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1. Introduction

We study the distance from a given matrix polynomial to a nearest matrix polynomial 
with a specified number of its eigenvalues at specified locations in the complex plane. 
Formally, suppose P : C → C

n×n denotes a given polynomial defined by

P (λ) :=
m∑
j=0

λjAj . (1)

Here Aj ∈ C
n×n, j = 1, . . . , m are fixed, and we assume Am is full rank. Furthermore, 

suppose that a set S := {λ1, . . . , λs} consisting of complex scalars, and a positive in-
teger r, are given. We provide a singular value optimization characterization for the 
distance

τr(S) := inf
{
‖Δ‖2

∣∣∣ Δ ∈ C
n×n s.t.

s∑
j=1

mj(P + Δ) ≥ r

}
. (2)

Above mj(P + Δ) denotes the algebraic multiplicity of λj as an eigenvalue of P̃ (λ) :=
P (λ) +Δ, i.e., the multiplicity of λj as a root of the characteristic polynomial det(P̃ (λ)). 
We also consider this distance in the general setting, when perturbations of every co-
efficient Aj , j = 0, . . . , m, of P (λ) are admissible. Another singular value optimization 
characterization yielding a lower bound for the distance in this general setting is derived.

The characterizations derived here are generalizations of the singular value optimiza-
tion characterization for a linear matrix pencil of the form L(λ) = A0 + λA1 in [16], 
which was inspired by [19]. Unlike that in [19], the derivation here fully depends on 
a Sylvester equation characterization for the matrix polynomial P to have sufficiently 
many eigenvalues belonging to S. This yields a neater derivation. The machinery here 
and in [16] have similarities, but considerably more work is required here. Some of 
the additional machinery that we depend on in this matrix polynomial setting are as 
follows:

(1) The Sylvester equation characterizations are derived starting from the characteriza-
tions in [16], but the derivation employs the companion form linearizations of matrix 
polynomials in Section 2;

(2) The singular value optimization characterizations originate from a subtle relation 
between a pair of optimal left and right singular vectors. The details are worked 
out in Section 3.2. Analogous relations are observed in [19,16] for linear pencils, but 
the procedure for the same observation for an arbitrary matrix polynomial is more 
involved;

(3) The divided difference formulas in Section 3.5 provide means to express the derived 
singular value characterization in a comprehensible fashion. They are not needed in 
the linear pencil setting.
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1.1. Literature

A simple special case of the problem considered here is the backward error for a 
polynomial eigenvalue problem. This concerns the distance from a matrix polynomial 
to a nearest one with a prescribed eigenvalue, and is studied rigorously in [29]. The 
ε-pseudospectrum for a matrix polynomial P consists of each complex scalar whose 
backward error is no more than ε. There is abundant work in this direction, including 
[30,13,17,7].

The extensions to more than one prescribed eigenvalue are not addressed much in the 
literature except in a few special cases. Some studies [7,1,22] focus on the distance to 
the set of matrix polynomials with a multiple eigenvalue: geometric characterizations in 
terms of the ε-pseudospectrum are given in [7,1], while in [22], lower and upper bounds 
in terms of singular value optimization problems are derived. In the latter work, per-
turbations of all of the coefficient matrices are taken into account; however, it is not 
clear how tight the derived bounds are. When only perturbations of the constant coef-
ficient are allowed, these bounds coalesce, resulting in an exact singular value formula 
for the distance. The distance to the set of matrix polynomials with a prescribed multiple 
eigenvalue with a prescribed algebraic multiplicity is considered in [24]. Once again, lower 
and upper bounds are obtained for the distance in terms of singular value optimization 
problems.

The singular value optimization characterizations derived here facilitate the numerical 
computation of the distances. Especially, when |S| is small, the resulting singular value 
optimization problems can be solved numerically, by means of algorithms exploiting the 
Lipschitzness [23,28] and smoothness [21] properties of singular values.

1.2. Outline

We start with the derivation of the Sylvester equation characterization for the condi-
tion 

∑s
j=1 mj(P ) ≥ r in the next section. This Sylvester equation characterization can 

equivalently be expressed as a rank characterization. In Section 3, we observe that this 
rank characterization leads to a singular value optimization formula bounding τr(S) from 
below due to the Eckart–Young theorem. Eventually, we establish the exact equality of 
this singular value optimization formula with τr(S), under a multiplicity and a linear 
independence assumption. We achieve the equality by constructing an optimal pertur-
bation Δ∗ with 2-norm as small as possible and such that 

∑s
j=1 mj(P + Δ∗) ≥ r. In 

Section 3.5, the singular value optimization formula (see Theorem 3.1) is expressed in 
terms of divided difference formulas (see Theorem 3.3). In Section 4, we obtain a lower 
bound for the distance when perturbations of all coefficients are admissible. Section 5
is devoted to arguments indicating mildness of the multiplicity and linear independence 
assumptions when two eigenvalues are prescribed. Section 6 confirms the validity of the 
results by means of several numerical examples and by making connections with the 
ε-pseudospectrum for a matrix polynomial.
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2. Rank characterization for polynomials with specified eigenvalues

In this section we seek a rank characterization for the condition 
∑s

j=1 mj(P ) ≥ r.

Our methodology exploits the companion form linearization L(λ) := A + λB for P (λ), 
where

A :=

⎡⎢⎢⎢⎢⎣
0 I 0

. . .
0 0 I

A0 A1 Am−1

⎤⎥⎥⎥⎥⎦ and B :=

⎡⎢⎢⎢⎢⎣
−I 0 0

. . .
0 −I 0
0 0 Am

⎤⎥⎥⎥⎥⎦ . (3)

In particular, we benefit from the fact that the eigenvalues of L(λ) and P (λ) are the 
same with the same algebraic multiplicities. The main results in this section and in the 
succeeding sections rely on the following notation. The set Sr represents the r-tuples 
with elements from S. Suppose

μ =
[
μ1 μ2 . . . μr

]T
∈ S

r and Γ =
[
γ21 γ31 . . . γr,r−1

]T
∈ C

r(r−1)/2.

