Matrix Functions with Specified Eigenvalues

Emre Mengi

Department of Mathematics Koç University İstanbul, Turkey

Numerical Linear Algebra and Applications 2013, Guwahati January 16th, 2013

Joint work with Michael Karow (TU-Berlin), Daniel Kressner (EPF-Lausanne), Ivica Nakic (Univ. of Zagreb) and Ninoslav Truhar (Univ. of Osijek)

Supported in part by Marie Curie IRG grant 268355 and TUBITAK grant 109T660

Problem

Given

• an analytic matrix function $A : \mathbb{C} \to \mathbb{C}^{n \times n}$,

$$A(\lambda) = \sum_{j=1}^{\kappa} f_j(\lambda) A_j$$

where $f_j:\mathbb{C}\to\mathbb{C}$ are analytic and $A_j\in\mathbb{C}^{n\times n}$,

- a prescribed set of scalars $\mathbb{S} \subseteq \mathbb{C}$, and
- a positive integer r.

Determine a $\Delta \in \mathbb{C}^{n \times n}$ as small as possible in 2-norm such that $A + \Delta$ has at least r of its eigenvalues belonging to \mathbb{S} .

Not to be confused with the following classical inverse eigenvalue problem (IEP).

Given

- a symmetric matrix function $A : \mathbb{R}^d \to \mathbb{R}^{n \times n}$ depending on its parameters smoothly,
- scalars $\lambda_1 \geq \cdots \geq \lambda_n$ determine the parameters $c \in \mathbb{R}^d$ such that $\lambda_j(A(c)) = \lambda_j$ for $j = 1, \dots, n$.

Non-smooth variants of the Newton's method have been suggested for the affine case

$$A(c) := A_0 + \sum_{j=1}^n c_j A_j.$$

works of Friedland, Nocedal and Overton (1987), and Sun and Sun (2003).

Not to be confused with the following classical inverse eigenvalue problem (IEP).

Given

- a symmetric matrix function $A : \mathbb{R}^d \to \mathbb{R}^{n \times n}$ depending on its parameters smoothly,
- scalars $\lambda_1 \ge \cdots \ge \lambda_n$ determine the parameters $c \in \mathbb{R}^d$ such that $\lambda_j(A(c)) = \lambda_j$ for $j = 1, \dots, n$.

Non-smooth variants of the Newton's method have been suggested for the affine case

$$A(c):=A_0+\sum_{j=1}^n c_jA_j.$$

works of Friedland, Nocedal and Overton (1987), and Sun and Sun (2003).

Example (Sturm-Liouville)

Given $\{\lambda_j\}_{j=1}^{\infty}$, determine p(x) such that

$$u''(x) + p(x)u(x) = \lambda_j u(x) \ x \in (0, \pi), \ u(0) = u(\pi) = 0$$

for each j.

Discrete version: Given $\{\lambda_j\}_{j=1}^n$, determine p_1, \ldots, p_n such that

$$(u_{k+1} - 2u_k + u_{k-1})/h^2 + p_k u_k = \lambda_j u_k, \ u_0 = u_{n+1} = 0.$$

for k = 1, ..., n and for each j, equivalently

$$\left(A(p) := \left(1/h^2 \cdot \operatorname{tri}(1, -2, 1) + \operatorname{diag}(p)\right)\right) u = \lambda_j u$$

for each *i*.

Example (Sturm-Liouville)

Given $\{\lambda_j\}_{j=1}^{\infty}$, determine p(x) such that

$$u''(x) + p(x)u(x) = \lambda_j u(x) \ x \in (0, \pi), \ u(0) = u(\pi) = 0$$

for each j.

Discrete version: Given $\{\lambda_j\}_{j=1}^n$, determine p_1, \ldots, p_n such that

$$(u_{k+1}-2u_k+u_{k-1})/h^2+p_ku_k=\lambda_ju_k,\ u_0=u_{n+1}=0.$$

for k = 1, ..., n and for each j, equivalently

$$\left(A(p) := \left(1/h^2 \cdot \operatorname{tri}(1, -2, 1) + \operatorname{diag}(p)\right)\right) u = \lambda_j u$$

for each i.

Prescribing one eigenvalue of a matrix

Let
$$A(\lambda) := A - \lambda I$$
 for given $A \in \mathbb{C}^{n \times n}$, and $z \in \mathbb{C}$. Then

$$\Delta = -\sigma_n u_n v_n^*$$
 with $\|\Delta\|_2 = \sigma_n$

is the smallest perturbation such that $z \in \Lambda(A + \Delta)$, where $\sigma_n := \sigma_n(A - zI)$ and u_n, v_n are the associated unit left and right singular vectors (Eckart-Young).

Prescribing one eigenvalue of a matrix

Let
$$A(\lambda) := A - \lambda I$$
 for given $A \in \mathbb{C}^{n \times n}$, and $z \in \mathbb{C}$. Then

$$\Delta = -\sigma_n u_n v_n^* \text{ with } \|\Delta\|_2 = \sigma_n$$

is the smallest perturbation such that $z \in \Lambda(A + \Delta)$, where $\sigma_n := \sigma_n(A - zI)$ and u_n, v_n are the associated unit left and right singular vectors (Eckart-Young).

Prescribing a multiple eigenvalue in connection with ill-conditioning of an eigenvalue; works of Ruhe (1969) and Wilkinson (1971, 1984)

Let $s = y^*x$ for a pair of unit left y and right x eigenvectors associated with an eigenvalue z of a matrix $A \in \mathbb{C}^{n \times n}$

Find a nearby $A + \Delta$ with z as a multiple eigenvalue.

Wilkinson:
$$\exists \Delta \in \mathbb{C}^{n \times n}$$
 s.t. $\|\Delta\|_2 \leq \frac{\|A\|_2 s}{1 - s^2}$

Prescribing a multiple eigenvalue in connection with ill-conditioning of an eigenvalue; works of Ruhe (1969) and Wilkinson (1971, 1984)

Let $s = y^*x$ for a pair of unit left y and right x eigenvectors associated with an eigenvalue z of a matrix $A \in \mathbb{C}^{n \times n}$

Find a nearby $A + \Delta$ with z as a multiple eigenvalue.

Wilkinson:
$$\exists \Delta \in \mathbb{C}^{n \times n}$$
 s.t. $\|\Delta\|_2 \leq \frac{\|A\|_2 s}{1 - s^2}$

Prescribing a multiple eigenvalue in connection with ill-conditioning of an eigenvalue; works of Ruhe (1969) and Wilkinson (1971, 1984)

Let $s = y^*x$ for a pair of unit left y and right x eigenvectors associated with an eigenvalue z of a matrix $A \in \mathbb{C}^{n \times n}$

Find a nearby $A + \Delta$ with z as a multiple eigenvalue.

Wilkinson:
$$\exists \Delta \in \mathbb{C}^{n \times n}$$
 s.t. $\|\Delta\|_2 \leq \frac{\|A\|_2 s}{1 - s^2}$

Consider unitary H such that $Hx = e_1$, and $B = HAH^*$ with the eigenvectors $Hx = e_1$ and w = Hy.

$$B = \left[\begin{array}{cc} z & b \\ 0 & B_1 \end{array} \right]$$

Since, $w^*e_1 = y^*x = s$, we have $w^* = [s \ w_1^*]$ satisfying

$$\begin{bmatrix} s & w_1^* \end{bmatrix} \begin{bmatrix} z & b^* \\ 0 & B_1 \end{bmatrix} = z \begin{bmatrix} s & w_1^* \end{bmatrix}$$

$$\Longrightarrow$$

$$sb^* + w_1^* B_1 = zw_1^*$$

$$\Longrightarrow$$

$$\Leftrightarrow^*(B_1 + sw_1b^*/w_1^*w_1) = zw_1^*$$

Consider unitary H such that $Hx = e_1$, and $B = HAH^*$ with the eigenvectors $Hx = e_1$ and w = Hy.

