0.015), followed by the interactive
and baseline algorithms (roughly ±0.018). PrivBayes shows remarkably higher
variance, and its margins of error are ±0.04 on average.

5.4 Comparison with Other Classification Techniques

Finally, we compare our ε-DP k-NN classification algorithms with other private
classification techniques from the literature. We divide existing classification works
into 3 broad categories: (i) linear classifiers, e.g., regression, SVM, perceptron, (ii)
Bayesian classifiers, and (iii) decision trees and forests. We choose one popular
work from each category. From (i), we choose the state of the art private logistic
regression algorithm by Zhang et al. [56]. From (ii), we choose Naive Bayes Clas-
sifiers, which are widely used in recent works in ε-DP, e.g., [25], [55], [48]. From
(iii), we choose the seminal work by Friedman and Schuster [17] on ε-DP versions
of ID3 and C4.5 algorithms for decision tree building. We use the C4.5 algorithm
since it can handle features with continuous domains. For k-NN classification, we
choose the better performing settings (in terms of k and conversion algorithm)
based on the results reported in the previous sections.

We vary the privacy budget ε ∈ [0.5, 2.0] and graph the results in Figure
15. Our k-NN algorithm outperforms existing works completely on banana. On
phoneme, it outperforms existing works when ε ≤ 1.25, but is beaten by decision
trees when ε ≥ 1.5. On banknote, it performs poorly when ε is low, but performs
better than the other algorithms when ε ≥ 1.5. We note that on banknote, most
algorithms have similar classification accuracy.

It is generally accepted that certain classification techniques fit certain datasets
very well, but may perform poorly on others. For example, observe that logistic
regression performs poorly on banana. When analyzing the reason for this, we
found that non-private logistic regression also performs poorly on banana, because

24 Mehmet Emre Gursoy et al.

the data points in this dataset consist of two-banana shaped, interleaved clusters.
Therefore any linear classifier would yield low accuracy.

It is also interesting to quantify the accuracy differences between the private
and non-private versions of different classification techniques. We found that these
differences show variability depending on the dataset and ε. For example, the
accuracy of decision trees drop by 2-10% on banana, but by 5-20% on phoneme
and banknote. Therefore, even though non-private decision trees beat non-private
k-NN, private k-NN performs better than private decision trees in many cases.
In light of these results, choosing the right ε-DP classification technique apriori
(depending on ε, characteristics of the dataset etc.) becomes an open question. We
leave this to future work. We note, however, that ε-DP k-NN indeed outperforms
its competitors in many settings, therefore deserving to be a viable option.

We again discuss the statistical significance of our results. Logistic regression,
Naive Bayes and decision trees all build explicit models that are used for clas-
sification. In contrast, k-NN compares test instances directly with the training
instances without building an explicit model. As a result, the other methods are
more resilient to randomness caused by ε-DP noise and cross-validation. For exam-
ple, the 95% confidence intervals for logistic regression and Naive Bayes indicate
error margins of only ±0.003, and the variance in their classification accuracy is
much smaller. This number is increased 5 or 6-fold in the case of k-NN.

6 Related Work

Differential Privacy (DP). Differential privacy was introduced by Dwork in [12],
and has gained significant attention since. We first discuss the most influential ad-
vances in DP. For queries with real-valued outputs, the Laplace mechanism was
shown to achieve DP [12]. Even though this result was initially only for count
queries, Dwork et al. extended the Laplace mechanism to functions like sums, lin-
ear algebraic functions and distance measures [14]. Later, for queries with integer-
valued outputs, the geometric mechanism was proposed in [18]. Another improve-
ment is due to McSherry et al. through the introduction of the exponential mech-
anism [30]. The exponential mechanism can handle queries whose responses are
members of arbitrary sets, which is especially useful for mechanism design. In [31],
McSherry proved the composability of multiple DP mechanisms, i.e., the sequen-
tial and parallel composition properties. We formally define these advancements
in Section 2 and make use of them throughout our work.

Research efforts in DP are being devoted to various tasks, including accurately
answering range-count queries ([20],[27]), synthetic data and histogram publishing
([53],[54]) and data mining and machine learning. Since the latter is most related
to our work, we discuss it in detail below. For a more general survey, we refer the
reader to [26].

Data Mining and Machine Learning with DP. We divide this portion into: (i)
supervised learning, (ii) unsupervised learning and other relevant ML techniques.

