
Solutions - PS 1

MATH 106 - Calculus

October 8, 2018

These are the solutions of the problems marked with (∗) from PS 1.

§1.2

29.

lim
y→1

y − 4
√
y + 3

y2 − 1
= lim

y→1

(
√
y − 1)(

√
y − 3)

(
√
y − 1)(

√
y + 1)(y + 1)

= lim
y→1

√
y − 3

(
√
y + 1)(y + 1)

= −1

2
.

33.

lim
x→2

1

x− 2
− 4

x2 − 4
= lim

x→2

1 · (x+ 2)− 4

x2 − 4
= lim

x→2

x− 2

(x− 2)(x+ 2)
=

1

4
.

35.

lim
x→0

√
2 + x2 −

√
2− x2

x2
= lim

x→0

2 + x2 − (2− x2)
x2
(√

2 + x2 +
√

2− x2
) = lim

x→0

2(√
2 + x2 +

√
2− x2

) =
1√
2
.

63.

If x→ 0+ then f(x) = (x+ π)2. Therefore limx→0+ f(x) = limx→0+(x+ π)2 = π2.

79.

We are given |f(x)| ≤ g(x) for all x. Suppose first that limx→a g(x) = 0. Then limx→a−g(x) =
0 as well. Then inequality means that

−g(x) ≤ f(x) ≤ g(x).

We can apply the Squeeze Theorem because limx→a g(x) = limx→a−g(x) and we deduce
that limx→a f(x) = 0.

Now suppose that limx→a g(x) = 3. Then limx→a−g(x) = −3. We cannot apply the
Squeeze Theorem, and we cannot conclude that limx→a f(x) exists. All we can say is that,
if limx→a f(x) exists, it should satisfy

−3 ≤ lim
x→a

f(x) ≤ 3.
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§1.3

23.

lim
x→2

x− 3

x2 − 4x+ 4
= lim

x→2

x− 3

(x− 2)2
= −∞

since, (x− 2)2 ≥ 0 for all x and, if x is sufficiently close to 2, we have x− 3 < 0.

27.

lim
x→∞

x
√
x+ 1

(
1−
√

2x+ 3
)

7− 6x+ 4x2
= lim

x→∞

√
1 + 1/x

(
1/
√
x−

√
2 + 3/x

)
7/x2 − 6/x+ 4

=
−
√

2

4
.

33.

Let f(x) = 1√
x2−2x−x .

lim
x→∞

f(x) = lim
x→∞

1√
x2 − 2x− x

= lim
x→∞

√
x2 − 2x+ x

x2 − 2x− x2
= lim

x→∞

−1

2

(√
1 + 2/x+ 1

)
= −1.

So the line y = −1 is a horizontal asymptote for y = f(x) at +∞.

lim
x→−∞

f(x) = lim
x→−∞

1

|x|
(√

1− 2/x+ 1
) = 0

so y = 0 is a horizontal asymptote for y = f(x) at −∞.
Now

√
x2 − 2x− x = 0 if and only if x = 0. So dom(f) = {x : x 6= 0 and x2− 2x ≥ 0} =

R \ [0, 2) = (−∞, 0) ∪ [2,∞).

lim
x→0−

f(x) = +∞

(since if x→ 0− then x < 0 hence −x > 0). So the line x = 0 is a vertical asymptote.

§1.4

19.

For −1 < x < 1, the function f(x) = x2 takes every value in [0, 1). So f(x) < 1 for all
x ∈ (−1, 1), and f(x) can be made arbitrarily close to 1, but never reaches 1. Therefore
f(x) has no maximum on (−1, 1).

However f(x) ≥ 0 for all x ∈ (−1, 1), and f(0) = 0. So f reaches its minimum at 0.

27.

f(x) = (x2 − 1)/(x2 − 4). The domain of f is dom(f) = {x : x2 − 4 6= 0} = R \ {±2}.
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(−∞,−2) (−2,−1) (−1, 1) (1, 2) (2,∞)
x− 1 - - - + +
x+ 1 - - + + +
x− 2 - - - - +
x+ 2 - + + + +
f(x) + - + - +

30.

f(x) = x3 − 15x+ 1.
f(−4) = −3 < 0, f(−3) = 19 > 0, f(1) = −13 < 0, f(4) = 5 > 0. Since f is a

continuous function and switches sign at least 3 times on [−4, 4], by the intermediate value
theorem it follows that f has at least three roots on [−4, 4]. However, f is a polynomial of
degree 3, so f cannot have more than 3 roots. Therefore f(x) = 0 has exactly 3 solutions in
[−4, 4].

32.

If f(0) = 0, then f has a fixed point at 0 and we are done. If f(1) = 1, then f has a fixed
point at 1 and we are done.

Suppose that f(0) 6= 0 and f(1) 6= 1. Let g(x) = f(x)− x. Then g is also continuous.
By the extreme value theorem, g achieves its maximum M at some x = p, and its

minimum m at some point x = q. Since 0 ≤ f(x) ≤ 1 and 0 ≤ x ≤ 1, we have g(0) ≥ 0
and g(1) ≤ 0. Thus M ≥ 0 and m ≤ 0. If M = 0, then 0 = g(p) = f(p) − p and therefore
f(p) = p and we are done. If m = 0, then f(q) = q and we are done.

Suppose then that g(q) = m < 0 < M = g(p). By the intermediate value theorem, there
must be some c between p and q such that g(c) = 0 and therefore f(c) = c, DONE.

1 §1.5

27.

Let M > 0. Choose δ such that 0 < δ < 1/M . Then 1/δ > M . Thus:

1 < x < 1 + δ ⇒ 0 < x− 1 < δ ⇒ 1

δ
<

1

x− 1
⇒ 1

x− 1
> M.

Since M was arbitrary, we conclude that limx→1+
1

x−1 = +∞.

29.

Let ε > 0. Choose M > 0 such that M2 > 1/ε2 − 1. Then 1/(M2 + 1) < ε. Therefore

x > M ⇒ x2 + 1 > M2 + 1⇒ 1

x2 + 1
<

1

M2 + 1
< ε.
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Since ε was arbitrary, we conclude that

lim
x→+∞

1√
x2 + 1

= 0.

31.

Suppose
lim
x→a

f(x) = L

and
lim
x→a

f(x) = M.

Let ε > 0. The first statement implies that there exists δ1 > 0 such that

|x− a| < δ1 ⇒ |f(x)− L| < ε

2
.

The second statement implies that there exists δ2 > 0 such that

|x− a| < δ2 ⇒ |f(x)−M | < ε

2
.

Let δ = min{δ1, δ2.} (the smallest of the two numbers). Then

|x− a| < δ ⇒ |L−M | = |L− f(x)− (M − f(x))| ≤ |f(x)−L|+ |f(x)−M | < ε/2 + ε/2 = ε

(where we have used the triangular inequality in the second implication). Since ε is arbitrary,
we conclude that |L−M | is nonnegative and smaller than any positive number, so L = M .
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