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Given
@ an analytic matrix function A: C — C"™",
AN) = 21 HNA;,
where f; : C — C are analytic and A; € C"™",
@ a prescribed set of scalars S C C, and
@ a positive integer r.

Determine a A € C™" as small as possible in 2-norm such that
A+ A has at least r of its eigenvalues belonging to S.
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Inverse Eigenvalue Problem

Not to be confused with the following classical inverse
eigenvalue problem (IEP).

Given
@ a symmetric matrix function A : RY — R™" depending on

its parameters smoothly,
@ scalars \{ > --- > A\,
determine the parameters ¢ € R such that \; (A(c)) = ); for
f=1,...,n
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Inverse Eigenvalue Problem

Not to be confused with the following classical inverse
eigenvalue problem (IEP).

Given
@ a symmetric matrix function A : RY — R™" depending on
its parameters smoothly,
@ scalars \y > --- > A\
determine the parameters ¢ € R such that \; (A(c)) = ); for
f=1,...,n

Non-smooth variants of the Newton’s method have been
suggested for the affine case

n
Alc) = Ao+ > _ GA;.
j=1

works of Friedland, Nocedal and Overton (1987), and Sun and
Sun (2003).
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Inverse Eigenvalue Problem

Example (Sturm-Liouville)
Given {);}2°,, determine p(x) such that

=1’
u"(x) + p(x)u(x) = Nu(x) x € (0,m), u(0) = u(r) =0

for each j.
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Inverse Eigenvalue Problem

Example (Sturm-Liouville)
Given {);}2°,, determine p(x) such that

=1’
u"(x) + p(x)u(x) = u(x) x € (0,7), u(0)=u(r)=0

for each j.

Discrete version: Given {)\j}j’?:1, determine py, ..., ps such that
(Uk41 — 2Uk + Uk—1)/I? + PkUKk = A\jUx, Up = Upyq = 0.

for k =1,...,nand for each j, equivalently

(A(p) — (1 /R wi(1, —2,1) + diag(p))) u=\u

for each j.
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Early History

Prescribing one eigenvalue of a matrix

Let A(\) := A— Xl for given A€ C"™", and z € C.
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Early History

Prescribing one eigenvalue of a matrix
Let A(\) :== A— Xl for given Ae C"™" and z € C. Then

is the smallest perturbation such that z € A(A+ A), where
on := on(A — zl) and up, v, are the associated unit left and right
singular vectors (Eckart-Young).
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Early History

Prescribing a multiple eigenvalue in connection with
ill-conditioning of an eigenvalue; works of Ruhe (1969) and
Wilkinson (1971, 1984)
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Early History

Prescribing a multiple eigenvalue in connection with
ill-conditioning of an eigenvalue; works of Ruhe (1969) and
Wilkinson (1971, 1984)

Let s = y*x for a pair of unit left y and right x eigenvectors
associated with an eigenvalue z of a matrix A € C"™*"

Find a nearby A + A with z as a multiple eigenvalue.
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Early History

Prescribing a multiple eigenvalue in connection with
ill-conditioning of an eigenvalue; works of Ruhe (1969) and
Wilkinson (1971, 1984)

Let s = y*x for a pair of unit left y and right x eigenvectors
associated with an eigenvalue z of a matrix A € C"™*"

Find a nearby A + A with z as a multiple eigenvalue.