We make use of the following upper triangular matrix-valued function

C(μ, Γ ) :=

⎡⎢⎢⎢⎢⎣
μ1 γ21 . . . γr1

0 μ2
. . .

...
. . . γr(r−1)

0 μr

⎤⎥⎥⎥⎥⎦ .

The set G(μ) consists of Γ values such that C(μ, Γ ) has all eigenvalues with geometric 
multiplicity one. This is a dense subset of Cr(r−1)/2 [9].

Our starting point is the following result concerning the multiplicities of the eigenval-
ues of a matrix pencil [16, Theorem 3.3].

Theorem 2.1. Let L(λ) := A + λB be a matrix pencil with A, B ∈ C
n×n such that 

rank(B) = n, let the set S := {λ1, . . . , λs} consist of complex scalars, and let r ∈ Z
+. 

The following two conditions are equivalent:

(1)
∑s

j=1 mj(A, B) ≥ r where mj(A, B) is the algebraic multiplicity of λj as an eigen-
value of L(λ) = A + λB;

(2) There exists a μ ∈ S
r such that for all Γ ∈ G(μ)

dim
{
X ∈ C

n×r
∣∣ AX + BXC(μ, Γ ) = 0

}
≥ r.

Due to the assumption that rank(Am) = n, the leading coefficient B in (3) of the 
linearization L(λ) = A +λB is full rank. An application of Theorem 2.1 to the lineariza-
tion L leads to the following characterization of the multiple eigenvalues of the matrix 
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polynomial P . This characterization is expressed in terms of Cj(μ, Γ ) ≡ [C(μ, Γ )]j , the 
jth power of C(μ, Γ ).

Theorem 2.2. Let P (λ) :=
∑m

j=0 λ
jAj with Aj ∈ C

n×n be a matrix polynomial such that 
rank(Am) = n, let the set S := {λ1, . . . , λs} consist of complex scalars, and let r ∈ Z

+. 
The following two conditions are equivalent:

(1)
∑s

j=1 mj(P ) ≥ r where mj(P ) is the algebraic multiplicity of λj as an eigenvalue 
of P (λ);

(2) There exists a μ ∈ S
r such that for all Γ ∈ G(μ)

dim
{
X ∈ C

n×r
∣∣∣ m∑
j=0

AjXCj(μ, Γ ) = 0
}

≥ r.

Proof. It follows from Theorem 2.1 that the condition 
∑s

j=1 mj(P ) ≥ r, equivalently ∑s
j=1 mj(A, B) ≥ r, is met if and only if

dim
{
X ∈ C

mn×r
∣∣ AX + BXC(μ, Γ ) = 0

}
≥ r. (4)

We partition X = [XT
0 XT

1 . . . XT
m−1 ]T where Xj ∈ C

n×r. Now the condition

0 = AX + BXC(μ, Γ ) =

⎡⎢⎢⎢⎢⎣
X1
...

Xm−1∑m−1
j=0 AjXj

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
−X0C(μ, Γ )

...
−Xm−2C(μ, Γ )
AmXm−1C(μ, Γ )

⎤⎥⎥⎥⎥⎦
can be expressed as Xj = Xj−1C(μ, Γ ) for j = 1, . . . , m − 1 and

m−1∑
j=0

AjXj + AmXm−1C(μ, Γ ) = 0. (5)

By eliminating Xj for j = 1, . . . , m − 1 in (5) employing Xj = X0C
j(μ, Γ ), we obtain

m∑
j=0

AjX0C
j(μ, Γ ) = 0.

Thus, X0 is a solution of 
∑m

j=0 AjXCj(μ, Γ ) = 0 if and only if

X0 =
[
XT

0 (X0C(μ, Γ ))T . . . (X0C
m−1(μ, Γ ))T

]T
(6)

is a solution of AX +BXC(μ, Γ ) = 0. Furthermore, all solutions of AX +BXC(μ, Γ ) = 0
must be of the form (6). Now, the result follows from (4). �
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Intuitively, Theorem 2.2 also follows from the following observations. Consider a pair 
(X, C(μ, Γ )) satisfying the Sylvester equation

m∑
j=0

AjXCj(μ, Γ ) = 0. (7)

Such a pair is called an invariant pair of the matrix polynomial P (λ) in [5]. When 
C(μ, Γ ) is diagonal, it can trivially be verified that P (μj)xj = 0 for j = 1, . . . , r, where 
xj denotes the jth column of X. Thus, in this case the columns of X are eigenvectors 
of P . When C(μ, Γ ) is in Jordan form, the pair (X, C(μ, Γ )) satisfying (7) is called a 
Jordan pair. In this case, it can be shown that the columns of X are Jordan chains of P
[11, Chapter 2]. Thus, a matrix X satisfying the Sylvester equation (7) is inherently 
related to the generalized eigenspaces of P . The dimension of all such X is related to the 
dimensions of the generalized eigenspaces. Next, we express the Sylvester characterization 
in Theorem 2.2 as a rank condition in terms of the Kronecker product ⊗.

Corollary 2.3. Let P (λ) :=
∑m

j=0 λ
jAj with Aj ∈ C

n×n be a matrix polynomial such that 
rank(Am) = n, let the set S := {λ1, . . . , λs} consist of complex scalars, and let r ∈ Z

+. 
The following two conditions are equivalent:

(1)
∑s

j=1 mj(P ) ≥ r where mj(P ) is the algebraic multiplicity of λj as an eigen-
value P (λ);

(2) There exists a μ ∈ S
r such that for all Γ ∈ G(μ)

rank
(

m∑
j=0

(
Cj(μ, Γ )

)T ⊗Aj

)
≤ n · r − r.

Proof. We reserve the notation vec(·) for the linear operator that stacks up the columns 
of its matrix argument into a vector. The result follows from Theorem 2.2 and the identity

vec(AXB) =
(
BT ⊗A

)
vec(X).

