Solutions - PS 1

MATH 106 - Calculus

October 8, 2018

These are the solutions of the problems marked with (*) from PS 1.

§1.2

29.

$$\lim_{y \to 1} \frac{y - 4\sqrt{y} + 3}{y^2 - 1} = \lim_{y \to 1} \frac{(\sqrt{y} - 1)(\sqrt{y} - 3)}{(\sqrt{y} - 1)(\sqrt{y} + 1)(y + 1)} = \lim_{y \to 1} \frac{\sqrt{y} - 3}{(\sqrt{y} + 1)(y + 1)} = -\frac{1}{2}.$$

33.

$$\lim_{x \to 2} \frac{1}{x-2} - \frac{4}{x^2 - 4} = \lim_{x \to 2} \frac{1 \cdot (x+2) - 4}{x^2 - 4} = \lim_{x \to 2} \frac{x-2}{(x-2)(x+2)} = \frac{1}{4}.$$

35.

$$\lim_{x \to 0} \frac{\sqrt{2+x^2} - \sqrt{2-x^2}}{x^2} = \lim_{x \to 0} \frac{2+x^2 - (2-x^2)}{x^2 \left(\sqrt{2+x^2} + \sqrt{2-x^2}\right)} = \lim_{x \to 0} \frac{2}{\left(\sqrt{2+x^2} + \sqrt{2-x^2}\right)} = \frac{1}{\sqrt{2}}.$$

63.

If $x \to 0^+$ then $f(x) = (x + \pi)^2$. Therefore $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x + \pi)^2 = \pi^2$.

79.

We are given $|f(x)| \leq g(x)$ for all x. Suppose first that $\lim_{x\to a} g(x) = 0$. Then $\lim_{x\to a} -g(x) = 0$ as well. Then inequality means that

$$-g(x) \le f(x) \le g(x).$$

We can apply the Squeeze Theorem because $\lim_{x\to a} g(x) = \lim_{x\to a} -g(x)$ and we deduce that $\lim_{x\to a} f(x) = 0$.

Now suppose that $\lim_{x\to a} g(x) = 3$. Then $\lim_{x\to a} -g(x) = -3$. We cannot apply the Squeeze Theorem, and we cannot conclude that $\lim_{x\to a} f(x)$ exists. All we can say is that, if $\lim_{x\to a} f(x)$ exists, it should satisfy

$$-3 \le \lim_{x \to a} f(x) \le 3.$$

§1.3

23.

$$\lim_{x \to 2} \frac{x-3}{x^2 - 4x + 4} = \lim_{x \to 2} \frac{x-3}{(x-2)^2} = -\infty$$

since, $(x-2)^2 \ge 0$ for all x and, if x is sufficiently close to 2, we have x-3 < 0.

27.

$$\lim_{x \to \infty} \frac{x\sqrt{x+1}\left(1-\sqrt{2x+3}\right)}{7-6x+4x^2} = \lim_{x \to \infty} \frac{\sqrt{1+1/x}\left(1/\sqrt{x}-\sqrt{2+3/x}\right)}{7/x^2-6/x+4} = \frac{-\sqrt{2}}{4}.$$

33.

Let $f(x) = \frac{1}{\sqrt{x^2 - 2x} - x}$.

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1}{\sqrt{x^2 - 2x} - x} = \lim_{x \to \infty} \frac{\sqrt{x^2 - 2x} + x}{x^2 - 2x - x^2} = \lim_{x \to \infty} \frac{-1}{2} \left(\sqrt{1 + 2/x} + 1\right) = -1.$$

So the line y = -1 is a horizontal asymptote for y = f(x) at $+\infty$.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{|x| \left(\sqrt{1 - 2/x} + 1\right)} = 0$$

so y = 0 is a horizontal asymptote for y = f(x) at $-\infty$.

Now $\sqrt{x^2 - 2x} - x = 0$ if and only if x = 0. So $dom(f) = \{x : x \neq 0 \text{ and } x^2 - 2x \ge 0\} = \mathbb{R} \setminus [0, 2) = (-\infty, 0) \cup [2, \infty).$

$$\lim_{x \to 0^{-}} f(x) = +\infty$$

(since if $x \to 0^-$ then x < 0 hence -x > 0). So the line x = 0 is a vertical asymptote.

§1.4

19.