All2s

Wilkinson: 3A € C™" s.t. || A|, < 1Al
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Early History

Consider unitary H such that Hx = ey, and B = HAH* with the
eigenvectors Hx = e; and w = Hy.
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Early History

Consider unitary H such that Hx = ey, and B = HAH* with the
eigenvectors Hx = e; and w = Hy.

zZ b
B_[O 81]
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Early History

Consider unitary H such that Hx = ey, and B = HAH* with the
eigenvectors Hx = e; and w = Hy.

zZ b
B_[O 81]

Since, w*ey = y*x = s, we have w* = [s wj]

Emre Mengi Prescribing the Eigenvalues of Matrix Functions



Early History

Consider unitary H such that Hx = ey, and B = HAH* with the
eigenvectors Hx = e; and w = Hy.

z b
B= [ 0 B ]
Since, w*ey = y*x = s, we have w* = [s wj] satisfying

(s willg g | =205 ]
—
sb* + wy By = zwy
—
Wi (By + swib*/wywy) = zwy
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Early History

Consider unitary H such that Hx = ey, and B = HAH* with the
eigenvectors Hx = e; and w = Hy.

z b
B= [ 0 By ]
Since, w*ey = y*x = s, we have w* = [s wj] satisfying
. z b .
(s willg g | =205 ]

=

sb* + wy By = zwy
=

Wi (By + swib*/wywy) = zwy

that is B+ A with A := diag(1, swyb*/w;wy) has z as a multiple
eigenvalue, so is A+ H*AH.
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Early History

Prescribing a multiple eigenvalue of a matrix; work of Malyshev
(1999)
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Early History

Prescribing a multiple eigenvalue of a matrix; work of Malyshev
(1999)

Let A(\) := A— Xl for given A€ C"™" and z € C. Then
A= —o0op_1Usp_1 VZJ;_1 with ||A||2 = O2pn—1

is the smallest perturbation such that z € A(A+ A) with
algebraic multiplicity 2 or greater, where

o ‘= Sup o ([A_Zl v D
2n—1 - ~>0 2n—1 o A . ZI

and Uap_q, Van_q1 € C"™2 such that vec(Uz,—1) and vec(Van_1)
are unit left and right singular vectors associated with o2,_1.
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Early History

Prescribing two eigenvalues of a matrix; works of Garcia (2005)
and Lippert (2005)
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Early History

Prescribing two eigenvalues of a matrix; works of Garcia (2005)
and Lippert (2005)

Let A(\) := A— Al for given A€ C"™", and z;,2, € C. Then
A= —o0op_1Usp_1 V2J?7_1 with ||A||2 = O2pn—1

is the smallest perturbation such that zy, z, € A(A+ A)
provided that the supremum

Oon_1:=SUp o ({A_Z” v/ D
2n—1 - »YZO 2n—1 O A _ ZZI

is attained ata v # 0.
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Early History

@ Prescribing an eigenvalue of algebraic multiplicity three,
Ikramov and Nazari (2004).
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Early History

@ Prescribing an eigenvalue of algebraic multiplicity three,
Ikramov and Nazari (2004).

@ Nearest matrices with a prescribed Jordan canonical form,
Lippert (2010).

|1All2 > opr—ri1 (/r ®A— BT &® ln>

for any B € C™*" whose Jordan form is contained in the
prescribed Jordan form.

Emre Mengi Prescribing the Eigenvalues of Matrix Functions



Early History

@ Prescribing an eigenvalue of algebraic multiplicity three,
Ikramov and Nazari (2004).

@ Nearest matrices with a prescribed Jordan canonical form,
Lippert (2010).

|1All2 > opr—ri1 (/r ®A— BT &® ln>

for any B € C™*" whose Jordan form is contained in the
prescribed Jordan form.

@ Extensions to matrix polynomials, Psarrakos (2012)
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Sylvester Equations

Key to Malyshev’s derivation is a rank characterization.

z is a multiple eigenvalue of A
=
rank(A — z)2 <n—2
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Sylvester Equations

Key to Malyshev’s derivation is a rank characterization.

z is a multiple eigenvalue of A
=
rank(A — z)2 <n—2
=

A—zl 4l
rank([ 0 A—Z/])Szn_z Vv #0

Emre Mengi Prescribing the Eigenvalues of Matrix Functions



Sylvester Equations

Key to Malyshev’s derivation is a rank characterization.