The work of Friedman and Schuster [17] on building private decision trees
using ID3 has sparked a plethora of work on differentially private random decision
trees and forests. Several other approaches can be found in [7] and [37]. In [55],
Zhang et al. study Bayesian inference under DP, and in [44], Vaidya et al. build
private Naive Bayes classifiers. In [38], Rubinstein et al. study private Support
Vector Machines (SVMs). In [56], Zhang et al. propose the functional mechanism

Differentially private nearest neighbor classification 25

for linear and logistic regression. In [8], Chaudhuri and Monteleoni claim that
logistic regression through sensitivity analysis causes excess noise, and instead
they propose regression models based on objective perturbation. In comparison,
our experimental results show that a tight bound yielding from sensitivity analysis
can achieve accurate k-NN classifiers. In [19], Hamm et al. employ differential
privacy to mine crowdsensed data.

In terms of unsupervised learning, most efforts have focused on clustering data
with DP, and the k-means algorithm in particular. McSherry’s PINQ [31] con-
tains a private k-means implementation. In [32], Nissim et al. proposed k-means
for a relaxation of ε-DP (namely, (ε, δ)-DP). In [42], Su et al. compare the ac-
curacy of various private k-means implementations and propose the current state
of the art approach. In addition to clustering, there have been efforts in private
feature selection [41], outlier detection [33] and principal component analysis [9].
More recently, deep learning with DP was discussed in [2] and [40]. Surveys on
differentially private machine learning can be found in [22] and [39].

Privacy-Preserving k-NN. To the best of our knowledge, there is no previous
work on differentially private k-NN classification or instance-based learning in
general. Rather, we survey: (i) distributed private k-NN protocols, and (ii) k-NN
on encrypted (outsourced) data.

In (i), data is horizontally partitioned among multiple owners. The honest-but-
curious owners engage in a protocol to classify an incoming test instance, but wish
not to disclose any private information apart from what is needed to classify that
instance. The general idea behind these protocols is to iteratively reveal neighbors
closest to the test instance until a total of k neighbors are revealed. Prominent
works in this area are [23], [35], [49], [50] and [52].

In (ii), the goal is to outsource k-NN computation and classification to the
cloud or some untrusted third party. Since the data owner is trusted but the
third party is untrusted, the data owner should be able to observe the results
of the classification, but the third party should not. Works in this area employ
cryptographic techniques (e.g., homomorphic encryption and garbled circuits). For
instance, the data is encrypted before it is given to the third party, the third party
performs k-NN search on encrpyted data and returns the results, and finally the
data owner decrypts the results to obtain the classification result. Prominent works
in this area are [45], [57], [16], [51] and [28].

7 Discussion and Open Problems

Comparison with Data Publishing. Recall that in Section 5, we compared
our private r-N and k-NN classification algorithms with PrivBayes, i.e., building
classifiers on differentially private publication of the data. The motivation was that
our algorithms should have better accuracy than classifiers built on published data;
otherwise a one-time publication of the data would enable researchers to freely use
the published data for any desired purpose, including (but not confined to) r-N
and k-NN classification. Next, we give the advantages and disadvantages of using
our proposed algorithms versus building classifiers on DP publication of the data.

As the experiments showed, our proposed algorithms had roughly 10-15%
higher accuracy than classifiers built on DP published data. Clearly, our algo-
rithms are specialized for r-N and k-NN classification, whereas data publishing is

26 Mehmet Emre Gursoy et al.

general purpose and task-agnostic. Therefore this increase in accuracy is justified.
Data publishing has three additional limitations: (1) Our algorithms are typically
fast, and can classify several hundreds of test instances within a few seconds.
In contrast, data publishing can take several minutes or hours [54]. (2) A prob-
lem that is specific to instance-based learning with numeric data and Euclidean
distance is that most works in DP data publishing assume features with small,
discrete domains, e.g., the case with binary features is very common. (PrivBayes
was one of the few works that did not make this assumption.) It is unclear how
these works would be employed to publish features with large, numeric, continu-
ous domains. (3) The training data might be dynamic and new training instances
may be added over time. A previously published dataset will not contain the new
instances, whereas our private algorithms can take into account the new instances
in evolving datasets, if employed in a scenario such as Figure 1.

