Math 107, Week 12 Questions to Practice

(1) Let A be an $n \times n$ matrix with real entries. Suppose λ is a complex eigenvalue of A and v is an eigenvector corresponding to λ . Prove that {Re \mathbf{v} , Im \mathbf{v} } is a linearly independent set in \mathbb{R}^n . (Hint: Use the fact that $\overline{\mathbf{v}}$ is an eigenvector corresponding to the eigenvalue $\overline{\lambda}$, in particular use the fact that { $\mathbf{v}, \overline{\mathbf{v}}$ } is linearly independent, since $\mathbf{v}, \overline{\mathbf{v}}$ correspond to two distinct eigenvalues.)

(2) Let A be a 2×2 matrix with a pair of complex conjugate eigenvalues $\lambda, \overline{\lambda}$, and let **v** be an eigenvector corresponding to the eigenvalue λ . Prove that

$$A\underbrace{\left[\begin{array}{cc}\operatorname{Re}\mathbf{v} & \operatorname{Im}\mathbf{v}\end{array}\right]}_{P} = \underbrace{\left[\begin{array}{cc}\operatorname{Re}\mathbf{v} & \operatorname{Im}\mathbf{v}\end{array}\right]}_{P}\underbrace{\left[\begin{array}{cc}\operatorname{Re}\lambda & \operatorname{Im}\lambda\\-\operatorname{Im}\lambda & \operatorname{Re}\lambda\end{array}\right]}_{R}.$$

Note: This shows that $P^{-1}AP = R$, so A is similar to R. Letting $|\lambda| = \sqrt{[\operatorname{Re} \lambda]^2 + [\operatorname{Im} \lambda]^2}$ be the modulus of λ , observe that $(1/|\lambda|)R$ is a rotation matrix by an angle of $\theta = \arccos[(\operatorname{Re} \lambda)/|\lambda|]$ in the counter clockwise direction. Hence $R\mathbf{x}$ first rotates by an angle of θ in the counter clockwise direction, then stretches or shrinks by $|\lambda|$.

Solve the following questions from the orange textbook by Lay, Lay and McDonald. **5.4 :** 1, 8, 10 **5.5 :** 1, 3, 23, 24,