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Problem

Given
an analytic matrix function A : C→ Cn×n,

A(λ) =
∑κ

j=1 fj(λ)Aj ,

where fj : C→ C are analytic and Aj ∈ Cn×n,
a prescribed set of scalars S ⊆ C, and
a positive integer r .

Determine a ∆ ∈ Cn×n as small as possible in 2-norm such that
A + ∆ has at least r of its eigenvalues belonging to S.
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Inverse Eigenvalue Problem

Not to be confused with the following classical inverse
eigenvalue problem (IEP).

Given
a symmetric matrix function A : Rd → Rn×n depending on
its parameters smoothly,
scalars λ1 ≥ · · · ≥ λn

determine the parameters c ∈ Rd such that λj (A(c)) = λj for
j = 1, . . . ,n.

Non-smooth variants of the Newton’s method have been
suggested for the affine case

A(c) := A0 +
n∑

j=1

cjAj .

works of Friedland, Nocedal and Overton (1987), and Sun and
Sun (2003).
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Inverse Eigenvalue Problem

Example (Sturm-Liouville)

Given {λj}∞j=1, determine p(x) such that

u′′(x) + p(x)u(x) = λju(x) x ∈ (0, π), u(0) = u(π) = 0

for each j .

Discrete version: Given {λj}nj=1, determine p1, . . . ,pn such that

(uk+1 − 2uk + uk−1)/h2 + pkuk = λjuk , u0 = un+1 = 0.

for k = 1, . . . ,n and for each j , equivalently(
A(p) :=

(
1/h2 · tri(1,−2,1) + diag(p)

))
u = λju

for each j .

Emre Mengi Prescribing the Eigenvalues of Matrix Functions



Inverse Eigenvalue Problem

Example (Sturm-Liouville)

Given {λj}∞j=1, determine p(x) such that

u′′(x) + p(x)u(x) = λju(x) x ∈ (0, π), u(0) = u(π) = 0

for each j .

Discrete version: Given {λj}nj=1, determine p1, . . . ,pn such that

(uk+1 − 2uk + uk−1)/h2 + pkuk = λjuk , u0 = un+1 = 0.

for k = 1, . . . ,n and for each j , equivalently(
A(p) :=

(
1/h2 · tri(1,−2,1) + diag(p)

))
u = λju

for each j .

Emre Mengi Prescribing the Eigenvalues of Matrix Functions



Early History

Prescribing one eigenvalue of a matrix

Let A(λ) := A− λI for given A ∈ Cn×n, and z ∈ C. Then

∆ = −σnunv∗n with ‖∆‖2 = σn

is the smallest perturbation such that z ∈ Λ(A + ∆), where
σn := σn(A− zI) and un, vn are the associated unit left and right
singular vectors (Eckart-Young).
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Early History

Prescribing a multiple eigenvalue in connection with
ill-conditioning of an eigenvalue; works of Ruhe (1969) and
Wilkinson (1971, 1984)

Let s = y∗x for a pair of unit left y and right x eigenvectors
associated with an eigenvalue z of a matrix A ∈ Cn×n

Find a nearby A + ∆ with z as a multiple eigenvalue.

Wilkinson: ∃∆ ∈ Cn×n s.t. ‖∆‖2 ≤ ‖A‖2s
1−s2
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Early History

Consider unitary H such that Hx = e1, and B = HAH∗ with the
eigenvectors Hx = e1 and w = Hy .

B =

[
z b
0 B1

]
Since, w∗e1 = y∗x = s, we have w∗ = [s w∗1 ] satisfying

[
s w∗1

] [ z b∗

0 B1

]
= z

[
s w∗1

]
=⇒

sb∗ + w∗1 B1 = zw∗1
=⇒

w∗1 (B1 + sw1b∗/w∗1 w1) = zw∗1

that is B + ∆ with ∆ := diag(1, sw1b∗/w∗1 w1) has z as a multiple
eigenvalue, so is A + H∗∆H.
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Early History

Prescribing a multiple eigenvalue of a matrix; work of Malyshev
(1999)

Let A(λ) := A− λI for given A ∈ Cn×n, and z ∈ C. Then

∆ = −σ2n−1U2n−1V +
2n−1 with ‖∆‖2 = σ2n−1

is the smallest perturbation such that z ∈ Λ(A + ∆) with
algebraic multiplicity 2 or greater, where