Specifically, we apply this identity to 
∑m

j=0 AjXCj(μ, Γ ) = 0. Then, we make use of 
Theorem 2.2 to conclude that the dimension of the null space of 

∑m
j=0(Cj(μ, Γ ))T ⊗Aj

is at least r for some μ ∈ S
r and for all Γ ∈ G(μ) if and only if 

∑s
j=1 mj(P ) ≥ r holds. �

As an example, we deduce the following when S = {μ} and r = 2 from the corollary 
above: the matrix polynomial P has μ as a multiple eigenvalue if and only if

rank
(

m∑
j=0

[
μ 0
γ μ

]j
⊗Aj

)
= rank

([
P (μ) 0
γP ′(μ) P (μ)

])
≤ 2n− 2

for all γ 	= 0.
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3. Derivation of the singular value formula

For each μ ∈ S
r, let us define

Pr(μ) := inf
{
‖Δ‖2

∣∣ Δ ∈ C
n×n s.t. rank

(
Q(μ, Γ, P + Δ)

)
≤ n · r − r ∀Γ ∈ G(μ)

}
,

where Q(μ, Γ, P ) :=
m∑
j=0

(
Cj(μ, Γ )

)T ⊗Aj ,
(8)

and P + Δ =: P̃ denotes the polynomial P̃ (λ) :=
∑m

j=1 λ
jAj + (A0 + Δ). From Corol-

lary 2.3, the distance in (2) is alternatively given by

τr(S) = inf
μ∈Sr

Pr(μ).

In the remaining, we derive a singular value formula for Pr(μ).
The lower bound

Pr(μ) ≥ sup
Γ∈Cr(r−1)/2

σ−r

(
Q(μ, Γ, P )

)
=: κr(μ), (9)

is an immediate consequence of the Eckart–Young theorem. Here and elsewhere, σ−r(·)
denotes the rth smallest singular value of its matrix argument. When deducing the lower 
bound in (9), we depend on (1) the continuity of σ−r(Q(μ, Γ, P )) with respect to Γ

and (2) the denseness of the set G(μ). These two properties ensure that the supremum 
in (9) can be taken over Cr(r−1)/2 rather than over its dense subset G(μ). We also establish 
the validity of the reverse inequality Pr(μ) ≤ κr(μ), by constructing Δ∗ ∈ C

n×n such that

(P1) ‖Δ∗‖2 = κr(μ) and (P2) rank
(
Q(μ, Γ, P +Δ∗)

)
≤ n · r− r for some Γ ∈G(μ).

3.1. Statement of Δ∗

As shown in Appendix A, the supremum on the right-hand side of (9) is attained if 
r ≤ n. Let Γ∗ be a point where this supremum is attained. In other words,

κr(μ) = σ−r

(
Q(μ, Γ∗, P )

)
. (10)

Let U, V ∈ C
nr be a consistent pair of unit left and right singular vectors associated with 

this singular value. In particular, U and V satisfy

Q(μ, Γ∗, P )V = κr(μ)U and U∗Q(μ, Γ∗, P ) = κr(μ)V ∗. (11)

Furthermore, let U , V ∈ C
n×r represent the matrices such that vec(U) = U and 

vec(V) = V . In the subsequent two subsections, we prove that

Δ∗ := −κr(μ)UV+ (12)
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satisfies both of the properties (P1) and (P2), assuming σ−r(Q(μ, Γ∗, P )) is simple and 
rank(V) = r. We refer to these two assumptions as multiplicity and linear independence
assumptions, respectively.

3.2. Norm of Δ∗

In this subsection, we show that ‖Δ∗‖2 = κr(μ). For this purpose, it is sufficient to 
establish the validity of U∗U = V∗V, implying

∥∥UV+∥∥
2 = max

w∈Cn, ‖w‖2=1

√
w∗
(
V+
)∗U∗UV+w

= max
w∈Cn, ‖w‖2=1

√
w∗
(
V+
)∗V∗VV+w =

∥∥VV+∥∥
2 = 1.

The last equality above is due to the fact that VV+ is an orthogonal projector.
Throughout the rest of this subsection we prove U∗U = V∗V under the multiplicity 

assumption. As we shall see, this property follows from the fact that Γ∗ is a local ex-
tremum of σ(Γ ) := σ−r(Q(μ, Γ, P )). The partial derivatives of Q(μ, Γ, P ) with respect 
to the real and the imaginary parts of the components γik of Γ are given by

∂Q
∂�γik

(μ, Γ, P ) =
m∑
j=1

(
j−1∑
�=0

C�(μ, Γ )∂C(μ, Γ )
∂�γik

Cj−1−�(μ, Γ )
)T

⊗Aj

=
m∑
j=1

j−1∑
�=0

(
C�(μ, Γ )eie�k Cj−1−�(μ, Γ )

)T ⊗Aj for 1 ≤ i < k ≤ r,

∂Q
∂�γik

(μ, Γ, P ) =
m∑
j=1

(
j−1∑
�=0

C�(μ, Γ )∂C(μ, Γ )
∂�γik

Cj−1−�(μ, Γ )
)T

⊗Aj

= ı
m∑
j=1

j−1∑
�=0

(
C�(μ, Γ )eie�k Cj−1−�(μ, Γ )

)T ⊗Aj for 1 ≤ i < k ≤ r.

Here ei (ek) denotes the ith (kth) column of the r × r identity matrix. Let

G :=
m∑
j=1

j−1∑
�=0

Cj−1−�(μ, Γ∗)U∗AjVC�(μ, Γ∗). (13)

From the multiplicity assumption, the singular value σ(Γ∗) is simple, so it follows that 
the function Γ 
→ σ(Γ ) is analytic at Γ∗ with respect to �γij and �γij for each i and j. 
Furthermore,
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0 = ∂σ

∂�γik
(Γ∗)

= �
(
U∗ ∂Q

∂�γik
(μ, Γ∗, P )V

)
= �

(
vec(U)∗ ∂Q

∂�γik
(μ, Γ∗, P ) vec(V)

)

= �
(

vec(U)∗ vec
(

m∑
j=1

j−1∑
�=0

AjVC�(μ, Γ∗)eie�k Cj−1−�(μ, Γ∗)
))

= �
(

tr
(
U∗

m∑
j=1

j−1∑
�=0

AjVC�(μ, Γ∗)eie�k Cj−1−�(μ, Γ∗)
))

= �
(
e�k Gei

)
for 1 ≤ i < k ≤ r.