z is a multiple eigenvalue of A

<~
rank(A — z)2 <n—2
<~
rank([AOZI AZIZI]>§2n—2 Vv #0
<~
zZz -
rank<12®A—[0 5 }®ln>§2n—2 Vv #0
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Sylvester Equations

Key to Malyshev’s derivation is a rank characterization.

z is a multiple eigenvalue of A

<~
rank(A — z)2 <n—2
<~
rank([AOZI AZIZI]>§2n—2 Vv #0
<~
zZz -
rank<12®A—[0 5 ®ln>§2n—2V77&0

Identity: vec(FXG) = (GT ® F) vec(X)



Sylvester Equations

Theorem (Pencils)

Let A(\) = A— AB with A, B € C"™" be a pencil, which does not
have any right singular block in its Kronecker canonical form,
z1,...,2peC,andr e Z*.
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Sylvester Equations

Theorem (Pencils)

Let A(\) = A— AB with A, B € C"™" be a pencil, which does not
have any right singular block in its Kronecker canonical form,
z1,...,Zp € C,and r € Z*. The following are equivalent:
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Sylvester Equations

Theorem (Pencils)

Let A(\) = A— AB with A, B € C"™" be a pencil, which does not
have any right singular block in its Kronecker canonical form,
z1,...,Zp € C,and r € Z*. The following are equivalent:

@ The multiplicities of zy, ..., z, sum up to r or greater.
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Sylvester Equations

Theorem (Pencils)

Let A(\) = A— AB with A, B € C"™" be a pencil, which does not
have any right singular block in its Kronecker canonical form,
z1,...,Zp € C,and r € Z*. The following are equivalent:

@ The multiplicities of zy, ..., z, sum up to r or greater.

@ There exist py, ..., pur € {21,...,2p} such that

( )

1 0
Vo1 2 0

dim{ X | AX — BX _ =0} >
Yri Hr

\ ::C}ru,w)
for all v € G(1), the set consisting of -y values such that all
Jordan blocks of C(u,~) € C™*" are of full size.
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Sylvester Equations

Extension to matrix polynomials is via linearizations.
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Sylvester Equations

Extension to matrix polynomials is via linearizations.

Let A(\) == Zj'io NA; be a polynomial for given A; € C™" with
the linearization

o 1/ 0 / 0
AN) = A-)\B = (; A /
AO Am-—1 0 —Am

Emre Mengi Prescribing the Eigenvalues of Matrix Functions



Sylvester Equations

Extension to matrix polynomials is via linearizations.

Let A(\) == Zj'io NA; be a polynomial for given A; € C™" with
the linearization

o 1/ 0 / 0
AN) = A-)\B = (; A /
AO Am-—1 0 —Am
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Sylvester Equations

Extension to matrix polynomials is via linearizations.

Let A(\) == Zj'io NA; be a polynomial for given A; € C™" with
the linearization

o 1/ 0 / 0
AN) = A-)\B = (; A /
AO Am-—1 0 —Am

T T
AXT XTI 4] = BIX] - X 4] Clu,v) =0
—
Xj=Xi1C(17) and 6" AXj + AnXm—1Cp,7) = 0
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Sylvester Equations

Extension to matrix polynomials is via linearizations.

Let A(\) == Zj'io NA; be a polynomial for given A; € C™" with
the linearization

o 1/ 0 / 0
AN) = A-)\B = (; A /
AO Am-—1 0 —Am

A[XT .. XT_ ]T—B[XT XTI 1T Cluy) =0
X; = X;_1C(u,v) and z 1AX+Ame1C(u7) 0

X; = XoC(u,7y and z,-:o AXoC(u, vy =0
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Sylvester Equations

Consequently,
dim { X = [X] ... XT_|]" | AX— BXC(1,7) =0}

dim {Xo | 2 AXoCln.7) = 0}
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Sylvester Equations