$$B = \left[\begin{array}{cc} z & b \\ 0 & B_1 \end{array} \right]$$

Since, $w^*e_1 = y^*x = s$, we have $w^* = [s \ w_1^*]$ satisfying

$$\begin{bmatrix} s & w_1^* \end{bmatrix} \begin{bmatrix} z & b^* \\ 0 & B_1 \end{bmatrix} = z \begin{bmatrix} s & w_1^* \end{bmatrix}$$

$$\Longrightarrow$$

$$sb^* + w_1^* B_1 = zw_1^*$$

$$\Longrightarrow$$

$$\Leftrightarrow^* (B_1 + sw_1 b^* / w_1^* w_1) = zw_1^*$$

Consider unitary H such that $Hx = e_1$, and $B = HAH^*$ with the eigenvectors $Hx = e_1$ and w = Hy.

$$B = \left[\begin{array}{cc} z & b \\ 0 & B_1 \end{array} \right]$$

Since, $w^*e_1 = y^*x = s$, we have $w^* = [s \ w_1^*]$ satisfying

$$\begin{bmatrix} s & w_1^* \end{bmatrix} \begin{bmatrix} z & b^* \\ 0 & B_1 \end{bmatrix} = z \begin{bmatrix} s & w_1^* \end{bmatrix}$$

$$\Longrightarrow$$

$$sb^* + w_1^* B_1 = zw_1^*$$

$$\Longrightarrow$$

$$^*(B_1 + sw_1b^*/w_1^*w_1) = zw_1^*$$

Consider unitary H such that $Hx = e_1$, and $B = HAH^*$ with the eigenvectors $Hx = e_1$ and w = Hy.

$$B = \left[\begin{array}{cc} z & b \\ 0 & B_1 \end{array} \right]$$

Since, $w^*e_1 = y^*x = s$, we have $w^* = [s \ w_1^*]$ satisfying

$$\begin{bmatrix} s & w_1^* \end{bmatrix} \begin{bmatrix} z & b^* \\ 0 & B_1 \end{bmatrix} = z \begin{bmatrix} s & w_1^* \end{bmatrix}$$

$$\Longrightarrow$$

$$sb^* + w_1^* B_1 = zw_1^*$$

$$\Longrightarrow$$

$$w_1^* (B_1 + sw_1b^*/w_1^*w_1) = zw_1^*$$

Consider unitary H such that $Hx = e_1$, and $B = HAH^*$ with the eigenvectors $Hx = e_1$ and w = Hy.

$$B = \left[\begin{array}{cc} z & b \\ 0 & B_1 \end{array} \right]$$

Since, $w^*e_1 = y^*x = s$, we have $w^* = [s \ w_1^*]$ satisfying

$$\begin{bmatrix} s & w_1^* \end{bmatrix} \begin{bmatrix} z & b^* \\ 0 & B_1 \end{bmatrix} = z \begin{bmatrix} s & w_1^* \end{bmatrix}$$

$$\Longrightarrow$$

$$sb^* + w_1^* B_1 = zw_1^*$$

$$\Longrightarrow$$

$$w_1^* (B_1 + sw_1b^* / w_1^* w_1) = zw_1^*$$

Prescribing a multiple eigenvalue of a matrix; work of Malyshev (1999)

Let $A(\lambda) := A - \lambda I$ for given $A \in \mathbb{C}^{n \times n}$, and $z \in \mathbb{C}$. Then

$$\Delta = -\sigma_{2n-1} U_{2n-1} V_{2n-1}^+ \text{ with } \|\Delta\|_2 = \sigma_{2n-1}$$

is the smallest perturbation such that $z\in \Lambda(A+\Delta)$ with algebraic multiplicity 2 or greater, where

$$\sigma_{2n-1} := \sup_{\gamma \ge 0} \sigma_{2n-1} \left(\left[\begin{array}{cc} A - zI & \gamma I \\ 0 & A - zI \end{array} \right] \right)$$

and U_{2n-1} , $V_{2n-1} \in \mathbb{C}^{n \times 2}$ such that $\text{vec}(U_{2n-1})$ and $\text{vec}(V_{2n-1})$ are unit left and right singular vectors associated with σ_{2n-1} .

Prescribing a multiple eigenvalue of a matrix; work of Malyshev (1999)

Let $A(\lambda) := A - \lambda I$ for given $A \in \mathbb{C}^{n \times n}$, and $z \in \mathbb{C}$. Then

$$\Delta = -\sigma_{2n-1} U_{2n-1} V_{2n-1}^+ \text{ with } \|\Delta\|_2 = \sigma_{2n-1}$$

is the smallest perturbation such that $z \in \Lambda(A + \Delta)$ with algebraic multiplicity 2 or greater, where

$$\sigma_{2n-1} := \sup_{\gamma \geq 0} \ \sigma_{2n-1} \left(\left[\begin{array}{cc} A - zI & \gamma I \\ 0 & A - zI \end{array} \right] \right)$$

and U_{2n-1} , $V_{2n-1} \in \mathbb{C}^{n \times 2}$ such that $\text{vec}(U_{2n-1})$ and $\text{vec}(V_{2n-1})$ are unit left and right singular vectors associated with σ_{2n-1} .

Prescribing two eigenvalues of a matrix; works of Garcia (2005) and Lippert (2005)

Let $A(\lambda) := A - \lambda I$ for given $A \in \mathbb{C}^{n \times n}$, and $z_1, z_2 \in \mathbb{C}$. Then

$$\Delta = -\sigma_{2n-1} U_{2n-1} V_{2n-1}^+ \text{ with } \|\Delta\|_2 = \sigma_{2n-1}$$

is the smallest perturbation such that $z_1, z_2 \in \Lambda(A + \Delta)$ provided that the supremum

$$\sigma_{2n-1} := \sup_{\gamma \geq 0} \ \sigma_{2n-1} \left(\left[\begin{array}{cc} A - z_1 I & \gamma I \\ 0 & A - z_2 I \end{array} \right] \right)$$

is attained at a $\gamma \neq 0$

Prescribing two eigenvalues of a matrix; works of Garcia (2005) and Lippert (2005)

Let $A(\lambda):=A-\lambda I$ for given $A\in\mathbb{C}^{n\times n}$, and $z_1,z_2\in\mathbb{C}.$ Then

$$\Delta = -\sigma_{2n-1} U_{2n-1} V_{2n-1}^+ \text{ with } \|\Delta\|_2 = \sigma_{2n-1}$$

is the smallest perturbation such that $z_1, z_2 \in \Lambda(A + \Delta)$ provided that the supremum

$$\sigma_{2n-1} := \sup_{\gamma \geq 0} \ \sigma_{2n-1} \left(\left[\begin{array}{cc} A - z_1 I & \gamma I \\ 0 & A - z_2 I \end{array} \right] \right)$$

is attained at a $\gamma \neq 0$.

- Prescribing an eigenvalue of algebraic multiplicity three, Ikramov and Nazari (2004).
- Nearest matrices with a prescribed Jordan canonical form, Lippert (2010).

$$\|\Delta\|_2 \ge \sigma_{nr-r+1} \left(I_r \otimes A - B^T \otimes I_n \right)$$

for any $B \in \mathbb{C}^{r \times r}$ whose Jordan form is contained in the prescribed Jordan form.

• Extensions to matrix polynomials, Psarrakos (2012)

- Prescribing an eigenvalue of algebraic multiplicity three, Ikramov and Nazari (2004).
- Nearest matrices with a prescribed Jordan canonical form, Lippert (2010).

$$\|\Delta\|_2 \ge \sigma_{nr-r+1} \left(I_r \otimes A - B^T \otimes I_n \right)$$

for any $B \in \mathbb{C}^{r \times r}$ whose Jordan form is contained in the prescribed Jordan form.

• Extensions to matrix polynomials, Psarrakos (2012)

- Prescribing an eigenvalue of algebraic multiplicity three, Ikramov and Nazari (2004).
- Nearest matrices with a prescribed Jordan canonical form, Lippert (2010).

$$\|\Delta\|_2 \ge \sigma_{nr-r+1} \left(I_r \otimes A - B^T \otimes I_n \right)$$

for any $B \in \mathbb{C}^{r \times r}$ whose Jordan form is contained in the prescribed Jordan form.

Extensions to matrix polynomials, Psarrakos (2012)

Key to Malyshev's derivation is a rank characterization.