The last equation follows from the trace identity tr(XY ) = tr(Y X). Analogously, we 
have

0 = ∂σ

∂�γik
(Γ∗) = �

(
ıeTkGei

)
= −�

(
eTkGei

)
for 1 ≤ k < i ≤ r.

Thus, G is upper triangular. Let

M := −U∗A0V +
m∑
j=1

j−1∑
�=1

Cj−�(μ, Γ∗)U∗AjVC�(μ, Γ∗). (14)

Then, it is easily verified that

GC(μ, Γ∗) = M + U∗
m∑
j=0

AjVCj(μ, Γ∗)

= M + σ(Γ∗)U∗U ,

where the latter equality follows by writing the left-hand equation in (11) in matrix form. 
Also,

C(μ, Γ∗)G = M +
(

m∑
j=0

Cj(μ, Γ∗)U∗Aj

)
V

= M + σ(Γ∗)V∗V,

where the second equality follows from the right-hand equation in (11). Thus,

σ(Γ∗)
(
U∗U − V∗V

)
= GC(μ, Γ∗) − C(μ, Γ∗)G. (15)



466 M. Karow, E. Mengi / Linear Algebra and its Applications 466 (2015) 457–482
Since G and C(μ, Γ∗) are both upper triangular, the right-hand side of this equation 
is strictly upper triangular. The left hand-side is Hermitian. Hence, both sides vanish. 
Thus, U∗U = V∗V.

3.3. Rank of Q(μ, Γ∗, P + Δ∗)

In this subsection, we establish that rank(Q(μ, Γ∗, P + Δ∗)) ≤ n · r − r by proving

dim
{
X ∈ C

n×r
∣∣∣ m∑
j=0

AjXCj(μ, Γ∗) + Δ∗X = 0
}

≥ r (16)

under the assumption that V is full rank. Our starting point is the left-hand singular 
value equation in (11). Writing this equation as a matrix equation, and employing the 
full rank assumption on V implying V+V = I, we deduce

m∑
j=0

AjVCj(μ, Γ∗) = κr(μ)UV+V =⇒
m∑
j=0

AjVCj(μ, Γ∗) + Δ∗V = 0.

Moreover, the vector space D := {D ∈ C
r×r | C(μ, Γ∗)D − DC(μ, Γ∗) = 0} consisting 

of matrices commuting with C(μ, Γ∗) is of dimension at least r [10, Theorem 1, p. 219]. 
For all D ∈ D, we have

0 =
m∑
j=0

AjVCj(μ, Γ∗)D + Δ∗VD =
m∑
j=0

Aj(VD)Cj(μ, Γ∗) + Δ∗(VD).

Thus, each matrix in the vector space VD := {VD | D ∈ D} is a solution of the Sylvester 
equation 

∑m
j=0 AjXCj(μ, Γ∗) + Δ∗X = 0. Since the dimension of VD is at least r, we 

conclude with (16).

3.4. Main result

Let us first suppose that μ consists of distinct scalars. Then all eigenvalues of C(μ, Γ )
have algebraic and geometric multiplicities equal to one for all Γ . This means G(μ) =
Cr(r−1)/2. In particular Γ∗ ∈ G(μ). It follows from Sections 3.2 and 3.3 that Pr(μ) =
κr(μ) under multiplicity and linear independence assumptions at Γ∗.

Now suppose that there are repeated scalars in μ. In this case, consider μ̃, arbitrarily 
close to μ, that is comprised of distinct scalars. Sections 3.2 and 3.3 guarantee that 
Pr(μ̃) = κr(μ̃) under multiplicity and linear independence assumptions. The equality 
Pr(μ) = κr(μ) follows from the continuity of Pr(·) and κr(·). Thus, we arrive at the 
following main result of this paper.

Theorem 3.1 (Distance to polynomials with specified eigenvalues). Let P (λ) :=
∑m

j=0 λ
jAj

with Aj ∈ C
n×n be a matrix polynomial such that rank(Am) = n, let the set S :=
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{λ1, . . . , λs} consist of complex scalars, and let r ∈ Z
+. Consider the singular value 

optimization problem

κr(S) := inf
μ∈Sr

sup
Γ∈Cr(r−1)/2

σ−r

(
Q(μ, Γ, P )

)
. (17)

If r > n, suppose that the inner supremum is attained at an optimal μ of (17). Addition-
ally, suppose that the multiplicity and linear independence assumptions hold at optimal 
μ ∈ S

r and Γ ∈ C
r(r−1)/2 of (17). Then

(i) τr(S) = κr(S);
(ii) A minimal Δ∗ in 2-norm such that 

∑s
j=1 mj(P + Δ∗) ≥ r is given by (12) for an 

optimal μ of (17).

3.5. Simplified formula in terms of divided differences

The singular value optimization characterization (17) seems cumbersome at first. In 
this section, we show that it can be expressed in a comprehensible way using divided 
differences. Let x0, . . . , xk ∈ C be given contiguous nodes, i.e., xj = x� for 
 > j implies 
xj = xi for all i ∈ [j, 
]. The divided difference of f : C → C at these nodes is defined 
recursively by the formula [6], [26, Section 8.2.1], [12, Section B.16]

f [x0, x1, . . . , xk] =

⎧⎨⎩
f [x1,...,xk]−f [x0,...,xk−1]

xk−x0
x0 	= xk

f(k)(x0)
k! x0 = xk

(18)

and f [xj ] = f(xj) for j = 0, . . . , k.
The starting point is the theorem below regarding functions of triangular matrices [8, 

Corollary of Theorem 2], [18, Theorem 3], [12, Theorem 4.11].