Consequently,
dim { X = [X] ... XT_|]" | AX— BXC(1,7) =0}

dim {Xo | 2 AXoCln.7) = 0}

Theorem (Polynomials)
Let A(\) = >y NA; with A; € C™" be a matrix polynomial,
where rank(Ayn) = n, z1,...,2o € C,andr € Z*.
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Sylvester Equations

Consequently,
dim { X = [X] ... XT_|]" | AX— BXC(1,7) =0}

dim {Xo | 2 AXoCln.7) = 0}

Theorem (Polynomials)

Let A(\) = >y NA; with A; € C™" be a matrix polynomial,

where rank(Apn) = n, zy,...,2, € C, and r € Z*. The following
are equivalent:
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Sylvester Equations

Consequently,
dim { X = [X] ... XT_|]" | AX— BXC(1,7) =0}

dim {Xo | 2 AXoCln.7) = 0}

Theorem (Polynomials)

Let A(\) = >y NA; with A; € C™" be a matrix polynomial,

where rank(Apn) = n, zy,...,2, € C, and r € Z*. The following
are equivalent:

@ The multiplicities of zy, ..., z, sum up to r or greater.
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Sylvester Equations

Consequently,
dim { X = [X] ... XT_|]" | AX— BXC(1,7) =0}

dim {Xo | 2 AXoCln.7) = 0}

Theorem (Polynomials)

Let A(\) = >y NA; with A; € C™" be a matrix polynomial,

where rank(Apn) = n, zy,...,2, € C, and r € Z*. The following
are equivalent:

@ The multiplicities of zy, ..., z, sum up to r or greater.

@ There exist 1, ..., pur € {21,...,2p} such that

dim {X | S AXC(u,7) =0} > r
for all v € G(p).
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Sylvester Equations

Extension to analytic matrix functions is via interpolation.
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Sylvester Equations

Extension to analytic matrix functions is via interpolation.

Consider the analytic matrix function A(\) = >~ ; f(A\)A; and

polynomials
rp—1 ‘
pi(N) = 3" ciA' such that £9(z) = p{” ()
i=0

fork=1,...,p,¢(=0,...,r—1andj=1,... k.
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Sylvester Equations

Extension to analytic matrix functions is via interpolation.

Consider the analytic matrix function A(\) = >~ ; f(A\)A; and

polynomials
rp—1 ‘
pi(N) = 3" ciA' such that £9(z) = p{” ()
i=0

fork=1,...,p,¢(=0,...,r—1andj=1,... k.

Propositions
Q@ 7(C(n,7)) = pi(C(u,y)) for j=1,...,x and Vy € G(u)
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Sylvester Equations

Extension to analytic matrix functions is via interpolation.

Consider the analytic matrix function A(\) = >~ ; f(A\)A; and

polynomials
rp—1 ‘
pi(N) = 3" ciA' such that £9(z) = p{” ()
i=0

fork=1,...,p,¢(=0,...,r—1andj=1,... k.

Propositions
Q@ 7(C(n,7)) = pi(C(u,y)) for j=1,...,x and Vy € G(u)

2 AX (O 7)) = 2=t AX i (Cl, 7))
) = Y2y AXC(u, )
where A =37 ¢iA; forj=1,...,xand Yy € G(u)
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Sylvester Equations

multiplicities of z4,. .., Z, as eigenvalues of A(\)
sum up to r or greater
=
multiplicities of zy, . .., z, as eigenvalues of P(\) := 2P NA;
sum up to r or greater
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Sylvester Equations

multiplicities of z4,. .., Z, as eigenvalues of A(\)
sum up to r or greater
=
multiplicities of zy, . .., z, as eigenvalues of P(\) := 2P NA;
sum up to r or greater
—

Jpst.Vy € G(u) dim {X | ST AXC(i, ) = o} >r
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Sylvester Equations

multiplicities of z4,. .., Z, as eigenvalues of A(\)
sum up to r or greater
=
multiplicities of zy, . .., z, as eigenvalues of P(\) := 2P NA;
sum up to r or greater
—