On the other hand, performing one-time DP data publishing can be preferable
in several aspects: (1) The published data can be used for purposes other than
instance-based learning, such as building other ML models, performing correlation
analyses, clustering, etc. (2) Our r-N and k-NN algorithms require the queriers
(i.e., the data analysts) to spend their privacy budgets, which depletes their budget
over time. In contrast, in data publishing the budget is spent once and a dataset is
obtained in return, which can be used without any limitations or further spending
of the budget. This is enabled by the post-processing property of DP. (3) Our
proposed algorithms rely on the data owner being online and available to perform
classification on a querier’s demand. Since publishing is a one-and-done process,
it does not require the data owner to be continuously available.

Given these advantages and disadvantages, we acknowledge that both data
publishing and the proposed classification techniques have their place. The choice
of using one over the other ultimately depends on the real-life setting, and pref-
erences and priorities of the involved parties (e.g., the data owner and queriers).
Furthermore, we believe that many of the issues raised above are not specific to
DP r-N and k-NN classification, but instead they are shared by other DP machine
learning algorithms as well.

Availability of Test Data in a Batch. When designing our r-N and k-NN
classifiers, we assumed that the test instances X are available in batches, e.g.,
X = ((x1, k1), ..., (xn, kn)). This is a standard assumption in the ε-DP literature
for many purposes such as query answering, data publishing and machine learning
[26],[27]. If queries are posed continuously or one-at-a-time, then the data owner
has no knowledge of “what comes next”, and optimization (sensitivity analysis or
other forms of optimization) becomes much more challenging, if not impossible.
We do emphasize that our classifiers can work in real-time and for continuous
k-NN query evaluation, simply assuming |X| = 1. However, their behavior would
converge to that of the baseline solutions, and we would not enjoy the accuracy
benefits of our proposed solutions. Therefore we recommend answering in batch
mode. This is not completely implausible, e.g., in collaborative environments, mul-
tiple queriers can combine their queries and ε budgets into a batch, and send the
batch to the data owner. Alternatively, in environments that do not require imme-
diate answering of queries, either the queriers or the data owner can accumulate
several queries, treat them as a batch, and pose/answer them all at once.

Differentially private nearest neighbor classification 27

Privacy of the Test Data. One open problem for future research is the privacy
of the test data. As shown in Figure 1, the data owner is only responsible from
protecting the training data. Unlabeled test instances that are shared with the
data owner in our protocols are not a part of this data. That is why, the queriers
may not completely trust the data owner, and they may wish to protect the privacy
of their test instances from the data owner.

First, note that since r-N and k-NN are instance-based learning algorithms,
they do not build explicit models. (In contrast, the likes of logistic regression and
decision trees do.) Therefore, queriers are “forced” to share their test instances with
the data owner so that classification can be performed. In this sharing, privacy
can be accommodated in several ways, such as perturbation and secure multiparty
computation (SMC). Several methods using SMC were surveyed in Section 6, under
the descriptive name “privacy-preserving k-NN”. Our algorithms can be used in
combination with SMC to achieve the privacy of test instances. However, this
combination would likely yield additional accuracy and/or efficiency loss, since
SMC operations are computationally costly. Hence, we leave it for future work.

In addition, the collaborative environment setting above yields further interest-
ing privacy properties. For example, if several queriers collaborate to build a batch
of test instances, this may help disguise their queries by offering “crowd-blending
privacy”. That is, upon receiving the combined set of queries, the data owner may
not trace which query originated from which querier. Such collaboration relies on
SMC, and can be achieved with or without the existence of a trusted third party.
However, note that this setting is not robust to malicious parties. For example, a
malicious querier can pose many queries with large regions, which increases the
maximum clique sizes in the region overlap graph, which in turn causes higher
sensitivity and more noise in query answers.

Finally, we discuss if an honest-but-curious party (say, Alice) can make infer-
ences regarding other queries and queriers in such a collaborative setting. We argue
that in this case, probability of inference depends on Alice’s existing background
knowledge - if Alice has zero prior knowledge about the training data, then infer-
ences are not likely. However, consider that Alice has background knowledge that
she is querying a small, outlier region and she already knows the true label of her
test instance. Assume that the noisy, ε-DP label that is returned to Alice does not
match the true label she was expecting. Then, Alice infers that a large amount of
noise must have been added to the answer, which must have been because many
other queriers were querying the same region. In this case, Alice has made a clear
inference regarding other queriers’ queries. This situation is caused, in part, by
the fact that differential privacy does not guarantee absolute confidentiality or
absolute disclosure prevention - it is accepted that a party with more background
knowledge will be able to make more inferences [13].