Theorem 3.2 (Functions of triangular matrices). Let T be an n × n lower triangular 
matrix with eigenvalues μi = tii, and f : C → C be a function defined on the spectrum 
of T . The matrix T := f(T ) is lower triangular with Tii = f(μi) and

Ti� =
∑

(s0,s1,...,sk)

ts1s0ts2s1 . . . tsksk−1f [μs0 , . . . , μsk ] for 1 ≤ 
 < i ≤ n

where the summation is over all increasing sequences of positive integers starting with 

and ending with i.

Letting pj(x) = xj , the formula in (17) concerns the optimization of the rth smallest 
singular value of

Q(μ, Γ, P ) =
m∑

pj
(
C(μ, Γ )T

)
⊗Aj .
j=0
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Partition Q(μ, Γ, P ) into n × n blocks. By an application of Theorem 3.2, its n × n

submatrix at the ith block row and 
th block column for 1 ≤ 
 < i ≤ n is given by

m∑
j=0

(
pj
(
C(μ, Γ )T

))
i�
Aj =

m∑
j=0

∑
(s0,s1,...,sk)

γs1s0γs2s1 . . . γsksk−1pj [μs0 , . . . , μsk ]Aj

=
∑

(s0,s1,...,sk)

γs1s0γs2s1 . . . γsksk−1

(
m∑
j=0

pj [μs0 , . . . , μsk ]Aj

)

=
∑

(s0,s1,...,sk)

γs1s0γs2s1 . . . γsksk−1P [μs0 , . . . , μsk ].

Above we define P [μs0 , . . . , μsk ] by the divided difference formula (18) by replacing f
with the matrix polynomial P . On the other hand, the n ×n submatrix of Q(μ, Γ, P ) at 
the ith block row and column is given by

m∑
j=0

(
pj
(
C(μ, Γ )T

))
ii
Aj =

m∑
j=0

μj
iAj = P (μi).

Theorem 3.3 (Divided difference characterization). Let P (λ) :=
∑m

j=0 λ
jAj with Aj ∈

C
n×n be a matrix polynomial such that rank(Am) = n, let the set S := {λ1, . . . , λs}

consist of complex scalars, and let r ∈ Z
+. The matrix Q(μ, Γ, P ) ∈ C

nr×nr in the 
singular value optimization characterization (17) is block lower triangular. Furthermore, 
the n ×n submatrix of Q(μ, Γ, P ) at rows 1 +(i −1)n : in and at columns 1 +(
 −1)n : 
n
is given by ⎧⎨⎩

∑
(s0,s1,...,sk) γs1s0γs2s1 . . . γsksk−1P [μs0 , . . . , μsk ] i > 


P (μi) i = 


0 i < 


,

where the summation is over all increasing sequences of positive integers starting with 

and ending with i.

Let us focus on the singular value optimization characterization (17) for particular 
values of r. For r = 2, i.e., two eigenvalues are prescribed, this characterization takes the 
form

inf
μ1,μ2∈S

sup
γ∈C

σ−2

([
P (μ1) 0

γP [μ1, μ2] P (μ2)

])
. (19)

For r = 3, i.e., three eigenvalues are prescribed, the characterization becomes

inf
μ1,μ2,μ3∈S

sup
γ21,γ31,γ32∈C

σ−3

⎛⎜⎝
⎡⎢⎣ P (μ1) 0 0

γ21P [μ1, μ2] P (μ2) 0
γ γ P [μ , μ , μ ] + γ P [μ , μ ] γ P [μ , μ ] P (μ )

⎤⎥⎦
⎞⎟⎠ .
21 32 1 2 3 31 1 3 32 2 3 3
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When r = 2, the inner supremum can be performed over R rather than C. This is due 
to the observation that the singular values of the matrix in (19) remain the same if γ
is replaced by |γ|. Singular value optimization formulas for r > 3 can be obtained in a 
similar fashion.

3.6. Distances to multiple eigenvalues

A particular case of interest is the distance to a nearest polynomial with an eigenvalue 
of algebraic multiplicity ≥ r. This distance was initially considered by Wilkinson [31,32]
and Ruhe [27] for matrices due to its connection with the sensitivity of eigenvalues. For 
matrices the case r = 2 is studied in [4,19], the case r = 3 is the theme in [14,15], 
while an arbitrary r is worked out in [20]. For matrix polynomials, a singular value 
characterization is derived in [22] for r = 2. Let us consider the distance

Mr(μ) := inf
{
‖Δ‖2

∣∣ P (λ) + Δ has μ as an eigenvalue of algebraic multiplicity ≥ r
}
.

(20)

An application of Theorem 3.3 with an arbitrary r and S = {μ} results in the following 
characterization for this distance.

Corollary 3.4 (Distance to polynomials with multiple eigenvalues). Let P (λ) :=
∑m

j=0 λ
jAj

with Aj ∈ C
n×n be a matrix polynomial such that rank(Am) = n. Furthermore, let μ ∈ C

and r ∈ Z
+. Consider the singular value optimization problem

ξr(μ) = sup
Γ∈Cr(r−1)/2

σ−r

(
Q(μ, Γ, P )

)
, (21)

where the n ×n submatrix of Q(μ, Γ, P ) ∈ C
nr×nr at rows 1 +(i −1)n : in and at columns 

1 + (
 − 1)n : 
n is given by⎧⎪⎨⎪⎩
∑

(s0,s1,...,sk) γs1s0γs2s1 . . . γsksk−1
P (k)(μ)

k! i > 


P (μ) i = 


0 i < 


and the summation is over all increasing sequences of positive integers starting with 

and ending with i. If r > n, suppose that the supremum in (21) is attained. Suppose also 
that the multiplicity and linear independence assumptions hold at an optimal Γ in (21). 
Then Mr(μ) = ξr(μ).

Some particular instances of the singular value optimization formula (21) are as follows. 
When r = 2, that is the distance to polynomials with μ as a multiple eigenvalue is under 
consideration, the formula (21) simplifies to
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sup
γ∈C

σ−2

([
P (μ) 0
γP ′(μ) P (μ)

])
.