σ2n−1 := sup
γ≥0

σ2n−1

([
A− zI γI

0 A− zI

])
and U2n−1,V2n−1 ∈ Cn×2 such that vec(U2n−1) and vec(V2n−1)
are unit left and right singular vectors associated with σ2n−1.
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Early History

Prescribing two eigenvalues of a matrix; works of Garcia (2005)
and Lippert (2005)

Let A(λ) := A− λI for given A ∈ Cn×n, and z1, z2 ∈ C. Then

∆ = −σ2n−1U2n−1V +
2n−1 with ‖∆‖2 = σ2n−1

is the smallest perturbation such that z1, z2 ∈ Λ(A + ∆)
provided that the supremum

σ2n−1 := sup
γ≥0

σ2n−1

([
A− z1I γI

0 A− z2I

])
is attained at a γ 6= 0.
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Early History

Prescribing an eigenvalue of algebraic multiplicity three,
Ikramov and Nazari (2004).

Nearest matrices with a prescribed Jordan canonical form,
Lippert (2010).

‖∆‖2 ≥ σnr−r+1

(
Ir ⊗ A− BT ⊗ In

)
for any B ∈ Cr×r whose Jordan form is contained in the
prescribed Jordan form.

Extensions to matrix polynomials, Psarrakos (2012)

Emre Mengi Prescribing the Eigenvalues of Matrix Functions



Early History

Prescribing an eigenvalue of algebraic multiplicity three,
Ikramov and Nazari (2004).

Nearest matrices with a prescribed Jordan canonical form,
Lippert (2010).

‖∆‖2 ≥ σnr−r+1

(
Ir ⊗ A− BT ⊗ In

)
for any B ∈ Cr×r whose Jordan form is contained in the
prescribed Jordan form.

Extensions to matrix polynomials, Psarrakos (2012)

Emre Mengi Prescribing the Eigenvalues of Matrix Functions



Early History

Prescribing an eigenvalue of algebraic multiplicity three,
Ikramov and Nazari (2004).

Nearest matrices with a prescribed Jordan canonical form,
Lippert (2010).

‖∆‖2 ≥ σnr−r+1

(
Ir ⊗ A− BT ⊗ In

)
for any B ∈ Cr×r whose Jordan form is contained in the
prescribed Jordan form.

Extensions to matrix polynomials, Psarrakos (2012)

Emre Mengi Prescribing the Eigenvalues of Matrix Functions



Sylvester Equations

Key to Malyshev’s derivation is a rank characterization.

z is a multiple eigenvalue of A
⇐⇒

rank(A− zI)2 ≤ n − 2
⇐⇒

rank
([

A− zI γI
0 A− zI

])
≤ 2n − 2 ∀γ 6= 0

⇐⇒

rank
(

I2 ⊗ A−
[

z −γ
0 z

]
⊗ In

)
≤ 2n − 2 ∀γ 6= 0

⇐⇒ (see identity)

dim
{

V ∈ Cn×2 | AV − V
[

z 0
−γ z

]
= 0

}
≥ 2 ∀γ 6= 0

Identity: vec(FXG) =
(
GT ⊗ F

)
vec(X )
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Sylvester Equations

Theorem (Pencils)

Let A(λ) = A− λB with A,B ∈ Cn×n be a pencil, which does not
have any right singular block in its Kronecker canonical form,
z1, . . . , zp ∈ C, and r ∈ Z+. The following are equivalent:

The multiplicities of z1, . . . , zp sum up to r or greater.
There exist µ1, . . . , µr ∈ {z1, . . . , zp} such that

dim


X | AX − BX


µ1 0
γ21 µ2 0

. . .
γr1 µr


︸ ︷︷ ︸

:=C(µ,γ)

= 0


≥ r

for all γ ∈ G(µ), the set consisting of γ values such that all
Jordan blocks of C(µ, γ) ∈ Cr×r are of full size.
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Sylvester Equations

Extension to matrix polynomials is via linearizations.

Let A(λ) :=
∑m

j=0 λ
jAj be a polynomial for given Aj ∈ Cn×n with

the linearization

A(λ) = A−λB :=


0 I 0

. . . 0
I

A0 Am−1

−λ


I 0
. . .