8 Conclusion

In this paper, we studied two instance-based classifiers (r-N and k-NN). We ar-
gued and experimentally showed that their baseline ε-DP implementations lead to
undesirable loss in classification accuracy. Thus, we proposed more sophisticated
algorithms to implement them. Our algorithm for private r-N classification was
based on sensitivity analysis: We build a region overlap graph, from which we can

28 Mehmet Emre Gursoy et al.

find disconnected subgraphs that enjoy parallel execution, and further bound their
sensitivity according to their maximum clique size. We showed theoretically that
our analysis yields a tight upper bound on the amount of noise required to satisfy
ε-DP. We then proposed private k-NN classifiers, based on the idea of converting
them into r-N classifiers. We gave two algorithms for conversion in Section 4.3. We
experimentally showed in Section 5 that the non-interactive algorithm is generally
preferable unless data dimensionality is exceedingly high or ε is restrictively small.
In addition, experiments illustrate that our proposed algorithms significantly out-
perform the baseline solutions, as well as classification on general purpose ε-DP
data publication and other ε-DP machine learning techniques.

References

1. scikit-learn: machine learning in python. http://scikit-learn.org/stable/modules/
generated/sklearn.neighbors.RadiusNeighborsClassifier.html. Retrieved Jan 20, 2017.

2. Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang,
L. (2016, October). Deep learning with differential privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security (pp. 308-318). ACM.

3. Aggarwal, C. C. (2014). Instance-Based Learning: A Survey. Data Classification: Algorithms
and Applications, 157.

4. Alcala, J., Fernandez, A., Luengo, J., Derrac, J., Garcia, S., Sanchez, L., & Herrera, F.
(2010). KEEL data-mining software tool: Data set repository, integration of algorithms and
experimental analysis framework. Journal of Multiple-Valued Logic and Soft Computing,
17(2-3), 255-287.

5. Behley, J., Steinhage, V., & Cremers, A. B. (2015, May). Efficient radius neighbor search
in three-dimensional point clouds. In 2015 IEEE International Conference on Robotics and
Automation (ICRA), (pp. 3625-3630). IEEE.

6. Bentley, J. L. (1975). Survey of techniques for fixed radius near neighbor searching (No.
SLAC-186; STAN-CS-75-513). Stanford Linear Accelerator Center, Calif.(USA).

7. Bojarski, M., Choromanska, A., Choromanski, K., & LeCun, Y. (2014). Differentially-and
non-differentially-private random decision trees. arXiv preprint arXiv:1410.6973.

8. Chaudhuri, K., & Monteleoni, C. (2009). Privacy-preserving logistic regression. In Advances
in Neural Information Processing Systems (pp. 289-296).

9. Chaudhuri, K., Sarwate, A. D., & Sinha, K. (2013). A near-optimal algorithm for
differentially-private principal components. Journal of Machine Learning Research, 14(1),
2905-2943.

10. Cormode, G., Procopiuc, C., Srivastava, D., Shen, E., & Yu, T. (2012, April). Differen-
tially private spatial decompositions. In 2012 IEEE 28th International Conference on Data
Engineering, (pp. 20-31). IEEE.

11. Doherty, K. A. J., Adams, R. G., & Davey, N. (2007). Unsupervised learning with nor-
malised data and non-Euclidean norms. Applied Soft Computing, 7(1), 203-210.

12. Dwork, C. (2006). Differential privacy. In 33rd International Colloquium on Automata,
Languages and Programming, part II (ICALP 2006), 1-12.

13. Dwork, C., & Naor, M. (2008). On the difficulties of disclosure prevention in statistical
databases or the case for differential privacy. Journal of Privacy and Confidentiality, 2(1),
8.

14. Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006, March). Calibrating noise to
sensitivity in private data analysis. In Theory of Cryptography Conference (pp. 265-284).
Springer Berlin Heidelberg.

15. Dwork, C. (2008). Differential privacy: A survey of results. In Theory and Applications of
Models of Computation (pp. 1-19). Springer Berlin Heidelberg.

16. Elmehdwi, Y., Samanthula, B. K., & Jiang, W. (2014, March). Secure k-nearest neighbor
query over encrypted data in outsourced environments. In 2014 IEEE 30th International
Conference on Data Engineering (pp. 664-675). IEEE.