This formula is already derived in [22]. When r = 3, that is the distance to polynomials 
with μ as a triple eigenvalue is under consideration, we obtain

sup
γ21,γ31,γ32∈C

σ−3

⎛⎜⎝
⎡⎢⎣ P (μ) 0 0

γ21P
′(μ) P (μ) 0

γ21γ32P
′′(μ)/2 + γ31P

′(μ) γ32P
′(μ) P (μ)

⎤⎥⎦
⎞⎟⎠ .

4. Perturbations of all coefficients

In this section we consider the more general distance

τGr (S) := inf
{
‖|δP‖|

∣∣∣ s∑
j=1

mj(P + δP )≥ r, δP (λ) =
m∑
j=0

λjδAj ∃δA0, . . . , δAm ∈C
n×n

}
.

Above the norm ‖ | · ‖ | for a matrix polynomial δP (λ) =
∑m

j=0 λ
jδAj is defined by

‖|δP‖| =

√√√√ m∑
j=0

cj · ‖δAj‖2
2, where cj =

{
1/ω2

j ωj 	= 0
∞ ωj = 0

for fixed non-negative real scalars ω0, . . . , ωm. The purpose of introducing the scalars ωj

is to take into account the possibility that perturbations of all coefficients may not be 
equally significant. Specifically, if ωj = 0, then perturbations of the coefficient Aj are 
not allowed. Furthermore, if ω0 = 1 and ω1 = · · · = ωm = 0, then τGr (S) = τr(S).

It follows from Corollary 2.3 that

τGr (S) = inf
μ∈Sr

PG
r (μ)

where PG
r (μ) := inf

{
‖|δP‖|

∣∣ rank
(
Q(μ, Γ, P + δP )

)
≤ n · r − r ∀Γ ∈ G(μ)

}
.

The Eckart–Young theorem implies that for each δP satisfying rank(Q(μ, Γ, P + δP )) ≤
n · r − r, we have

σ−r

(
Q(μ, Γ, P )

)
≤
∥∥∥∥∥

m∑
j=0

(
Cj(μ, Γ )

)T ⊗ δAj

∥∥∥∥∥
2

≤
m∑
j=0

∥∥(Cj(μ, Γ )
)T ⊗ δAj

∥∥
2

=
m∑∥∥Cj(μ, Γ )

∥∥
2‖δAj‖2
j=0
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=
[
ω0‖I‖2 ω1‖C(μ, Γ )‖2 . . . ωm‖Cm(μ, Γ )‖2

]
·

⎡⎢⎢⎢⎢⎣
‖δA0‖2

ω0
‖δA1‖2

ω1
...

‖δAn‖2
ωn

⎤⎥⎥⎥⎥⎦
≤

√√√√ m∑
j=0

ω2
j

∥∥Cj(μ, Γ )
∥∥2

2 · ‖|δP‖|.

Above, we use the triangle inequality in the second inequality and the Cauchy–Schwarz 
inequality in the last inequality. Since the inequality holds for each Γ , we deduce

sup
Γ∈Cr(r−1)/2

σ−r(Q(μ, Γ, P ))√∑m
j=0 ω

2
j ‖Cj(μ, Γ )‖2

2

≤ PG
r (μ).

As for the distance, this leads to the lower bound

inf
μ∈Sr

sup
Γ∈Cr(r−1)/2

σ−r(Q(μ, Γ, P ))√∑m
j=0 ω

2
j ‖Cj(μ, Γ )‖2

2

≤ τGr (S),

which holds regardless of the multiplicity and linear independence assumptions.

5. Prescribing two eigenvalues

We now turn to the multiplicity and linear independence assumptions when two eigen-
values are prescribed. We intend to relax these assumptions in full generality in future 
work. The singular value function involved is

σ−2(μ1, μ2, γ) := σ−2
(
Q(μ1, μ2, γ, P )

)
where Q(μ1, μ2, γ, P ) =

[
P (μ1) 0

γP [μ1, μ2] P (μ2)

]

and μ1, μ2 ∈ C are the eigenvalues prescribed. Without loss of generality, we can assume 
γ is real, as the singular values of Q(μ1, μ2, γ, P ) and Q(μ1, μ2, |γ|, P ) are the same.

The result below shows that the multiplicity assumption is not necessary for the 
validity of the singular value optimization characterization. To prove it, we utilize the 
ideas explored in [25, Lemma 4].

Theorem 5.1. There exists a consistent pair consisting of a left singular vector U ∈ C
2n

and a right singular vector V ∈ C
2n associated with the singular value σ−2(μ1, μ2, γ∗) :=

supγ σ−2(μ1, μ2, γ) satisfying

V∗V = U∗U .

Above V, U ∈ C
n×2 are such that vec(V) = V , vec(U) = U .
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Proof. If the singular value σ−2(μ1, μ2, γ∗) is simple, this is already shown in Section 3.2. 
Otherwise, there exist two analytic singular value functions σ̃−j(γ), j = 1, 2 of the 
analytic matrix-valued function Q(μ1, μ2, γ, P ) satisfying σ̃−j(γ∗) = σ−2(μ1, μ2, γ∗), j =
1, 2. Their derivatives at γ∗ are given by

∂σ̃−j(γ∗)
∂γ

= �
[
Ũ∗
j

∂Q(μ1, μ2, γ, P )
∂γ

Ṽj

]
, j = 1, 2

where Ũj , Ṽj ∈ C
2n, j = 1, 2 form a pair of consistent unit left and right singular 

vectors associated with σ−2(μ1, μ2, γ∗). Furthermore, the sets {Ũ1, Ũ2} and {Ṽ1, Ṽ2} are 
orthonormal. Suppose one of the two derivatives above, ∂σ̃−j(γ∗)/∂γ, is zero. Consider 
Uj , Vj ∈ C

n×2 such that vec(Uj) = Ũj , vec(Vj) = Ṽj . The argument in Section 3.2 applies 
to deduce that G, defined as in (13) by substituting Uj , Vj for U , V, is upper triangular. 
Thus U∗

j Uj = V∗
j Vj .