I
0 −Am

 .

A
[
X T

0 . . .X T
m−1

]T − B [X T
0 . . .X T

m−1
]T C(µ, γ) = 0

⇐⇒
Xj = Xj−1C(µ, γ) and

∑m−1
j=0 AjXj + AmXm−1C(µ, γ) = 0
⇐⇒

Xj = X0C(µ, γ)j and
∑m

j=0 AjX0C(µ, γ)j = 0
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Sylvester Equations

Consequently,
dim

{
X :=

[
X T

0 . . .X T
m−1

]T | AX − BXC(µ, γ) = 0
}

=

dim
{

X0 |
∑m

j=0 AjX0C(µ, γ)j = 0
}

Theorem (Polynomials)

Let A(λ) =
∑m

j=0 λ
jAj with Aj ∈ Cn×n be a matrix polynomial,

where rank(Am) = n, z1, . . . , zp ∈ C, and r ∈ Z+. The following
are equivalent:

The multiplicities of z1, . . . , zp sum up to r or greater.
There exist µ1, . . . , µr ∈ {z1, . . . , zp} such that

dim
{

X |
∑m

j=0 AjXC(µ, γ)j = 0
}
≥ r

for all γ ∈ G(µ).
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Sylvester Equations

Extension to analytic matrix functions is via interpolation.

Consider the analytic matrix function A(λ) =
∑κ

j=1 fj(λ)Aj and
polynomials

pj(λ) =

rp−1∑
i=0

cjiλ
i such that f (`)

j (zk ) = p(`)
j (zk )

for k = 1, . . . ,p, ` = 0, . . . , r − 1 and j = 1, . . . , κ.

Propositions
1 fj(C(µ, γ)) = pj(C(µ, γ)) for j = 1, . . . , κ and ∀γ ∈ G(µ)

2 ∑κ
j=1 AjX fj(C(µ, γ)) =

∑κ
j=1 AjX pj(C(µ, γ))

=
∑rp−1

i=0 ÃiXC(µ, γ)i

where Ãi :=
∑κ

j=1 cjiAj for j = 1, . . . , κ and ∀γ ∈ G(µ)
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Sylvester Equations

multiplicities of z1, . . . , zp as eigenvalues of A(λ)
sum up to r or greater

⇐⇒
multiplicities of z1, . . . , zp as eigenvalues of P(λ) :=

∑rp−1
i=0 λi Ãi

sum up to r or greater
⇐⇒

∃µ s.t. ∀γ ∈ G(µ) dim
{

X |
∑rp−1

i=0 ÃiXC(µ, γ)i = 0
}
≥ r

⇐⇒
∃µ s.t. ∀γ ∈ G(µ) dim

{
X |

∑κ
j=1 AjX fj(C(µ, γ)) = 0

}
≥ r
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Sylvester Equations

Theorem (Analytic Functions)

Let A(λ) =
∑κ

j=1 fj(λ)Aj with Aj ∈ Cn×n be an analytic matrix
function such that rank(Ãrp−1) = n, z1, . . . , zp ∈ C, and r ∈ Z+.
The following are equivalent:

The multiplicities of z1, . . . , zp sum up to r or greater.
There exist µ1, . . . , µr ∈ {z1, . . . , zp} such that

dim
{

X |
∑κ

j=1 AjX fj(C(µ, γ)) = 0
}
≥ r

for all γ ∈ G(µ).
There exist µ1, . . . , µr ∈ {z1, . . . , zp} such that

rank
(∑κ

j=1 fj(C(µ, γ))T ⊗ Aj

)
≤ nr − r

for all γ ∈ G(µ).
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Sylvester Equations

Example on a polynomial P(λ) :=
∑m

j=0 λ
jAj

Prescribe z1, z2 with multiplicities summing up to 2 or greater

rank

 m∑
j=0

[
z1 γ
0 z2

]j

⊗ Aj

 = rank

 m∑
j=0

[
z j

1 γ · z j
1−z j

2
z1−z2

0 z j
2

]
⊗ Aj


= rank

([
P(z1) γ · P(z1)−P(z2)

z1−z2

0 P(z2)

])
≤ 2n − 2
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Minimal Perturbation

Thus consider

β(µ) := inf

‖∆‖2 | rank

 κ∑
j=1

fj(C(µ, γ))T ⊗ Aj + I ⊗∆

 ≤ nr − r


for a given µ and γ ∈ G(µ).