Jpst.Vy € G(u) dim {X | Py AXC(u,y) = 0} > r
<
sty €G(n) dim{X | S5 AX H(C(u,7)) =0} > r
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Sylvester Equations

Theorem (Analytic Functions)
Let A(\) = >_iL4 i(\)A; with A; € C™" be an analytic matrix
function such that rank(A,p_1) =nz,...,2o€C,andr e Z".
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Sylvester Equations

Theorem (Analytic Functions)

Let A(\) = >_iL4 i(\)A; with A; € C™" be an analytic matrix
function such that rank(A,p_1) =nz,...,2o€C,andr e Z".
The following are equivalent:
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Sylvester Equations

Theorem (Analytic Functions)

Let A(\) = >_iL4 i(\)A; with A; € C™" be an analytic matrix
function such that rank(A,p_1) =nz,...,2o€C,andr e Z".
The following are equivalent:

@ The multiplicities of z4, . .., zp sum up to r or greater.
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Sylvester Equations

Theorem (Analytic Functions)

Let A(\) = >_iL4 i(\)A; with A; € C™" be an analytic matrix
function such that rank(A,p_1) =nz,...,2o€C,andr e Z".
The following are equivalent:

@ The multiplicities of z4, . .., zp sum up to r or greater.
@ There exist p1,...,pur € {z1,...,2p} such that
dim {X | Yy AX H(C(n.7)) =0} = r
for all v € G(1).
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Sylvester Equations

Theorem (Analytic Functions)
Let A(\) = >_iL4 i(\)A; with A; € C™" be an analytic matrix

function such that rank(A,p_1) =nz,...,2o€C,andr e Z".
The following are equivalent:

@ The multiplicities of z4, . .., zp sum up to r or greater.

@ There exist p1,...,pur € {z1,...,2p} such that

dim {X | Yfy AX f(C(n,7)) =0} =1
for all v € G(1).
@ There exist py,...,pur € {21,...,2p} such that
rank (Z}; f(C(p, 7)™ ® Aj) <nr—r
forall v € G(u).
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Sylvester Equations

Example on a polynomial P()\) := erlo NA;
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Sylvester Equations

Example on a polynomial P()\) := erlo NA;

Prescribe z;, z> with multiplicities summing up to 2 or greater

Mmoo J m S Z -2
rank Z [ 01 Z ] ®Aj = rank Z [ 1 7 2z ®Aj
2

J
j=0 0 z

Plz)-P(z)
—rank (| P& T
0 P(z2)
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Minimal Perturbation

Thus consider

Bu) == inf{A2 | rank (Z H(C(,7) @ A+ 1 A) <nr- r}

=1

for a given pand v € G(u).
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Minimal Perturbation

Thus consider

B(u) = inf { |A|l2 | rank (Z );(C(u,y))T RA+1® A) <nr-— r}
j=1
for a given pand v € G(u).
Eckart-Young theorem yields
B(1) > onr—ri1 (Z G(C(M, ’}’))T ® Aj)
j=1

forall v € G(u),
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Minimal Perturbation

Thus consider
B(p) = inf { A2 | rank (i H(C, ) @A +1® A) < nr— r}

j=1
for a given pand v € G(u).
Eckart-Young theorem yields

B(1) > Tnr—ri1 (i £(C(1,7)T ® Aj)
j=1
forall v € G(u), or
B(k) = r(p) = SUP Oy —r+1 (ZK: f(C(uw)" ® A,-) :
j=1

Emre Mengi Prescribing the Eigenvalues of Matrix Functions



Minimal Perturbation

Consider the perturbation

A= —O0nr—r4+1 Unr—r+1 Vr—ztfr+1

where

® opn—r1 = k(p) denotes the maximal value of the singular
value assuming the supremum is attained at a ., and