If, on the other hand, neither of the derivatives ∂σ̃−j(γ∗)/∂γ, j = 1, 2 is zero, then they 
must have opposite sign. Define U(α) := αŨ1 + (1 −α)Ũ2 and V (α) := αṼ1 + (1 −α)Ṽ2. 
Observe that U(α), V (α) for each α ∈ [0, 1] form a consistent pair of a unit left, unit 
right singular vectors associated with σ−2(μ1, μ2, γ∗). Since

∂σ̃−1(γ∗)
∂γ

= �
[
U(1)∗ ∂Q(μ1, μ2, γ, P )

∂γ
V (1)

]
and

∂σ̃−2(γ∗)
∂γ

= �
[
U(0)∗ ∂Q(μ1, μ2, γ, P )

∂γ
V (0)

]
have opposite signs, we must have

�
[
U(α∗)∗

∂Q(μ1, μ2, γ, P )
∂γ

V (α∗)
]

= 0

for some α∗ ∈ (0, 1). Again, the argument in Section 3.2 applies to conclude 
U(α∗)∗U(α∗) = V(α∗)∗V(α∗) where U(α∗), V(α∗) ∈ C

n×2 satisfy vec(U(α∗)) = U(α∗), 
vec(V(α∗)) = V (α∗). �

The main route to the violation of the linear independence assumption is the attain-
ment of the supremum at γ∗ = 0, as established by Theorem 5.2 below. The argument 
here is similar to Malyshev’s argument [19].

Theorem 5.2. Suppose that P [μ1, μ2] is full rank. Let U , V ∈ C
n×2 be such that vec(U), 

vec(V) form a consistent pair of unit left and right singular vectors associated with 
σ−2(μ1, μ2, γ∗) satisfying U∗U = V∗V as in Theorem 5.1. If rank(V) = 1, then γ∗ = 0.

Proof. Let us partition U = [ u1 u2 ] and V = [ v1 v2 ] where u1, u2, v1, v2 ∈ C
n. Since 

vec(U), vec(V) are a consistent pair of right and left singular vectors, we have
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P (μ1)v1 = σ∗u1 and γ∗P [μ1, μ2]v1 + P (μ2)v2 = σ∗u2 (22)

u∗
1P (μ1) + γ∗u

∗
2P [μ1, μ2] = σ∗v

∗
1 and u∗

2P (μ2) = σ∗v
∗
2 , (23)

where σ∗ := σ−2(μ1, μ2, γ∗). Now suppose rank(V) = 1. Assuming v1 = 0 yields u1 = 0
and γ∗u∗

2P [μ1, μ2] = 0, thus γ∗ = 0. Similarly, assuming v2 = 0 yields u2 = 0 and 
γ∗P [μ1, μ2]v1 = 0, thus γ∗ = 0.

Finally, assume v1 	= 0, v2 	= 0, but rank(V) = 1. This yields v2 = cv1 and u2 = cu1
for some scalar c 	= 0. It follows from (22), by first plugging in cv1 for v2 and cu1 for u2, 
then eliminating u1 using the left-hand equation, that[

γ∗ − c(μ1 − μ2)
]
P [μ1, μ2]v1 = 0. (24)

In a similar fashion, from (23), by first eliminating v2 and u2 using v2 = cv1 and u2 = cu1, 
then eliminating v1 using the right-hand equation, we have[

(μ1 − μ2) + γ∗c
]
u∗

1P [μ1, μ2] = 0. (25)

Employing the full rank assumption on P [μ1, μ2] in (24) and (25), we deduce γ∗(1 +|c|2) =
(μ1 − μ2)(1 + |c|2) = 0, equivalently γ∗ = 0 and μ1 = μ2. �

To summarize, when two eigenvalues are prescribed, (i) the multiplicity assumption 
can be dropped and (ii) the linear independence assumption is satisfied if P [μ1, μ2] is 
full-rank and the supremum is attained at γ∗ 	= 0.

6. Numerical examples

We illustrate our main results, Theorem 3.1, Theorem 3.3 and Corollary 3.4, 
on examples that can be visualized by means of the ε-pseudospectrum of P . The 
ε-pseudospectrum of P that is relevant to these results is given by

Λε(P ) :=
⋃

‖Δ‖2≤ε

Λ(P + Δ)

=
{
z ∈ C

∣∣ σ−1
(
P (z)

)
≤ ε
}
.

Above, Λ(P ) denotes the spectrum of the polynomial P .
The numerical experiments in the forthcoming two subsections are performed on a 

5 × 5 quadratic matrix polynomial of the form P (λ) = A0 + λA + λ2A2. To be precise, 
the entries of the coefficient matrices rounded to four decimal digits are as follows:

A0 =

⎡⎢⎢⎢⎢⎢⎣
0.5377 −1.3077 −1.3499 −0.2050 0.6715
1.8339 −0.4336 3.0349 −0.1241 −1.2075

−2.2588 0.3426 0.7254 1.4897 0.7172
0.8622 3.5784 −0.0631 1.4090 1.6302
0.3188 2.7694 0.7147 1.4172 0.4889

⎤⎥⎥⎥⎥⎥⎦ ,



474 M. Karow, E. Mengi / Linear Algebra and its Applications 466 (2015) 457–482
Fig. 1. The ε-pseudospectrum of the quadratic random matrix polynomial (26) is displayed for various ε. 
The ten eigenvalues of the polynomial are marked with crosses, and each curve represents the boundary of 
the ε-pseudospectrum for a particular ε. The specific value of ε can be determined from the color-bar on 
the right. (For interpretation of the references to color in this figure legend and in other figures, the reader 
is referred to the web version of this article.)