Eckart-Young theorem yields

β(µ) ≥ σnr−r+1

 κ∑
j=1

fj(C(µ, γ))T ⊗ Aj


for all γ ∈ G(µ), or

β(µ) ≥ κ(µ) := sup
γ
σnr−r+1

 κ∑
j=1

fj(C(µ, γ))T ⊗ Aj

 .
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Minimal Perturbation

Consider the perturbation

∆ = −σnr−r+1Unr−r+1V +
nr−r+1

where
σnr−r+1 = κ(µ) denotes the maximal value of the singular
value assuming the supremum is attained at a γ∗, and
Unr−r+1, Vnr−r+1 are such that vec(Unr−r+1) and
vec(Vnr−r+1) consist of a pair of associated left and right
singular vectors of unit length.
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Minimal Perturbation

The fact that γ∗ is a local extrema, under the assumption
σnr−r+1 is simple, leads to:

Theorem (Optimality Condition)
U∗nr−r+1Unr−r+1 = V ∗nr−r+1Vnr−r+1

Consequently,

‖∆‖2 = σnr−r+1‖Unr−r+1V +
nr−r+1‖2

= σnr−r+1 max‖x‖2=1

√
x∗(V +

nr−r+1)∗U∗nr−r+1Unr−r+1V +
nr−r+1x

= σnr−r+1 max‖x‖2=1

√
x∗(V +

nr−r+1)∗V ∗nr−r+1Vnr−r+1V +
nr−r+1x

= σnr−r+1‖Vnr−r+1V +
nr−r+1‖ = σnr−r+1
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Minimal Perturbation

Additionally, A + ∆ has the prescribed eigenvalues in µ with
multiplicities summing up to r or greater.

(∑κ
j=1 fj(C(µ, γ∗))T ⊗ Aj

)
vec (Vnr−r+1) = σnr−r+1vec (Unr−r+1) .

⇐⇒∑κ
j=1 AjVnr−r+1fj(C(µ, γ∗)) = σnr−r+1Unr−r+1

⇐⇒ (see assumption)∑κ
j=1 AjVnr−r+1fj(C(µ, γ∗)) +−σnr−r+1Unr−r+1V +

nr−r+1︸ ︷︷ ︸
∆

Vnr−r+1 = 0

Assumption: rank(Vnr−r+1) = r
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Minimal Perturbation

Furthermore, the subspace

D :=
{

D ∈ Cr×r | C(µ, γ)D − DC(µ, γ) = 0
}

is at least r dimensional, due to C(µ, γ) ∈ G(µ).

For any D ∈ D commuting with pj(C(µ, γ)) = fj(C(µ, γ))

κ∑
j=1

AjVnr−r+1fj(C(µ, γ∗))D + ∆Vnr−r+1D = 0

κ∑
j=1

Aj(Vnr−r+1D)fj(C(µ, γ∗)) + ∆(Vnr−r+1D) = 0,

that is

dim

X ∈ Cn×r |
κ∑

j=1

AjX fj(C(µ, γ∗)) + ∆ · X = 0

 ≥ r .
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Minimal Perturbation

Theorem
Let A(λ) :=

∑κ
j=1 fj(λ)Aj with Aj ∈ Cn×n be an analytic matrix

function s.t. rank(Ãrp−1) = n, S ⊆ C be given, and r ∈ Z+. Then

inf{‖∆‖2 | A + ∆ has r eigenvalues in S}
=

inf
µ∈Sr

sup
γ
σnr−r+1

 κ∑
j=1

fj(C(µ, γ))T ⊗ Aj


and a minimal ∆ is given by ∆∗ = −σnr−r+1Unr−r+1V +

nr−r+1 -
provided that the inf-sup problem is attained at a (µ∗, γ∗) where
σnr−r+1(·) is simple and Vnr−r+1 ∈ Cn×r is full rank -, and where
σnr−r+1 denotes the optimal value of σnr−r+1(·) and
Vnr−1+1,Unr−r+1 ∈ Cn×r are s.t. vec(Vnr−r+1), vec(Unr−r+1) are
unit right and left singular vectors corresponding to σnr−r+1.
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Examples