Identity:
$$\operatorname{vec}(FXG) = (G^T \otimes F) \operatorname{vec}(X)$$

Key to Malyshev's derivation is a rank characterization.

$$z \text{ is a multiple eigenvalue of } A \\ \iff \\ \operatorname{rank}(A-zI)^2 \leq n-2 \\ \Leftrightarrow \\ \operatorname{rank}\left(\left[\begin{array}{cc} A-zI & \gamma I \\ 0 & A-zI \end{array}\right]\right) \leq 2n-2 \ \forall \gamma \neq 0 \\ \iff \\ \operatorname{rank}\left(I_2 \otimes A - \left[\begin{array}{cc} z & -\gamma \\ 0 & z \end{array}\right] \otimes I_n\right) \leq 2n-2 \ \forall \gamma \neq 0 \\ \iff \\ \operatorname{see } identity) \\ \dim \left\{V \in \mathbb{C}^{n \times 2} \ | \ AV - V \left[\begin{array}{cc} z & 0 \\ -\gamma & z \end{array}\right] = 0\right\} \geq 2 \ \forall \gamma \neq 0$$

Key to Malyshev's derivation is a rank characterization.

$$z$$
 is a multiple eigenvalue of A
 \Leftrightarrow
 $\operatorname{rank}(A-zI)^2 \leq n-2$
 \Leftrightarrow
 $\operatorname{rank}\left(\begin{bmatrix} A-zI & \gamma I \\ 0 & A-zI \end{bmatrix}\right) \leq 2n-2 \ \ \forall \gamma \neq 0$
 \Leftrightarrow
 $\operatorname{rank}\left(I_2 \otimes A - \begin{bmatrix} z & -\gamma \\ 0 & z \end{bmatrix} \otimes I_n\right) \leq 2n-2 \ \ \forall \gamma \neq 0$
 \Leftrightarrow (see identity)
 $\operatorname{dim}\left\{V \in \mathbb{C}^{n \times 2} \mid AV - V \begin{bmatrix} z & 0 \\ -\gamma & z \end{bmatrix} = 0\right\} \geq 2 \ \ \forall \gamma \neq 0$

Identity:
$$\operatorname{vec}(FXG) = (G^T \otimes F) \operatorname{vec}(X)$$

Key to Malyshev's derivation is a rank characterization.

z is a multiple eigenvalue of A

Identity:
$$\operatorname{vec}(FXG) = (G^T \otimes F) \operatorname{vec}(X)$$

Theorem (Pencils)

Let $A(\lambda) = A - \lambda B$ with $A, B \in \mathbb{C}^{n \times n}$ be a pencil, which does not have any right singular block in its Kronecker canonical form, $z_1, \ldots, z_p \in \mathbb{C}$, and $r \in \mathbb{Z}^+$. The following are equivalent:

- The multiplicities of z_1, \ldots, z_p sum up to r or greater.
- There exist $\mu_1, \ldots, \mu_r \in \{z_1, \ldots, z_p\}$ such that

$$\dim \left\{ X \mid AX - BX \underbrace{\begin{bmatrix} \mu_1 & 0 \\ \gamma_{21} & \mu_2 & 0 \\ & \ddots & \\ \gamma_{r1} & \mu_r \end{bmatrix}}_{:=C(\mu,\gamma)} = 0 \right\} \ge r$$

Theorem (Pencils)

Let $A(\lambda) = A - \lambda B$ with $A, B \in \mathbb{C}^{n \times n}$ be a pencil, which does not have any right singular block in its Kronecker canonical form, $z_1, \ldots, z_p \in \mathbb{C}$, and $r \in \mathbb{Z}^+$. The following are equivalent:

- The multiplicities of z_1, \ldots, z_p sum up to r or greater.
- There exist $\mu_1, \ldots, \mu_r \in \{z_1, \ldots, z_p\}$ such that

$$\dim \left\{ X \mid AX - BX \underbrace{ \begin{bmatrix} \mu_1 & 0 \\ \gamma_{21} & \mu_2 & 0 \\ & \ddots & \\ \gamma_{r1} & \mu_r \end{bmatrix}}_{:=C(\mu,\gamma)} = 0 \right\} \geq r$$

Theorem (Pencils)

Let $A(\lambda) = A - \lambda B$ with $A, B \in \mathbb{C}^{n \times n}$ be a pencil, which does not have any right singular block in its Kronecker canonical form, $z_1, \ldots, z_p \in \mathbb{C}$, and $r \in \mathbb{Z}^+$. The following are equivalent:

- The multiplicities of z_1, \ldots, z_p sum up to r or greater.
- There exist $\mu_1, \ldots, \mu_r \in \{z_1, \ldots, z_p\}$ such that

$$\dim \left\{ X \mid AX - BX \underbrace{\begin{bmatrix} \mu_1 & 0 \\ \gamma_{21} & \mu_2 & 0 \\ & \ddots & \\ \gamma_{r1} & \mu_r \end{bmatrix}}_{:=C(\mu,\gamma)} = 0 \right\} \ge r$$

Theorem (Pencils)

Let $A(\lambda) = A - \lambda B$ with $A, B \in \mathbb{C}^{n \times n}$ be a pencil, which does not have any right singular block in its Kronecker canonical form, $z_1, \ldots, z_p \in \mathbb{C}$, and $r \in \mathbb{Z}^+$. The following are equivalent:

- The multiplicities of z_1, \ldots, z_p sum up to r or greater.
- There exist $\mu_1, \dots, \mu_r \in \{z_1, \dots, z_p\}$ such that

$$\dim \left\{ X \mid AX - BX \underbrace{ \begin{bmatrix} \mu_1 & 0 \\ \gamma_{21} & \mu_2 & 0 \\ & \ddots & \\ \gamma_{r1} & \mu_r \end{bmatrix}}_{:=C(\mu,\gamma)} = 0 \right\} \geq r$$

Extension to matrix polynomials is via *linearizations*.

$$\mathcal{A}(\lambda) = \mathcal{A} - \lambda \mathcal{B} := \begin{bmatrix} 0 & l & 0 \\ & \ddots & 0 \\ & & l \\ A_0 & A_{m-1} \end{bmatrix} - \lambda \begin{bmatrix} l & 0 \\ & \ddots & \\ & & l \\ 0 & & -A_m \end{bmatrix}.$$

$$A \begin{bmatrix} X_0^T \dots X_{m-1}^T \end{bmatrix}^T - B \begin{bmatrix} X_0^T \dots X_{m-1}^T \end{bmatrix}^T C(\mu, \gamma) = 0$$

$$\iff X_j = X_{j-1}C(\mu, \gamma) \quad \text{and} \quad \sum_{j=0}^{m-1} A_j X_j + A_m X_{m-1}C(\mu, \gamma) = 0$$

$$\iff X_j = X_0 C(\mu, \gamma)^j \quad \text{and} \quad \sum_{j=0}^m A_j X_0 C(\mu, \gamma)^j = 0$$

Extension to matrix polynomials is via *linearizations*.

$$\mathcal{A}(\lambda) = \mathcal{A} - \lambda \mathcal{B} := \begin{bmatrix} 0 & I & 0 \\ & \ddots & 0 \\ & & I \\ A_0 & & A_{m-1} \end{bmatrix} - \lambda \begin{bmatrix} I & & 0 \\ & \ddots & \\ & & I \\ 0 & & -A_m \end{bmatrix}.$$

$$\mathcal{A}\left[X_0^T \dots X_{m-1}^T\right]^T - \mathcal{B}\left[X_0^T \dots X_{m-1}^T\right]^T C(\mu, \gamma) = 0$$

$$\iff X_j = X_{j-1}C(\mu, \gamma) \quad \text{and} \quad \sum_{j=0}^{m-1} A_j X_j + A_m X_{m-1}C(\mu, \gamma) = 0$$

$$\iff X_j = X_0 C(\mu, \gamma)^j \quad \text{and} \quad \sum_{j=0}^m A_j X_0 C(\mu, \gamma)^j = 0$$

Extension to matrix polynomials is via *linearizations*.