® Upr_ri1, Vor_riq are such that vec(Upr—_r11) and
vec(Vpr_r11) consist of a pair of associated left and right
singular vectors of unit length.
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Minimal Perturbation

The fact that ~. is a local extrema, under the assumption
onr—r+1 IS Simple, leads to:

Theorem (Optimality Condition)

Une—rgtUnr—rir = Vo4 Vir—ri
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Minimal Perturbation

The fact that ~. is a local extrema, under the assumption
onr—r+1 IS Simple, leads to:

Theorem (Optimality Condition)

;r—r+1 Unr—r+1 = V nr—r+1 Vnr—r+1

Consequently,

1Al = opr—rs1l|Unr—r41 Vnr r+1H2

_ +
= Onr—r+1 MaX| x|,=1 \/X*(Vnr—r—H)* mr—r1 Unr—r44 V nr—r1%X

— *
= Onr—r+1 MaX||x| =1 \/X (Vnr r+1) Vo r+1 Vir—r+1 V nr—r41X

= 0nr—r+1 H Vir—r+1 V nr—r+1 H = 0nr—r+1
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Minimal Perturbation

Additionally, A+ A has the prescribed eigenvalues in p with
multiplicities summing up to r or greater.
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Minimal Perturbation

Additionally, A+ A has the prescribed eigenvalues in p with
multiplicities summing up to r or greater.

(351 H(C(, 7)) T @ Ay) vee (Var—r41) = T reavee (Un—r41)
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Minimal Perturbation

Additionally, A+ A has the prescribed eigenvalues in p with
multiplicities summing up to r or greater.

(351 H(C(, 7)) T @ Ay) vee (Var—r41) = T reavee (Un—r41)
<
27:1 Aj Vir—r41 6’(0(/% ')’*)) = Opr—r41Unr—r41
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Minimal Perturbation

Additionally, A+ A has the prescribed eigenvalues in p with
multiplicities summing up to r or greater.

<27:1 O(C(Na 'Y*))T ® Aj) vec (Vir—r1) = opr—ry1vec (Unr—ri1) -
<~
27:1 Aj Vir—r41 6’(0(/% V%)) = Onr—r1Unr—r1
<= (see assumption)
27:1 Aj Vir—r1 fj(C(,U’a Y%)) + —0nr—ri1Unr—r g1 V,7+,_r+1 Vor—rg1 =0

A

Assumption: rank(Vp,_,11) =1
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Minimal Perturbation

Furthermore, the subspace
D:={DeC™ | C(u,v)D— DC(u,v) =0}

is at least r dimensional, due to C(u,~) € G(u).
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Minimal Perturbation

Furthermore, the subspace
D:={DeC™ | C(u,v)D— DC(u,v) =0}

is at least r dimensional, due to C(u,~) € G(u).

For any D € D commuting with p;(C(u,v)) = i(C(u, 7))

Z Aj Vir—r1 fj(C(Hy Y))D+AVp i 1D= 0
j=1

ZAj( Vir—r+1 D)’?(C(:U’v V%)) + A(Var—r11D) = 0,
j=1
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Minimal Perturbation

Furthermore, the subspace
D:={DeC™ | C(u,v)D— DC(u,v) =0}

is at least r dimensional, due to C(u,~) € G(u).

For any D € D commuting with p;(C(u,v)) = i(C(u, 7))

Z Aj Vir—r1 fj(C(Hy Y))D+AVp i 1D= 0
j=1

ZAj( Vir—r+1 D)’?(C(:U’v V%)) + A(Var—r11D) = 0,
j=1

that is

dim{X e C™"| ZA/-X H(C(ps )+ A - X = O} >r.
j=1
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Minimal Perturbation

