Solutions - PS 1

MATH 106 - Calculus

October 8, 2018

These are the solutions of the problems marked with (∗) from PS 1.

§1.2

29.

$$
\lim_{y \to 1} \frac{y - 4\sqrt{y} + 3}{y^2 - 1} = \lim_{y \to 1} \frac{(\sqrt{y} - 1)(\sqrt{y} - 3)}{(\sqrt{y} - 1)(\sqrt{y} + 1)(y + 1)} = \lim_{y \to 1} \frac{\sqrt{y} - 3}{(\sqrt{y} + 1)(y + 1)} = -\frac{1}{2}.
$$

33.

$$
\lim_{x \to 2} \frac{1}{x-2} - \frac{4}{x^2 - 4} = \lim_{x \to 2} \frac{1 \cdot (x+2) - 4}{x^2 - 4} = \lim_{x \to 2} \frac{x-2}{(x-2)(x+2)} = \frac{1}{4}.
$$

35.

$$
\lim_{x \to 0} \frac{\sqrt{2 + x^2} - \sqrt{2 - x^2}}{x^2} = \lim_{x \to 0} \frac{2 + x^2 - (2 - x^2)}{x^2 \left(\sqrt{2 + x^2} + \sqrt{2 - x^2}\right)} = \lim_{x \to 0} \frac{2}{\left(\sqrt{2 + x^2} + \sqrt{2 - x^2}\right)} = \frac{1}{\sqrt{2}}.
$$

63.

If $x \to 0^+$ then $f(x) = (x + \pi)^2$. Therefore $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x + \pi)^2 = \pi^2$.

79.

We are given $|f(x)| \le g(x)$ for all x. Suppose first that $\lim_{x\to a} g(x) = 0$. Then $\lim_{x\to a} -g(x) = 0$ 0 as well. Then inequality means that

$$
-g(x) \le f(x) \le g(x).
$$

We can apply the Squeeze Theorem because $\lim_{x\to a} g(x) = \lim_{x\to a} -g(x)$ and we deduce that $\lim_{x\to a} f(x) = 0$.

Now suppose that $\lim_{x\to a} g(x) = 3$. Then $\lim_{x\to a} -g(x) = -3$. We cannot apply the Squeeze Theorem, and we cannot conclude that $\lim_{x\to a} f(x)$ exists. All we can say is that, if $\lim_{x\to a} f(x)$ exists, it should satisfy

$$
-3 \le \lim_{x \to a} f(x) \le 3.
$$

§1.3

23.

$$
\lim_{x \to 2} \frac{x-3}{x^2 - 4x + 4} = \lim_{x \to 2} \frac{x-3}{(x-2)^2} = -\infty
$$

since, $(x - 2)^2 \ge 0$ for all x and, if x is sufficiently close to 2, we have $x - 3 < 0$.

27.

$$
\lim_{x \to \infty} \frac{x\sqrt{x+1} \left(1 - \sqrt{2x+3}\right)}{7 - 6x + 4x^2} = \lim_{x \to \infty} \frac{\sqrt{1 + 1/x} \left(1/\sqrt{x} - \sqrt{2 + 3/x}\right)}{7/x^2 - 6/x + 4} = \frac{-\sqrt{2}}{4}.
$$

33.

Let $f(x) = \frac{1}{\sqrt{x^2}}$ $\frac{1}{x^2-2x-x}.$

$$
\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1}{\sqrt{x^2 - 2x} - x} = \lim_{x \to \infty} \frac{\sqrt{x^2 - 2x} + x}{x^2 - 2x - x^2} = \lim_{x \to \infty} \frac{-1}{2} \left(\sqrt{1 + 2/x} + 1 \right) = -1.
$$

So the line $y = -1$ is a horizontal asymptote for $y = f(x)$ at $+\infty$.

$$
\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{|x| \left(\sqrt{1 - 2/x} + 1\right)} = 0
$$

so $y = 0$ is a horizontal asymptote for $y = f(x)$ at $-\infty$.

 $y = 0$ is a norizontal asymptote for $y = f(x)$ at $-\infty$.
Now $\sqrt{x^2 - 2x} - x = 0$ if and only if $x = 0$. So $dom(f) = \{x : x \neq 0 \text{ and } x^2 - 2x \ge 0\}$ $\mathbb{R} \setminus [0, 2) = (-\infty, 0) \cup [2, \infty).$

$$
\lim_{x \to 0^-} f(x) = +\infty
$$

(since if $x \to 0^-$ then $x < 0$ hence $-x > 0$). So the line $x = 0$ is a vertical asymptote.