Prescribe an eigenvalue z of multiplicity 3 to a matrix, i.e.,
A(λ) := A− λI (f1(λ) = 1,A1 = A and f2(λ) = −λ,A2 = I).

sup
γ
σ3n−2

I3 ⊗ A−

 z −γ21 −γ31
0 z −γ32
0 0 z

⊗ In

 =

sup
γ
σ3n−2

 A− zI γ21I γ31I
0 A− zI γ32I
0 0 A− zI
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Examples

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Solid orange, green - Λε(A) = ∪‖∆‖2≤εΛ(A + ∆) for A ∈ C6×6

Dotted red - Λε,2(A) = ∪‖∆‖2≤εΛ2(A + ∆)

Emre Mengi Prescribing the Eigenvalues of Matrix Functions



Examples

Prescribe two eigenvalues z1, z2 with multiplicities summing up
to 2 to a polynomial, i.e., P(λ) :=

∑m
j=0 λ

jAj (fj(λ) = λj ).

inf
µ∈{z1,z2}2

sup
γ
σ2n−1

 m∑
j=0

[
µ1 γ
0 µ2

]j

⊗ Aj

 =

inf
µ∈{z1,z2}2

sup
γ
σ2n−1

([
P(µ1) γP∆(µ1, µ2)

0 P(µ2)

])
where
P∆(µ1, µ2) = P(µ1)−P(µ2)

µ1−µ2
if µ1 6= µ2

P∆(µ1, µ2) = P ′(µ1) otherwise.

Emre Mengi Prescribing the Eigenvalues of Matrix Functions



Examples

Prescribe two eigenvalues z1, z2 with multiplicities summing up
to 2 to a polynomial, i.e., P(λ) :=

∑m
j=0 λ

jAj (fj(λ) = λj ).

inf
µ∈{z1,z2}2

sup
γ
σ2n−1

 m∑
j=0

[
µ1 γ
0 µ2

]j

⊗ Aj

 =

inf
µ∈{z1,z2}2

sup
γ
σ2n−1

([
P(µ1) γP∆(µ1, µ2)

0 P(µ2)

])
where
P∆(µ1, µ2) = P(µ1)−P(µ2)

µ1−µ2
if µ1 6= µ2

P∆(µ1, µ2) = P ′(µ1) otherwise.

Emre Mengi Prescribing the Eigenvalues of Matrix Functions



Examples

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Solid brown, blue - Λε(P) = ∪‖∆‖2≤εΛ(P + ∆) for a 5× 5
quadratic polynomial P.
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Examples

Prescribe a multiple eigenvalue z to an analytic matrix function
A(λ) =

∑κ
j=1 fj(λ)Aj .

sup
γ
σ2n−1

 κ∑
j=1

fj

([
z γ
0 z

])
⊗ Aj

 =

sup
γ
σ2n−1

([
A(z) γA′(z)

0 A(z)

])
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Examples

Prescribe a multiple eigenvalue z to an analytic matrix function
A(λ) =

∑κ
j=1 fj(λ)Aj .

sup
γ
σ2n−1

 κ∑
j=1

fj

([
z γ
0 z

])
⊗ Aj

 =

sup
γ
σ2n−1

([
A(z) γA′(z)

0 A(z)

])
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Examples

−3.75 −3.7 −3.65 −3.6 −3.55 −3.5 −3.45 −3.4 −3.35 −3.3
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Solid brown, blue - Λε(A) = ∪‖∆‖2≤εΛ(A + ∆)

A(λ) = (eλ − 1)B1 + λ2B2 − B0

B0 = 100I8, B1 = [b(1)
jk := [9−max(j , k)]jk ], B2 = [b(2)

jk := 9δjk + 1
j+k ].
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Summary and Outlook

A computable formula for a nearest analytic matrix function
with prescribed number of eigenvalues in a prescribed
region.
Results hold under a multiplicity and a full rank
assumption. Future : Removal of these assumptions
Unstructured perturbations are taken into account.
Future : Structured perturbations
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