$$\mathcal{A}(\lambda) = \mathcal{A} - \lambda \mathcal{B} := \begin{bmatrix} 0 & I & 0 \\ & \ddots & 0 \\ & & I \\ A_0 & & A_{m-1} \end{bmatrix} - \lambda \begin{bmatrix} I & & 0 \\ & \ddots & \\ & & I \\ 0 & & -A_m \end{bmatrix}.$$

$$\mathcal{A}\left[X_0^T \dots X_{m-1}^T\right]^T - \mathcal{B}\left[X_0^T \dots X_{m-1}^T\right]^T C(\mu, \gamma) = 0$$

$$\iff X_j = X_{j-1}C(\mu, \gamma) \quad \text{and} \quad \sum_{j=0}^{m-1} A_j X_j + A_m X_{m-1}C(\mu, \gamma) = 0$$

$$\iff X_j = X_0 C(\mu, \gamma)^j \quad \text{and} \quad \sum_{j=0}^m A_j X_0 C(\mu, \gamma)^j = 0$$

Extension to matrix polynomials is via *linearizations*.

$$\mathcal{A}(\lambda) = \mathcal{A} - \lambda \mathcal{B} := \begin{bmatrix} 0 & I & & 0 \\ & & \ddots & 0 \\ & & & I \\ A_0 & & A_{m-1} \end{bmatrix} - \lambda \begin{bmatrix} I & & 0 \\ & \ddots & \\ & & I \\ 0 & & -A_m \end{bmatrix}.$$

$$\mathcal{A}\left[X_0^T \dots X_{m-1}^T\right]^T - \mathcal{B}\left[X_0^T \dots X_{m-1}^T\right]^T C(\mu, \gamma) = 0$$

$$\iff X_j = X_{j-1}C(\mu, \gamma) \text{ and } \sum_{j=0}^{m-1} A_j X_j + A_m X_{m-1}C(\mu, \gamma) = 0$$

$$\iff X_j = X_0 C(\mu, \gamma)^j \text{ and } \sum_{j=0}^m A_j X_0 C(\mu, \gamma)^j = 0$$

Extension to matrix polynomials is via *linearizations*.

$$\mathcal{A}(\lambda) = \mathcal{A} - \lambda \mathcal{B} := \begin{bmatrix} 0 & I & & 0 \\ & & \ddots & 0 \\ & & & I \\ A_0 & & A_{m-1} \end{bmatrix} - \lambda \begin{bmatrix} I & & 0 \\ & \ddots & \\ & & I \\ 0 & & -A_m \end{bmatrix}.$$

$$\mathcal{A}\left[X_0^T \dots X_{m-1}^T\right]^T - \mathcal{B}\left[X_0^T \dots X_{m-1}^T\right]^T C(\mu, \gamma) = 0$$

$$\iff X_j = X_{j-1}C(\mu, \gamma) \quad \text{and} \quad \sum_{j=0}^{m-1} A_j X_j + A_m X_{m-1}C(\mu, \gamma) = 0$$

$$\iff X_j = X_0 C(\mu, \gamma)^j \quad \text{and} \quad \sum_{j=0}^m A_j X_0 C(\mu, \gamma)^j = 0$$

Consequently,

$$\dim \left\{ X := \left[X_0^T \dots X_{m-1}^T \right]^T \mid \mathcal{A}X - \mathcal{B}XC(\mu, \gamma) = 0 \right\}$$

$$= \dim \left\{ X_0 \mid \sum_{j=0}^m A_j X_0 C(\mu, \gamma)^j = 0 \right\}$$

Theorem (Polynomials)

Let $A(\lambda) = \sum_{j=0}^{m} \lambda^{j} A_{j}$ with $A_{j} \in \mathbb{C}^{n \times n}$ be a matrix polynomial, where $\operatorname{rank}(A_{m}) = n, z_{1}, \ldots, z_{p} \in \mathbb{C}$, and $r \in \mathbb{Z}^{+}$. The following are equivalent:

- The multiplicities of z_1, \ldots, z_p sum up to r or greater.
- There exist $\mu_1, \ldots, \mu_r \in \{z_1, \ldots, z_p\}$ such that $\dim \left\{ X \mid \sum_{j=0}^m A_j X C(\mu, \gamma)^j = 0 \right\} \ge r$ for all $\gamma \in \mathcal{G}(\mu)$.

Consequently,

$$\dim \left\{ X := \left[X_0^T \dots X_{m-1}^T \right]^T \mid \mathcal{A}X - \mathcal{B}XC(\mu, \gamma) = 0 \right\}$$

$$= \dim \left\{ X_0 \mid \sum_{j=0}^m A_j X_0 C(\mu, \gamma)^j = 0 \right\}$$

Theorem (Polynomials)

Let $A(\lambda) = \sum_{j=0}^{m} \lambda^{j} A_{j}$ with $A_{j} \in \mathbb{C}^{n \times n}$ be a matrix polynomial, where $\operatorname{rank}(A_{m}) = n, z_{1}, \dots, z_{p} \in \mathbb{C}$, and $r \in \mathbb{Z}^{+}$. The following are equivalent:

- The multiplicities of z_1, \ldots, z_p sum up to r or greater.
- There exist $\mu_1, \ldots, \mu_r \in \{z_1, \ldots, z_p\}$ such that $\dim \left\{X \mid \sum_{j=0}^m A_j XC(\mu, \gamma)^j = 0\right\} \ge r$ for all $\gamma \in G(\mu)$.

Consequently,

$$\dim \left\{ \begin{matrix} X := \left[X_0^T \dots X_{m-1}^T \right]^T \mid \mathcal{A}X - \mathcal{B}XC(\mu, \gamma) = 0 \right\} \\ = \\ \dim \left\{ X_0 \mid \sum_{j=0}^m A_j X_0 C(\mu, \gamma)^j = 0 \right\} \end{matrix}$$

Theorem (Polynomials)

Let $A(\lambda) = \sum_{j=0}^m \lambda^j A_j$ with $A_j \in \mathbb{C}^{n \times n}$ be a matrix polynomial, where $\operatorname{rank}(A_m) = n, z_1, \dots, z_p \in \mathbb{C}$, and $r \in \mathbb{Z}^+$. The following are equivalent:

- The multiplicities of z_1, \ldots, z_p sum up to r or greater.
- There exist $\mu_1, \ldots, \mu_r \in \{z_1, \ldots, z_p\}$ such that $\dim \left\{X \mid \sum_{j=0}^m A_j X C(\mu, \gamma)^j = 0\right\} \ge r$ for all $\gamma \in \mathcal{G}(\mu)$.

Consequently,

$$\dim \left\{ \begin{matrix} X := \begin{bmatrix} X_0^T \dots X_{m-1}^T \end{bmatrix}^T \mid \mathcal{A}X - \mathcal{B}XC(\mu, \gamma) = 0 \right\} \\ = \\ \dim \left\{ X_0 \mid \sum_{j=0}^m A_j X_0 C(\mu, \gamma)^j = 0 \right\} \end{matrix}$$

Theorem (Polynomials)

Let $A(\lambda) = \sum_{j=0}^{m} \lambda^{j} A_{j}$ with $A_{j} \in \mathbb{C}^{n \times n}$ be a matrix polynomial, where $\operatorname{rank}(A_{m}) = n, z_{1}, \dots, z_{p} \in \mathbb{C}$, and $r \in \mathbb{Z}^{+}$. The following are equivalent:

- The multiplicities of z_1, \ldots, z_p sum up to r or greater.
- There exist $\mu_1, \ldots, \mu_r \in \{z_1, \ldots, z_p\}$ such that $\dim \left\{ X \mid \sum_{j=0}^m A_j X C(\mu, \gamma)^j = 0 \right\} \ge r$ for all $\gamma \in \mathcal{G}(\mu)$.

Consequently,

$$\dim \left\{ \begin{matrix} X := \left[X_0^T \dots X_{m-1}^T \right]^T \mid \mathcal{A}X - \mathcal{B}XC(\mu, \gamma) = 0 \right\} \\ = \\ \dim \left\{ X_0 \mid \sum_{j=0}^m A_j X_0 C(\mu, \gamma)^j = 0 \right\} \end{matrix}$$

Theorem (Polynomials)

Let $A(\lambda) = \sum_{j=0}^m \lambda^j A_j$ with $A_j \in \mathbb{C}^{n \times n}$ be a matrix polynomial, where $\operatorname{rank}(A_m) = n, z_1, \dots, z_p \in \mathbb{C}$, and $r \in \mathbb{Z}^+$. The following are equivalent:

- The multiplicities of z_1, \ldots, z_p sum up to r or greater.
- There exist $\mu_1, \dots, \mu_r \in \{z_1, \dots, z_p\}$ such that $\dim \left\{X \mid \sum_{j=0}^m A_j XC(\mu, \gamma)^j = 0\right\} \geq r$

for all $\gamma \in \mathcal{G}(\mu)$.