§1.4

19.

For $-1 < x < 1$, the function $f(x) = x^2$ takes every value in [0, 1]. So $f(x) < 1$ for all $x \in (-1,1)$, and $f(x)$ can be made arbitrarily close to 1, but never reaches 1. Therefore $f(x)$ has no maximum on $(-1, 1)$.

However $f(x) \ge 0$ for all $x \in (-1,1)$, and $f(0) = 0$. So f reaches its minimum at 0.

27.

$$
f(x) = (x^2 - 1)/(x^2 - 4)
$$
. The domain of f is $dom(f) = \{x : x^2 - 4 \neq 0\} = \mathbb{R} \setminus \{\pm 2\}.$

30.

 $f(x) = x^3 - 15x + 1.$

 $f(-4) = -3 < 0, f(-3) = 19 > 0, f(1) = -13 < 0, f(4) = 5 > 0.$ Since f is a continuous function and switches sign at least 3 times on $[-4, 4]$, by the intermediate value theorem it follows that f has at least three roots on $[-4, 4]$. However, f is a polynomial of degree 3, so f cannot have more than 3 roots. Therefore $f(x) = 0$ has exactly 3 solutions in $[-4, 4]$.

32.

If $f(0) = 0$, then f has a fixed point at 0 and we are done. If $f(1) = 1$, then f has a fixed point at 1 and we are done.

Suppose that $f(0) \neq 0$ and $f(1) \neq 1$. Let $g(x) = f(x) - x$. Then g is also continuous.

By the extreme value theorem, g achieves its maximum M at some $x = p$, and its minimum m at some point $x = q$. Since $0 \le f(x) \le 1$ and $0 \le x \le 1$, we have $g(0) \ge 0$ and $g(1) \leq 0$. Thus $M \geq 0$ and $m \leq 0$. If $M = 0$, then $0 = g(p) = f(p) - p$ and therefore $f(p) = p$ and we are done. If $m = 0$, then $f(q) = q$ and we are done.

Suppose then that $g(q) = m < 0 < M = g(p)$. By the intermediate value theorem, there must be some c between p and q such that $g(c) = 0$ and therefore $f(c) = c$, DONE.

1 §1.5

27.

Let $M > 0$. Choose δ such that $0 < \delta < 1/M$. Then $1/\delta > M$. Thus:

$$
1 < x < 1 + \delta \Rightarrow 0 < x - 1 < \delta \Rightarrow \frac{1}{\delta} < \frac{1}{x - 1} \Rightarrow \frac{1}{x - 1} > M.
$$

Since M was arbitrary, we conclude that $\lim_{x\to 1^+} \frac{1}{x-1} = +\infty$.

29.

Let $\epsilon > 0$. Choose $M > 0$ such that $M^2 > 1/\epsilon^2 - 1$. Then $1/(M^2 + 1) < \epsilon$. Therefore

$$
x > M \Rightarrow x^2 + 1 > M^2 + 1 \Rightarrow \frac{1}{x^2 + 1} < \frac{1}{M^2 + 1} < \epsilon.
$$

Since ϵ was arbitrary, we conclude that

$$
\lim_{x \to +\infty} \frac{1}{\sqrt{x^2 + 1}} = 0.
$$

31.

Suppose

$$
\lim_{x \to a} f(x) = L
$$

and

$$
\lim_{x \to a} f(x) = M.
$$

Let $\epsilon > 0$. The first statement implies that there exists $\delta_1 > 0$ such that

$$
|x - a| < \delta_1 \Rightarrow |f(x) - L| < \frac{\epsilon}{2}.
$$

The second statement implies that there exists $\delta_2 > 0$ such that

$$
|x - a| < \delta_2 \Rightarrow |f(x) - M| < \frac{\epsilon}{2}.
$$

Let $\delta = \min\{\delta_1, \delta_2\}$ (the smallest of the two numbers). Then

$$
|x - a| < \delta \Rightarrow |L - M| = |L - f(x) - (M - f(x))| \le |f(x) - L| + |f(x) - M| < \epsilon/2 + \epsilon/2 = \epsilon
$$

(where we have used the triangular inequality in the second implication). Since ϵ is arbitrary, we conclude that $|L - M|$ is nonnegative and smaller than any positive number, so $L = M$.