Let A(N) := 3"y fi(\)A; with A; € C™" be an analytic matrix
function s.t. rank(A,, 1) = n, S C C be given, and r € Z*. Then

inf{||Al|2 | A+ A has r eigenvalues in S}

inf Supffnr r+1 (Z fj(C(Ma'Y))T@)Aj)

e f
I i

and a minimal A is given by A, = —onr—r11Upr—ri1 Vnr i
provided that the inf-sup problem is attained at a (1, v«) where
onr—r+1(+) is simple and V4 € C™" js full rank -, and where
onr—ri1 denotes the optimal value of o,y 1(-) and

Vor—141, Upr—r11 € C™7 are s.t. vec(Vir—ri1), vec(Unr—ri1) are

unit right and left singular vectors corresponding to opr_r 1.
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Prescribe an eigenvalue z of multiplicity 3 to a matrix, i.e.,
AN):=A=Xl (F(N)=1,A1=Aand L(A) = -\ A = ).
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Prescribe an eigenvalue z of multiplicity 3 to a matrix, i.e.,
AN):=A=Xl (F(N)=1,A1=Aand L(A) = -\ A = ).

Z —
Sup ozn—2 (/3 RA— |: 0
K 0
A—2zl Y21 /
Sup ozp—2 0 A—zl
7 0 0

721
z

0

Y31/

Y32l
A-—2zl

31

—732
V4

@/n)

|
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2 5 1 05 0 o5 1 15 2
Solid orange, green - A((A) = Uja,<c/A(A+ A) for A € C*®
Dotted red - /\ejg(A) = U||A||2§€/\2(A +A)



Prescribe two eigenvalues z;, z, with multiplicities summing up
to 2 to a polynomial, i.e., P(\) := > 2o NA; (fi(A) = V).

Emre Mengi Prescribing the Eigenvalues of Matrix Functions



Prescribe two eigenvalues z;, z, with multiplicities summing up
to 2 to a polynomial, i.e., P(\) := > 2o NA; (fi(A) = V).

AN L
inf  sup oo, ! } QA | =
pe{z1,22}2 ’Yp 2n- Z[ 0 2 !

J=0

: P(u1) ~Pa(p1, p2) D
inf  su _
pe{zy,22}? ’Yp 72n-1 <[ 0 P(u2)

where ,
Pa(p, pg) = PED=PU) if 1y o4

Pa(p1, p2) = P'(p1) otherwise.
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Examples

1.5

0.5

o

-1

5)

©
offfe
D) ©

-15 I I I I I |

-1.5 -1 -0.5 0 0.5 1 1.5

Solid brown, blue - Ac(P) = Ujja|,<c/A(P+ A) fora 5 x 5
quadratic polynomial P.
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Prescribe a multiple eigenvalue z to an analytic matrix function
AN = 21 VA,
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Prescribe a multiple eigenvalue z to an analytic matrix function
AN = 21 VA,

slipaznq (}Zi:ﬂ({g Z]) ®Aj> =

cones (4457

Y
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0.2

0.15
0.1

0.05

D

I I I I I I I I I
-375 -837 -365 -36 -355 -35 -345 -34 -335 -33

Solid brown, blue - A(A) = Ujaj,<c/MA+ A)
A(\) = (€* — 1)B; + X\2B; — By

By =100k, By = [bly = [9 — max(j, k)]jk], Bz = [b} := 98 + 1],

Emre Mengi Prescribing the Eigenvalues of Matrix Functions



Summary and Outlook

@ A computable formula for a nearest analytic matrix function
with prescribed number of eigenvalues in a prescribed
region.
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Summary and Outlook

@ A computable formula for a nearest analytic matrix function

with prescribed number of eigenvalues in a prescribed
region.

@ Results hold under a multiplicity and a full rank
assumption. Future : Removal of these assumptions
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Summary and Outlook

@ A computable formula for a nearest analytic matrix function
with prescribed number of eigenvalues in a prescribed
region.

@ Results hold under a multiplicity and a full rank
assumption. Future : Removal of these assumptions

@ Unstructured perturbations are taken into account.
Future : Structured perturbations
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