Extension to analytic matrix functions is via interpolation.

Consider the analytic matrix function $A(\lambda) = \sum_{j=1}^{\kappa} f_j(\lambda) A_j$ and polynomials

$$p_j(\lambda) = \sum_{i=0}^{rp-1} c_{ji} \lambda^i$$
 such that $f_j^{(\ell)}(z_k) = p_j^{(\ell)}(z_k)$

for k = 1, ..., p, $\ell = 0, ..., r - 1$ and $j = 1, ..., \kappa$.

Propositions

•
$$f_j(C(\mu, \gamma)) = p_j(C(\mu, \gamma))$$
 for $j = 1, ..., \kappa$ and $\forall \gamma \in \mathcal{G}(\mu)$

Extension to analytic matrix functions is via interpolation.

Consider the analytic matrix function $A(\lambda) = \sum_{j=1}^{\kappa} f_j(\lambda) A_j$ and polynomials

$$p_j(\lambda) = \sum_{i=0}^{rp-1} c_{ji} \lambda^i$$
 such that $f_j^{(\ell)}(z_k) = p_j^{(\ell)}(z_k)$

for k = 1, ..., p, $\ell = 0, ..., r - 1$ and $j = 1, ..., \kappa$.

Propositions

①
$$f_j(C(\mu, \gamma)) = p_j(C(\mu, \gamma))$$
 for $j = 1, ..., \kappa$ and $\forall \gamma \in \mathcal{G}(\mu)$

$$\sum_{j=1}^{\kappa} A_j X \ f_j(C(\mu, \gamma)) = \sum_{j=1}^{\kappa} A_j X \ p_j(C(\mu, \gamma))$$

$$= \sum_{j=0}^{rp-1} \tilde{A}_j X C(\mu, \gamma)^j$$
where $\tilde{A}_i := \sum_{j=1}^{\kappa} c_{jj} A_j$ for $j = 1, \dots, \kappa$ and $\forall \gamma \in \mathcal{G}(\mu)$

Extension to analytic matrix functions is via interpolation.

Consider the analytic matrix function $A(\lambda) = \sum_{j=1}^{\kappa} f_j(\lambda) A_j$ and polynomials

$$p_j(\lambda) = \sum_{i=0}^{rp-1} c_{ji} \lambda^i$$
 such that $f_j^{(\ell)}(z_k) = p_j^{(\ell)}(z_k)$

for $k = 1, \ldots, p$, $\ell = 0, \ldots, r-1$ and $j = 1, \ldots, \kappa$.

Propositions

• $f_j(C(\mu, \gamma)) = p_j(C(\mu, \gamma))$ for $j = 1, ..., \kappa$ and $\forall \gamma \in \mathcal{G}(\mu)$

$$\sum_{j=1}^{\kappa} A_j X f_j(C(\mu, \gamma)) = \sum_{j=1}^{\kappa} A_j X p_j(C(\mu, \gamma))$$

$$= \sum_{j=0}^{rp-1} \tilde{A}_j X C(\mu, \gamma)^j$$
where $\tilde{A}_i := \sum_{j=1}^{\kappa} c_{ji} A_j$ for $j = 1, \dots, \kappa$ and $\forall \gamma \in \mathcal{G}(\mu, \gamma)$

Extension to analytic matrix functions is via interpolation.

Consider the analytic matrix function $A(\lambda) = \sum_{j=1}^{\kappa} f_j(\lambda) A_j$ and polynomials

$$p_j(\lambda) = \sum_{i=0}^{rp-1} c_{ji} \lambda^i$$
 such that $f_j^{(\ell)}(z_k) = p_j^{(\ell)}(z_k)$

for $k = 1, \ldots, p$, $\ell = 0, \ldots, r-1$ and $j = 1, \ldots, \kappa$.

Propositions

•
$$f_j(C(\mu, \gamma)) = p_j(C(\mu, \gamma))$$
 for $j = 1, ..., \kappa$ and $\forall \gamma \in \mathcal{G}(\mu)$

multiplicities of
$$z_1, \ldots, z_p$$
 as eigenvalues of $A(\lambda)$ sum up to r or greater

multiplicities of z_1, \ldots, z_p as eigenvalues of $P(\lambda) := \sum_{i=0}^{rp-1} \lambda^i \tilde{A}_i$ sum up to r or greater

$$\exists \mu \text{ s.t. } \forall \gamma \in \mathcal{G}(\mu) \quad \dim \left\{ X \mid \sum_{i=0}^{rp-1} \tilde{A}_i X C(\mu, \gamma)^i = 0 \right\} \geq r$$

$$\iff \exists \mu \text{ s.t. } \forall \gamma \in \mathcal{G}(\mu) \quad \dim \left\{ X \mid \sum_{j=1}^{\kappa} A_j X f_j(C(\mu, \gamma)) = 0 \right\} \geq r$$

multiplicities of
$$z_1,\ldots,z_p$$
 as eigenvalues of $A(\lambda)$ sum up to r or greater \iff multiplicities of z_1,\ldots,z_p as eigenvalues of $P(\lambda):=\sum_{i=0}^{rp-1}\lambda^i\tilde{A}_i$ sum up to r or greater \iff $\exists \mu \text{ s.t. } \forall \gamma \in \mathcal{G}(\mu) \quad \dim \left\{ X \mid \sum_{i=0}^{rp-1}\tilde{A}_i XC(\mu,\gamma)^i = 0 \right\} \geq r$

 $\exists \mu \text{ s.t. } \forall \gamma \in \mathcal{G}(\mu) \quad \dim \left\{ X \mid \sum_{j=1}^{\kappa} A_j X \ f_j(C(\mu, \gamma)) = 0 \right\} \geq r$

multiplicities of
$$z_1,\ldots,z_p$$
 as eigenvalues of $A(\lambda)$ sum up to r or greater \iff multiplicities of z_1,\ldots,z_p as eigenvalues of $P(\lambda):=\sum_{i=0}^{rp-1}\lambda^i\tilde{A}_i$ sum up to r or greater \iff $\exists \mu \text{ s.t. } \forall \gamma \in \mathcal{G}(\mu) \quad \dim\left\{X \mid \sum_{i=0}^{rp-1}\tilde{A}_iXC(\mu,\gamma)^i=0\right\} \geq r$ \iff $\exists \mu \text{ s.t. } \forall \gamma \in \mathcal{G}(\mu) \quad \dim\left\{X \mid \sum_{j=1}^{\kappa}A_jX \ f_j(C(\mu,\gamma))=0\right\} \geq r$

Theorem (Analytic Functions)

- The multiplicities of z_1, \ldots, z_p sum up to r or greater.
- There exist $\mu_1, \ldots, \mu_r \in \{z_1, \ldots, z_p\}$ such that $\dim \left\{ X \mid \sum_{j=1}^{\kappa} A_j X \ f_j(C(\mu, \gamma)) = 0 \right\} \ge r$ for all $\gamma \in \mathcal{G}(\mu)$.
- There exist $\mu_1, \ldots, \mu_r \in \{z_1, \ldots, z_p\}$ such that $\operatorname{rank}\left(\sum_{j=1}^{\kappa} f_j(C(\mu, \gamma))^T \otimes A_j\right) \leq nr r$ for all $\gamma \in \mathcal{G}(\mu)$.

Theorem (Analytic Functions)

- The multiplicities of z_1, \ldots, z_p sum up to r or greater.
- There exist $\mu_1, \ldots, \mu_r \in \{z_1, \ldots, z_p\}$ such that $\dim \left\{ X \mid \sum_{j=1}^{\kappa} A_j X \ f_j(C(\mu, \gamma)) = 0 \right\} \geq r$ for all $\gamma \in \mathcal{G}(\mu)$.
- There exist $\mu_1, \ldots, \mu_r \in \{z_1, \ldots, z_p\}$ such that $\operatorname{rank}\left(\sum_{j=1}^{\kappa} f_j(C(\mu, \gamma))^T \otimes A_j\right) \leq nr r$ for all $\gamma \in \mathcal{G}(\mu)$.