17. Friedman, A., & Schuster, A. (2010, July). Data mining with differential privacy. In Pro-
ceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (pp. 493-502). ACM.

Differentially private nearest neighbor classification 29

18. Ghosh, A., Roughgarden, T., & Sundararajan, M. (2012). Universally utility-maximizing
privacy mechanisms. SIAM Journal on Computing, 41(6), 1673-1693.

19. Hamm, J., Champion, A. C., Chen, G., Belkin, M., & Xuan, D. (2015, June). Crowd-ML:
A privacy-preserving learning framework for a crowd of smart devices. In 2015 IEEE 35th
International Conference on Distributed Computing Systems (ICDCS), (pp. 11-20). IEEE.

20. Hay, M., Machanavajjhala, A., Miklau, G., Chen, Y. & Zhang, D. Principled evaluation of
differentially private algorithms using DPBench. In Proceedings of the 2016 ACM SIGMOD
International Conference on Management of Data.

21. Horton, P., & Nakai, K. (1997). Better prediction of protein cellular localization sites with
the k nearest neighbors classifier. In Proceedings of the 5th International Conference on
Intelligent Systems Molecular Biology, vol. 5, pp. 147-152.

22. Ji, Z., Lipton, Z. C., & Elkan, C. (2014). Differential privacy and machine learning: a
survey and review. arXiv preprint arXiv:1412.7584.

23. Kantarcioglu, M., & Clifton, C. (2004, September). Privately computing a distributed k-nn
classifier. In European Conference on Principles of Data Mining and Knowledge Discovery
(pp. 279-290). Springer Berlin Heidelberg.

24. Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of Com-
puter Computations (pp. 85-103). Springer US.

25. Kotsogiannis, I., Machanavajjhala, A., Hay, M., & Miklau, G. (2017, May). Pythia: Data
dependent differentially private algorithm selection. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data (pp. 1323-1337). ACM.

26. Leoni, D. (2012, May). Non-interactive differential privacy: a survey. In Proceedings of the
First International Workshop on Open Data (pp. 40-52). ACM.

27. Li, C., Hay, M., Miklau, G., & Wang, Y. (2014). A data-and workload-aware algorithm
for range queries under differential privacy. Proceedings of the VLDB Endowment, 7(5),
341-352.

28. Li, F., Shin, R., & Paxson, V. (2015, October). Exploring privacy preservation in out-
sourced k-nearest neighbors with multiple data owners. In Proceedings of the 2015 ACM
Workshop on Cloud Computing Security Workshop (pp. 53-64). ACM.

29. Machanavajjhala, A., Korolova, A., & Sarma, A. D. (2011). Personalized social recommen-
dations: accurate or private? Proceedings of the VLDB Endowment, 4(7), 440-450.

30. McSherry, F., & Talwar, K. (2007, October). Mechanism design via differential privacy.
In 48th Annual IEEE Symposium on Foundations of Computer Science, 2007. (FOCS’07).
pp. 94-103. IEEE.

31. McSherry, F. D. (2009, June). Privacy integrated queries: an extensible platform for
privacy-preserving data analysis. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, (pp. 19-30). ACM.

32. Nissim, K., Raskhodnikova, S., & Smith, A. (2007, June). Smooth sensitivity and sampling
in private data analysis. In Proceedings of the 39th Annual ACM Symposium on Theory of
Computing (pp. 75-84). ACM.

33. Okada, R., Fukuchi, K., & Sakuma, J. (2015, September). Differentially private analysis
of outliers. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases (pp. 458-473). Springer International Publishing.

34. Qardaji, W., Yang, W., & Li, N. (2013, April). Differentially private grids for geospatial
data. In 2013 IEEE 29th International Conference on Data Engineering (ICDE), (pp. 757-
768). IEEE.

35. Qi, Y., & Atallah, M. J. (2008, June). Efficient privacy-preserving k-nearest neighbor
search. In 2008 IEEE 28th International Conference on Distributed Computing Systems
(ICDCS), (pp. 311-319). IEEE.

36. Parry, R. M., Jones, W., Stokes, T. H., Phan, J. H., Moffitt, R. A., Fang, H., ... & Wang,
M. D. (2010). k-Nearest neighbor models for microarray gene expression analysis and clinical
outcome prediction. The Pharmacogenomics Journal, 10(4), 292-309.

37. Rana, S., Gupta, S. K., & Venkatesh, S. (2015, November). Differentially private random
forest with high utility. In 2015 IEEE International Conference on Data Mining (ICDM),
(pp. 955-960). IEEE.