For -1 < x < 1, the function $f(x) = x^2$ takes every value in [0, 1). So f(x) < 1 for all $x \in (-1, 1)$, and f(x) can be made arbitrarily close to 1, but never reaches 1. Therefore f(x) has no maximum on (-1, 1).

However $f(x) \ge 0$ for all $x \in (-1, 1)$, and f(0) = 0. So f reaches its minimum at 0.

27.

$$f(x) = (x^2 - 1)/(x^2 - 4)$$
. The domain of f is $dom(f) = \{x : x^2 - 4 \neq 0\} = \mathbb{R} \setminus \{\pm 2\}$.

	$(-\infty, -2)$	(-2, -1)	(-1,1)	(1,2)	$(2,\infty)$
x - 1	-	-	-	+	+
x + 1	-	-	+	+	+
x - 2	-	-	-	-	+
x+2	-	+	+	+	+
f(x)	+	-	+	-	+

30.

 $f(x) = x^3 - 15x + 1.$

f(-4) = -3 < 0, f(-3) = 19 > 0, f(1) = -13 < 0, f(4) = 5 > 0. Since f is a continuous function and switches sign at least 3 times on [-4, 4], by the intermediate value theorem it follows that f has at least three roots on [-4, 4]. However, f is a polynomial of degree 3, so f cannot have more than 3 roots. Therefore f(x) = 0 has exactly 3 solutions in [-4, 4].

32.

If f(0) = 0, then f has a fixed point at 0 and we are done. If f(1) = 1, then f has a fixed point at 1 and we are done.

Suppose that $f(0) \neq 0$ and $f(1) \neq 1$. Let g(x) = f(x) - x. Then g is also continuous.

By the extreme value theorem, g achieves its maximum M at some x = p, and its minimum m at some point x = q. Since $0 \le f(x) \le 1$ and $0 \le x \le 1$, we have $g(0) \ge 0$ and $g(1) \le 0$. Thus $M \ge 0$ and $m \le 0$. If M = 0, then 0 = g(p) = f(p) - p and therefore f(p) = p and we are done. If m = 0, then f(q) = q and we are done.

Suppose then that g(q) = m < 0 < M = g(p). By the intermediate value theorem, there must be some c between p and q such that g(c) = 0 and therefore f(c) = c, DONE.

1 §1.5

27.

Let M > 0. Choose δ such that $0 < \delta < 1/M$. Then $1/\delta > M$. Thus:

$$1 < x < 1 + \delta \Rightarrow 0 < x - 1 < \delta \Rightarrow \frac{1}{\delta} < \frac{1}{x - 1} \Rightarrow \frac{1}{x - 1} > M.$$

Since M was arbitrary, we conclude that $\lim_{x\to 1^+} \frac{1}{x-1} = +\infty$.

29.

Let $\epsilon > 0$. Choose M > 0 such that $M^2 > 1/\epsilon^2 - 1$. Then $1/(M^2 + 1) < \epsilon$. Therefore

$$x > M \Rightarrow x^2 + 1 > M^2 + 1 \Rightarrow \frac{1}{x^2 + 1} < \frac{1}{M^2 + 1} < \epsilon.$$

Since ϵ was arbitrary, we conclude that

$$\lim_{x \to +\infty} \frac{1}{\sqrt{x^2 + 1}} = 0.$$

31.

Suppose

$$\lim_{x \to a} f(x) = L$$

and

$$\lim_{x \to a} f(x) = M.$$

Let $\epsilon > 0$. The first statement implies that there exists $\delta_1 > 0$ such that

$$|x-a| < \delta_1 \Rightarrow |f(x) - L| < \frac{\epsilon}{2}.$$

The second statement implies that there exists $\delta_2 > 0$ such that

$$|x-a| < \delta_2 \Rightarrow |f(x) - M| < \frac{\epsilon}{2}.$$

Let $\delta = \min{\{\delta_1, \delta_2\}}$ (the smallest of the two numbers). Then

$$|x - a| < \delta \Rightarrow |L - M| = |L - f(x) - (M - f(x))| \le |f(x) - L| + |f(x) - M| < \epsilon/2 + \epsilon/2 = \epsilon$$

(where we have used the triangular inequality in the second implication). Since ϵ is arbitrary, we conclude that |L - M| is nonnegative and smaller than any positive number, so L = M.