Theorem (Analytic Functions)

- The multiplicities of z_1, \ldots, z_p sum up to r or greater.
- There exist $\mu_1, \ldots, \mu_r \in \{z_1, \ldots, z_p\}$ such that $\dim \left\{ X \mid \sum_{j=1}^{\kappa} A_j X \ f_j(C(\mu, \gamma)) = 0 \right\} \geq r$ for all $\gamma \in \mathcal{G}(\mu)$.
- There exist $\mu_1, \ldots, \mu_r \in \{z_1, \ldots, z_p\}$ such that $\operatorname{rank}\left(\sum_{j=1}^{\kappa} f_j(C(\mu, \gamma))^T \otimes A_j\right) \leq nr r$ for all $\gamma \in \mathcal{G}(\mu)$.

Theorem (Analytic Functions)

- The multiplicities of z_1, \ldots, z_p sum up to r or greater.
- There exist $\mu_1, \ldots, \mu_r \in \{z_1, \ldots, z_p\}$ such that $\dim \left\{ X \mid \sum_{j=1}^{\kappa} A_j X f_j(C(\mu, \gamma)) = 0 \right\} \ge r$ for all $\gamma \in \mathcal{G}(\mu)$.
- There exist $\mu_1, \ldots, \mu_r \in \{z_1, \ldots, z_p\}$ such that $\operatorname{rank}\left(\sum_{j=1}^{\kappa} f_j(C(\mu, \gamma))^T \otimes A_j\right) \leq nr r$ for all $\gamma \in \mathcal{G}(\mu)$.

Theorem (Analytic Functions)

- The multiplicities of z_1, \ldots, z_p sum up to r or greater.
- There exist $\mu_1, \ldots, \mu_r \in \{z_1, \ldots, z_p\}$ such that $\dim \left\{ X \mid \sum_{j=1}^{\kappa} A_j X f_j(C(\mu, \gamma)) = 0 \right\} \ge r$ for all $\gamma \in \mathcal{G}(\mu)$.
- There exist $\mu_1, \ldots, \mu_r \in \{z_1, \ldots, z_p\}$ such that $\operatorname{rank}\left(\sum_{j=1}^{\kappa} f_j(C(\mu, \gamma))^T \otimes A_j\right) \leq nr r$ for all $\gamma \in \mathcal{G}(\mu)$.

Example on a polynomial $P(\lambda) := \sum_{j=0}^{m} \lambda^{j} A_{j}$

Prescribe z_1, z_2 with multiplicities summing up to 2 or greater

$$\operatorname{rank}\left(\sum_{j=0}^{m}\begin{bmatrix}z_{1} & \gamma \\ 0 & z_{2}\end{bmatrix}^{j} \otimes A_{j}\right) = \operatorname{rank}\left(\sum_{j=0}^{m}\begin{bmatrix}z_{1}^{j} & \gamma \cdot \frac{z_{1}^{j} - z_{2}^{j}}{z_{1} - z_{2}} \\ 0 & z_{2}^{j}\end{bmatrix} \otimes A_{j}\right)$$

$$= \operatorname{rank}\left(\begin{bmatrix}P(z_{1}) & \gamma \cdot \frac{P(z_{1}) - P(z_{2})}{z_{1} - z_{2}} \\ 0 & P(z_{2})\end{bmatrix}\right)$$

$$< 2n - 2$$

Example on a polynomial $P(\lambda) := \sum_{j=0}^{m} \lambda^{j} A_{j}$

Prescribe z_1, z_2 with multiplicities summing up to 2 or greater

$$\operatorname{rank}\left(\sum_{j=0}^{m}\begin{bmatrix} z_{1} & \gamma \\ 0 & z_{2} \end{bmatrix}^{j} \otimes A_{j}\right) = \operatorname{rank}\left(\sum_{j=0}^{m}\begin{bmatrix} z_{1}^{j} & \gamma \cdot \frac{z_{1}^{j} - z_{2}^{j}}{z_{1} - z_{2}} \\ 0 & z_{2}^{j} \end{bmatrix} \otimes A_{j}\right)$$

$$= \operatorname{rank}\left(\begin{bmatrix} P(z_{1}) & \gamma \cdot \frac{P(z_{1}) - P(z_{2})}{z_{1} - z_{2}} \\ 0 & P(z_{2}) \end{bmatrix}\right)$$

$$< 2n - 2$$

Thus consider

$$\beta(\mu) := \inf \left\{ \|\Delta\|_2 \mid \operatorname{rank} \left(\sum_{j=1}^{\kappa} f_j(C(\mu, \gamma))^T \otimes A_j + I \otimes \Delta \right) \leq nr - r \right\}$$

for a given μ and $\gamma \in \mathcal{G}(\mu)$.

Eckart-Young theorem yields

$$eta(\mu) \geq \sigma_{nr-r+1} \left(\sum_{j=1}^{\kappa} f_j(C(\mu, \gamma))^T \otimes A_j \right)$$

for all $\gamma \in \mathcal{G}(\mu)$, or

$$eta(\mu) \geq \kappa(\mu) := \sup_{\gamma} \sigma_{nr-r+1} \left(\sum_{j=1}^{\kappa} f_j(C(\mu, \gamma))^T \otimes A_j \right).$$

Thus consider

$$\beta(\mu) := \inf \left\{ \|\Delta\|_2 \mid \operatorname{rank} \left(\sum_{j=1}^{\kappa} f_j(C(\mu, \gamma))^T \otimes A_j + I \otimes \Delta \right) \leq nr - r \right\}$$

for a given μ and $\gamma \in \mathcal{G}(\mu)$.

Eckart-Young theorem yields

$$eta(\mu) \geq \sigma_{nr-r+1} \left(\sum_{j=1}^{\kappa} f_j (C(\mu, \gamma))^T \otimes A_j \right)$$

for all $\gamma \in \mathcal{G}(\mu)$, or

$$eta(\mu) \geq \kappa(\mu) := \sup_{\gamma} \sigma_{\mathit{nr}-r+1} \left(\sum_{j=1}^{\kappa} f_j(\mathit{C}(\mu,\gamma))^T \otimes \mathit{A}_j \right).$$

Thus consider

$$\beta(\mu) := \inf \left\{ \|\Delta\|_2 \mid \operatorname{rank} \left(\sum_{j=1}^{\kappa} f_j(C(\mu, \gamma))^T \otimes A_j + I \otimes \Delta \right) \leq nr - r \right\}$$

for a given μ and $\gamma \in \mathcal{G}(\mu)$.

Eckart-Young theorem yields

$$eta(\mu) \geq \sigma_{nr-r+1} \left(\sum_{j=1}^{\kappa} f_j (C(\mu, \gamma))^T \otimes A_j \right)$$

for all $\gamma \in \mathcal{G}(\mu)$, or

$$eta(\mu) \geq \kappa(\mu) := \sup_{\gamma} \sigma_{nr-r+1} \left(\sum_{j=1}^{\kappa} f_j(C(\mu, \gamma))^T \otimes A_j \right).$$

Consider the perturbation

$$\Delta = -\sigma_{nr-r+1} U_{nr-r+1} V_{nr-r+1}^+$$

where

- $\sigma_{nr-r+1} = \kappa(\mu)$ denotes the maximal value of the singular value assuming the supremum is attained at a γ_* , and
- U_{nr-r+1} , V_{nr-r+1} are such that $\text{vec}(U_{nr-r+1})$ and $\text{vec}(V_{nr-r+1})$ consist of a pair of associated left and right singular vectors of unit length.