38. Rubinstein, B. I., Bartlett, P. L., Huang, L., & Taft, N. (2012). Learning in a Large
Function Space: Privacy-Preserving Mechanisms for SVM Learning. Journal of Privacy and
Confidentiality, 4(1), 65-100.

39. Sarwate, A. D., & Chaudhuri, K. (2013). Signal processing and machine learning with
differential privacy: Algorithms and challenges for continuous data. IEEE Signal Processing
Magazine, 30(5), 86-94.

30 Mehmet Emre Gursoy et al.

40. Shokri, R., & Shmatikov, V. (2015, October). Privacy-preserving deep learning. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security
(pp. 1310-1321). ACM.

41. Stoddard, B., Chen, Y., & Machanavajjhala, A. (2014). Differentially private algorithms
for empirical machine learning. arXiv preprint arXiv:1411.5428.

42. Su, D., Cao, J., Li, N., Bertino, E., & Jin, H. (2016, March). Differentially private k-means
clustering. In Proceedings of the Sixth ACM Conference on Data and Application Security
and Privacy (pp. 26-37). ACM.

43. To, H., Ghinita, G., & Shahabi, C. (2014). A framework for protecting worker location
privacy in spatial crowdsourcing. Proceedings of the VLDB Endowment, 7(10), 919-930.

44. Vaidya, J., Shafiq, B., Basu, A., & Hong, Y. (2013, November). Differentially private
naive Bayes classification. In Proceedings of the 2013 IEEE/WIC/ACM International Joint
Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), (pp. 571-
576). IEEE.

45. Wong, W. K., Cheung, D. W. L., Kao, B., & Mamoulis, N. (2009, June). Secure kNN com-
putation on encrypted databases. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data (pp. 139-152). ACM.

46. Wu, Q., & Hao, J. K. (2015). A review on algorithms for maximum clique problems.
European Journal of Operational Research, 242(3), 693-709.

47. Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., ... & Zhou, Z. H.
(2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1), 1-37.

48. Xiao, X., Bender, G., Hay, M., & Gehrke, J. (2011, June). iReduct: Differential privacy with
reduced relative errors. In Proceedings of the 2011 ACM SIGMOD International Conference
on Management of Data (pp. 229-240). ACM.

49. Xiong, L., Chitti, S., & Liu, L. (2006, November). K nearest neighbor classification across
multiple private databases. In Proceedings of the 15th ACM International Conference on
Information and Knowledge Management (pp. 840-841). ACM.

50. Xiong, L., Chitti, S., & Liu, L. (2007). Preserving data privacy in outsourcing data aggre-
gation services. ACM Transactions on Internet Technology (TOIT), 7(3), 17.

51. Yao, B., Li, F., & Xiao, X. (2013, April). Secure nearest neighbor revisited. In 2013 IEEE
29th International Conference on Data Engineering (ICDE), (pp. 733-744). IEEE.

52. Zhang, F., Zhao, G., & Xing, T. (2009, August). Privacy-preserving distributed k-nearest
neighbor mining on horizontally partitioned multi-party data. In International Conference
on Advanced Data Mining and Applications (pp. 755-762). Springer Berlin Heidelberg.

53. Zhang, X., Chen, R., Xu, J., Meng, X., & Xie, Y. (2014). Towards accurate histogram
publication under differential privacy. In SIAM Data Mining (pp. 587-595).

54. Zhang, J., Cormode, G., Procopiuc, C. M., Srivastava, D., & Xiao, X. (2014, June).
Privbayes: Private data release via bayesian networks. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data (pp. 1423-1434). ACM.

55. Zhang, Z., Rubinstein, B. I., & Dimitrakakis, C. (2016). On the differential privacy of
Bayesian inference. In The Thirtieth AAAI Conference on Artificial Intelligence (AAAI-
16).

56. Zhang, J., Zhang, Z., Xiao, X., Yang, Y., & Winslett, M. (2012). Functional mechanism:
regression analysis under differential privacy. Proceedings of the VLDB Endowment, 5(11),
1364-1375.

57. Zhu, Y., Xu, R., & Takagi, T. (2013, May). Secure k-NN computation on encrypted cloud
data without sharing key with query users. In Proceedings of the 2013 International Work-
shop on Security in Cloud Computing (pp. 55-60). ACM.