The fact that γ_* is a local extrema, under the assumption σ_{nr-r+1} is simple, leads to:

Theorem (Optimality Condition)

$$U_{nr-r+1}^* U_{nr-r+1} = V_{nr-r+1}^* V_{nr-r+1}$$

Consequently,

$$\begin{split} \|\Delta\|_{2} &= \sigma_{nr-r+1} \|U_{nr-r+1} V_{nr-r+1}^{+}\|_{2} \\ &= \sigma_{nr-r+1} \max_{\|x\|_{2}=1} \sqrt{x^{*} (V_{nr-r+1}^{+})^{*} U_{nr-r+1}^{*} U_{nr-r+1} V_{nr-r+1}^{+} x} \\ &= \sigma_{nr-r+1} \max_{\|x\|_{2}=1} \sqrt{x^{*} (V_{nr-r+1}^{+})^{*} V_{nr-r+1}^{*} V_{nr-r+1}^{+} V_{nr-r+1}^{+} x} \\ &= \sigma_{nr-r+1} \|V_{nr-r+1} V_{nr-r+1}^{+} V_{nr-r+1}^{+} \| = \sigma_{nr-r+1} \end{split}$$

The fact that γ_* is a local extrema, under the assumption σ_{nr-r+1} is simple, leads to:

Theorem (Optimality Condition)

$$U_{nr-r+1}^* U_{nr-r+1} = V_{nr-r+1}^* V_{nr-r+1}$$

Consequently,

$$\begin{split} \|\Delta\|_2 &= \sigma_{nr-r+1} \|U_{nr-r+1} V_{nr-r+1}^+ \|_2 \\ &= \sigma_{nr-r+1} \max_{\|x\|_2 = 1} \sqrt{x^* (V_{nr-r+1}^+)^* U_{nr-r+1}^* U_{nr-r+1} V_{nr-r+1}^+ x} \\ &= \sigma_{nr-r+1} \max_{\|x\|_2 = 1} \sqrt{x^* (V_{nr-r+1}^+)^* V_{nr-r+1}^* V_{nr-r+1} V_{nr-r+1}^+ x} \\ &= \sigma_{nr-r+1} \|V_{nr-r+1} V_{nr-r+1}^+ \| = \sigma_{nr-r+1} \end{split}$$

Additionally, $A + \Delta$ has the prescribed eigenvalues in μ with multiplicities summing up to r or greater.

Assumption: rank(
$$V_{nr-r+1}$$
) = r

Additionally, ${\it A}+\Delta$ has the prescribed eigenvalues in μ with multiplicities summing up to ${\it r}$ or greater.

Assumption: rank(
$$V_{nr-r+1}$$
) = r

Additionally, ${\it A}+\Delta$ has the prescribed eigenvalues in μ with multiplicities summing up to ${\it r}$ or greater.

$$\left(\sum_{j=1}^{\kappa} f_{j}(C(\mu, \gamma_{*}))^{T} \otimes A_{j}\right) \operatorname{vec}\left(V_{nr-r+1}\right) = \sigma_{nr-r+1} \operatorname{vec}\left(U_{nr-r+1}\right).$$

$$\iff \sum_{j=1}^{\kappa} A_{j} V_{nr-r+1} f_{j}(C(\mu, \gamma_{*})) = \sigma_{nr-r+1} U_{nr-r+1}$$

$$\iff (\text{see assumption})$$

$$\sum_{j=1}^{\kappa} A_{j} V_{nr-r+1} f_{j}(C(\mu, \gamma_{*})) + \underbrace{-\sigma_{nr-r+1} U_{nr-r+1} V_{nr-r+1}^{+}}_{\Delta} V_{nr-r+1} = 0$$

Assumption: rank(
$$V_{nr-r+1}$$
) = r

Additionally, ${\it A}+\Delta$ has the prescribed eigenvalues in μ with multiplicities summing up to ${\it r}$ or greater.

$$\left(\sum_{j=1}^{\kappa} f_{j}(C(\mu, \gamma_{*}))^{T} \otimes A_{j}\right) \operatorname{vec}\left(V_{nr-r+1}\right) = \sigma_{nr-r+1} \operatorname{vec}\left(U_{nr-r+1}\right).$$

$$\iff \sum_{j=1}^{\kappa} A_{j} V_{nr-r+1} f_{j}(C(\mu, \gamma_{*})) = \sigma_{nr-r+1} U_{nr-r+1}$$

$$\iff (\text{see assumption})$$

$$\sum_{j=1}^{\kappa} A_{j} V_{nr-r+1} f_{j}(C(\mu, \gamma_{*})) + \underbrace{-\sigma_{nr-r+1} U_{nr-r+1} V_{nr-r+1}^{+}}_{\Delta} V_{nr-r+1} = 0$$

Assumption: rank(
$$V_{nr-r+1}$$
) = r

Furthermore, the subspace

$$\mathcal{D} := \left\{ \textit{D} \in \mathbb{C}^{\textit{r} \times \textit{r}} \mid \textit{C}(\mu, \gamma) \textit{D} - \textit{DC}(\mu, \gamma) = 0 \right\}$$

is at least r dimensional, due to $C(\mu, \gamma) \in \mathcal{G}(\mu)$.

For any $D \in \mathcal{D}$ commuting with $p_j(C(\mu, \gamma)) = f_j(C(\mu, \gamma))$

$$\sum_{j=1}^{\kappa} A_{j} V_{nr-r+1} f_{j}(C(\mu, \gamma_{*})) D + \Delta V_{nr-r+1} D = 0$$

$$\sum_{j=1}^{n} A_{j}(V_{nr-r+1}D)f_{j}(C(\mu,\gamma_{*})) + \Delta(V_{nr-r+1}D) = 0,$$

that is

$$\dim \left\{ X \in \mathbb{C}^{n \times r} \mid \sum_{j=1}^{\kappa} A_j X \ f_j(C(\mu, \gamma_*)) + \Delta \cdot X = 0 \right\} \geq r.$$

Furthermore, the subspace

$$\mathcal{D} := \left\{ D \in \mathbb{C}^{r \times r} \mid \textit{C}(\mu, \gamma) D - \textit{DC}(\mu, \gamma) = 0 \right\}$$

is at least r dimensional, due to $C(\mu, \gamma) \in \mathcal{G}(\mu)$.

For any $D \in \mathcal{D}$ commuting with $p_j(C(\mu, \gamma)) = f_j(C(\mu, \gamma))$

$$\sum_{j=1}^{\kappa} A_j V_{nr-r+1} f_j(C(\mu, \gamma_*)) D + \Delta V_{nr-r+1} D = 0$$

$$\sum_{j=1}^{\kappa} A_j(V_{nr-r+1}D)f_j(C(\mu,\gamma_*)) + \Delta(V_{nr-r+1}D) = 0,$$

that is

$$\dim \left\{ X \in \mathbb{C}^{n \times r} \mid \sum_{j=1}^{\kappa} A_j X f_j(C(\mu, \gamma_*)) + \Delta \cdot X = 0 \right\} \geq r.$$

Furthermore, the subspace

$$\mathcal{D} := \left\{ D \in \mathbb{C}^{r \times r} \mid \textit{C}(\mu, \gamma) D - \textit{DC}(\mu, \gamma) = 0 \right\}$$

is at least r dimensional, due to $C(\mu, \gamma) \in \mathcal{G}(\mu)$.

For any $D \in \mathcal{D}$ commuting with $p_j(C(\mu, \gamma)) = f_j(C(\mu, \gamma))$

$$\sum_{j=1}^{\kappa} A_j V_{nr-r+1} f_j(C(\mu, \gamma_*)) D + \Delta V_{nr-r+1} D = 0$$

$$\sum_{j=1}^{\kappa} A_j(V_{nr-r+1}D)f_j(C(\mu,\gamma_*)) + \Delta(V_{nr-r+1}D) = 0,$$

that is

$$\dim \left\{ X \in \mathbb{C}^{n \times r} \mid \sum_{j=1}^{\kappa} A_j X f_j(C(\mu, \gamma_*)) + \Delta \cdot X = 0 \right\} \geq r.$$

Theorem

Let $A(\lambda) := \sum_{j=1}^{\kappa} f_j(\lambda) A_j$ with $A_j \in \mathbb{C}^{n \times n}$ be an analytic matrix function s.t. rank $(\tilde{A}_{rp-1}) = n$, $\mathbb{S} \subseteq \mathbb{C}$ be given, and $r \in \mathbb{Z}^+$. Then

$$\inf\{\|\Delta\|_2 \mid A + \Delta \text{ has } r \text{ eigenvalues in } S\}$$

$$\inf_{\mu \in \mathbb{S}^r} \sup_{\gamma} \sigma_{nr-r+1} \left(\sum_{j=1}^{\kappa} f_j (C(\mu, \gamma))^T \otimes A_j \right)$$

and a minimal Δ is given by $\Delta_* = -\sigma_{nr-r+1} U_{nr-r+1} V_{nr-r+1}^+$ - provided that the inf-sup problem is attained at a (μ_*, γ_*) where $\sigma_{nr-r+1}(\cdot)$ is simple and $V_{nr-r+1} \in \mathbb{C}^{n \times r}$ is full rank -, and where σ_{nr-r+1} denotes the optimal value of $\sigma_{nr-r+1}(\cdot)$ and $V_{nr-1+1}, U_{nr-r+1} \in \mathbb{C}^{n \times r}$ are s.t. $\text{vec}(V_{nr-r+1})$, $\text{vec}(U_{nr-r+1})$ are unit right and left singular vectors corresponding to σ_{nr-r+1} .

Prescribe an eigenvalue z of multiplicity 3 to a matrix, i.e., $A(\lambda) := A - \lambda I$ $(f_1(\lambda) = 1, A_1 = A \text{ and } f_2(\lambda) = -\lambda, A_2 = I)$.

$$\sup_{\gamma} \sigma_{3n-2} \begin{pmatrix} I_3 \otimes A - \begin{bmatrix} z & -\gamma_{21} & -\gamma_{31} \\ 0 & z & -\gamma_{32} \\ 0 & 0 & z \end{bmatrix} \otimes I_n \end{pmatrix} = \sup_{\gamma} \sigma_{3n-2} \begin{pmatrix} \begin{bmatrix} A - zI & \gamma_{21}I & \gamma_{31}I \\ 0 & A - zI & \gamma_{32}I \\ 0 & 0 & A - zI \end{bmatrix} \end{pmatrix}$$

Prescribe an eigenvalue z of multiplicity 3 to a matrix, i.e., $A(\lambda) := A - \lambda I$ $(f_1(\lambda) = 1, A_1 = A \text{ and } f_2(\lambda) = -\lambda, A_2 = I)$.

$$\sup_{\gamma} \sigma_{3n-2} \begin{pmatrix} I_3 \otimes A - \begin{bmatrix} z & -\gamma_{21} & -\gamma_{31} \\ 0 & z & -\gamma_{32} \\ 0 & 0 & z \end{bmatrix} \otimes I_n \end{pmatrix} = \sup_{\gamma} \sigma_{3n-2} \begin{pmatrix} \begin{bmatrix} A - zI & \gamma_{21}I & \gamma_{31}I \\ 0 & A - zI & \gamma_{32}I \\ 0 & 0 & A - zI \end{bmatrix} \end{pmatrix}$$

Solid orange, green - $\Lambda_{\epsilon}(A) = \bigcup_{\|\Delta\|_2 \le \epsilon} \Lambda(A + \Delta)$ for $A \in \mathbb{C}^{6 \times 6}$ Dotted red - $\Lambda_{\epsilon,2}(A) = \bigcup_{\|\Delta\|_2 \le \epsilon} \Lambda_2(A + \Delta)$

Prescribe two eigenvalues z_1, z_2 with multiplicities summing up to 2 to a polynomial, i.e., $P(\lambda) := \sum_{j=0}^{m} \lambda^j A_j$ $(f_j(\lambda) = \lambda^j)$.

$$\inf_{\mu \in \{z_1, z_2\}^2} \sup_{\gamma} \sigma_{2n-1} \left(\sum_{j=0}^m \begin{bmatrix} \mu_1 & \gamma \\ 0 & \mu_2 \end{bmatrix}^j \otimes A_j \right) = \inf_{\mu \in \{z_1, z_2\}^2} \sup_{\gamma} \sigma_{2n-1} \left(\begin{bmatrix} P(\mu_1) & \gamma P_{\Delta}(\mu_1, \mu_2) \\ 0 & P(\mu_2) \end{bmatrix} \right)$$

where

$$P_{\Delta}(\mu_1, \mu_2) = \frac{P(\mu_1) - P(\mu_2)}{\mu_1 - \mu_2}$$
 if $\mu_1 \neq \mu_2$
 $P_{\Delta}(\mu_1, \mu_2) = P'(\mu_1)$ otherwise.

Prescribe two eigenvalues z_1, z_2 with multiplicities summing up to 2 to a polynomial, i.e., $P(\lambda) := \sum_{j=0}^{m} \lambda^j A_j$ $(f_j(\lambda) = \lambda^j)$.

$$\inf_{\mu \in \{z_1, z_2\}^2} \sup_{\gamma} \sigma_{2n-1} \left(\sum_{j=0}^m \begin{bmatrix} \mu_1 & \gamma \\ 0 & \mu_2 \end{bmatrix}^j \otimes A_j \right) = \inf_{\mu \in \{z_1, z_2\}^2} \sup_{\gamma} \sigma_{2n-1} \left(\begin{bmatrix} P(\mu_1) & \gamma P_{\Delta}(\mu_1, \mu_2) \\ 0 & P(\mu_2) \end{bmatrix} \right)$$

where

$$P_{\Delta}(\mu_1, \mu_2) = \frac{P(\mu_1) - P(\mu_2)}{\mu_1 - \mu_2}$$
 if $\mu_1 \neq \mu_2$
 $P_{\Delta}(\mu_1, \mu_2) = P'(\mu_1)$ otherwise.

Solid brown, blue - $\Lambda_{\epsilon}(P) = \bigcup_{\|\Delta\|_2 \le \epsilon} \Lambda(P + \Delta)$ for a 5 × 5 quadratic polynomial P.

Prescribe a multiple eigenvalue z to an analytic matrix function $A(\lambda) = \sum_{i=1}^{\kappa} f_i(\lambda) A_i$.

$$\sup_{\gamma} \sigma_{2n-1} \left(\sum_{j=1}^{\kappa} f_j \left(\begin{bmatrix} z & \gamma \\ 0 & z \end{bmatrix} \right) \otimes A_j \right) =$$

$$\sup_{\gamma} \sigma_{2n-1} \left(\begin{bmatrix} A(z) & \gamma A'(z) \\ 0 & A(z) \end{bmatrix} \right)$$

Prescribe a multiple eigenvalue z to an analytic matrix function $A(\lambda) = \sum_{j=1}^{\kappa} f_j(\lambda) A_j$.

$$\sup_{\gamma} \sigma_{2n-1} \left(\sum_{j=1}^{\kappa} f_j \left(\begin{bmatrix} z & \gamma \\ 0 & z \end{bmatrix} \right) \otimes A_j \right) =$$

$$\sup_{\gamma} \sigma_{2n-1} \left(\begin{bmatrix} A(z) & \gamma A'(z) \\ 0 & A(z) \end{bmatrix} \right)$$

Solid brown, blue -
$$\Lambda_{\epsilon}(A) = \bigcup_{\|\Delta\|_2 \le \epsilon} \Lambda(A + \Delta)$$

 $A(\lambda) = (e^{\lambda} - 1)B_1 + \lambda^2 B_2 - B_0$
 $B_0 = 100I_8$, $B_1 = [b_{jk}^{(1)} := [9 - \max(j, k)]jk]$, $B_2 = [b_{jk}^{(2)} := 9\delta_{jk} + \frac{1}{j+k}]$.

Summary and Outlook

- A computable formula for a nearest analytic matrix function with prescribed number of eigenvalues in a prescribed region.
- Results hold under a multiplicity and a full rank assumption. Future: Removal of these assumptions
- Unstructured perturbations are taken into account.
 Future: Structured perturbations

Summary and Outlook

- A computable formula for a nearest analytic matrix function with prescribed number of eigenvalues in a prescribed region.
- Results hold under a multiplicity and a full rank assumption. Future: Removal of these assumptions
- Unstructured perturbations are taken into account.
 Future: Structured perturbations

Summary and Outlook

- A computable formula for a nearest analytic matrix function with prescribed number of eigenvalues in a prescribed region.
- Results hold under a multiplicity and a full rank assumption. Future: Removal of these assumptions
- Unstructured perturbations are taken into account.
 Future: Structured perturbations

Related Papers

- D. Kressner, M., I. Nakic and N. Truhar. Generalized Eigenvalue Problems with Specified Eigenvalues, *IMA J. Numer. Anal., accepted subject to minor revision*
- M. Karow and M. Matrix Polynomials with Specified Eigenvalues, Math ArXiv
- M. Karow, D. Kressner and M. Nonlinear Eigenvalue Problems with Specified Eigenvalues, *in preparation*