A1 =

⎡⎢⎢⎢⎢⎢⎣
1.0347 0.8884 1.4384 −0.1022 −0.0301
0.7269 −1.1471 0.3252 −0.2414 −0.1649

−0.3034 −1.0689 −0.7549 0.3192 0.6277
0.2939 −0.8095 1.3703 0.3129 1.0933

−0.7873 −2.9443 −1.7115 −0.8649 1.1093

⎤⎥⎥⎥⎥⎥⎦ , and (26)

A2 =

⎡⎢⎢⎢⎢⎢⎣
−0.8637 1.5326 −1.0891 0.0859 −0.6156

0.0774 −0.7697 0.0326 −1.4916 0.7481
−1.2141 0.3714 0.5525 −0.7423 −0.1924
−1.1135 −0.2256 1.1006 −1.0616 0.8886
−0.0068 1.1174 1.5442 2.3505 −0.7648

⎤⎥⎥⎥⎥⎥⎦ .

The entries of each one of A0, A1, A2 ∈ R
5×5 above are selected from the normal distri-

bution with zero mean and unit variance, and independently. The ε-pseudospectrum of 
this quadratic matrix polynomial is illustrated in Fig. 1 for various ε. Since the coefficient 
matrices are real, the ε-pseudospectrum exhibits symmetry with respect to the real axis. 
This is easily confirmed by observing that P (z) = P (z). Thus σ−1(P (z)) = σ−1(P (z)) =
σ−1(P (z)).

These numerical experiments require the solutions of singular value optimization prob-
lems of the form (17). We solve the inner maximization problems using quasi-Newton 
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methods numerically. Any stationary point of the inner maximization problem in (17) is 
indeed a global maximizer, as long as the multiplicity and linear independence assump-
tions hold. We depend on the global technique described in [21] for the solutions of the 
outer minimization problems. The technique in [21] exploits the smoothness properties 
of singular value functions.

6.1. Polynomials with two prescribed eigenvalues

Consider the case when S = {λ1, λ2} and r = 2. This special case is worked out in 
detail in Section 5. The singular value optimization formula

τ2(S) = inf
μ∈S2

sup
γ

σ−2

([
P (μ1) 0

γP [μ1, μ2] P (μ2)

])

where P [μ1, μ2] =
{

P (μ1)−P (μ2)
μ1−μ2

if μ1 	= μ2

P ′(μ1) if μ1 = μ2

(27)

is shown to hold, if an optimal pair (μ∗, γ∗) with μ∗ = (μ∗1, μ∗2) is such that γ∗ 	= 0 and 
P [μ∗1, μ∗2] is full-rank.

We calculate this distance based on the formula (27) for the prescribed eigenvalues 
S = {−1 −i, −0.7 +0.4i}. The computed distance is given by τ2(S) = 0.96328. In Fig. 2 on 
the top, the inner-most curves correspond to the boundary of the ε-pseudospectrum for 
ε = τ2(S). One of the prescribed eigenvalues λ1 = −1 − i lies on one of these inner-most 
curves. In general, it is also possible that both of the prescribed eigenvalues lie strictly 
inside the ε-pseudospectrum for ε = τ2(S). This is illustrated at the bottom in Fig. 2
for the prescribed eigenvalues S = {−2 − i, 2 + 3i}. The computed distance is now given 
by τ2(S) = 1.77449. The optimal γ∗ are 0.65088 and 6.13558 for these two examples, 
respectively. For both examples, P [μ1, μ2] is full-rank for all μ ∈ S

2.

6.2. Nearest polynomials with multiple eigenvalues

By Corollary 3.4, the distance to a nearest matrix polynomial with a multiple eigen-
value is given by

inf
μ∈C

sup
γ∈R

σ−2

([
P (μ) 0
γP ′(μ) P (μ)

])
. (28)

This formula remains valid even if the multiplicity and linear independence assumptions 
are violated, as argued in [22, Remark 21]. For a matrix polynomial of size n × n and 
degree m with distinct eigenvalues, the ε-pseudospectrum for small ε is comprised of 
nm disjoint connected components. There is one connected component evolving around 
each eigenvalue as ε is increased. The smallest ε such that two components of the 
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Fig. 2. The distances to two prescribed eigenvalues are depicted on the pseudospectra. In both figures the 
inner-most curves correspond to the boundary of Λε(P ) for ε = τ2(S). The asterisks represent the prescribed 
eigenvalues S = {−1 − i, −0.7 + 0.4i} on the top and S = {−2 − i, 2 + 3i} at the bottom.
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Fig. 3. Λε(P ) of the quadratic matrix polynomial (26) is illustrated for various ε. The inner-most curves 
represent the boundary of Λε(P ) for ε equal to the distance to a nearest matrix polynomial with a multiple 
eigenvalue. The asterisk marks the multiple eigenvalue of such a nearest matrix polynomial.

ε-pseudospectrum coalesce is equal to (28). This is not an obvious fact: (i) for matrices 
this is established by Alam and Bora [3]; (ii) extensions to matrix pencils and matrix 
polynomials are proven in [2, Theorem 5.1] and [1, Theorem 7.1], respectively.1

For the quadratic matrix polynomial (26), we compute this distance as 0.3211 using 
the formula (28). Two components of the ε-pseudospectrum for ε = 0.3211 coalesce as 
expected in theory. This is illustrated in Fig. 3, where the inner-most curves represent 
the boundary of this ε-pseudospectrum. The computed optimal μ value for the outer 
minimization in (28) is given by μ∗ = 0.04882 and corresponds to the multiple eigenvalue 
of a nearest polynomial. This point, marked by an asterisk in the figure, unsurprisingly 
turns out to be a point of coalescence of two components of the ε-pseudospectrum.

Next, we consider the distance from the quadratic matrix polynomial (26) to a nearest 
one with a multiple eigenvalue of algebraic multiplicity ≥ 3. The singular value optimiza-
tion characterization derived in Section 3 for this distance is

inf
μ∈C

sup
γ21,γ31,γ32∈C

σ−3

⎛⎜⎝
⎡⎢⎣ P (μ) 0 0

γ21P
′(μ) P (μ) 0

γ21γ32P
′′(μ)/2 + γ31P

′(μ) γ32P
′(μ) P (μ)

⎤⎥⎦
⎞⎟⎠ . (29)

1 These extensions to pencils and polynomials are in the general setting when perturbations of all coeffi-
cients are admissible.
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Fig. 4. Λε,2(P ) for the quadratic matrix polynomial (26) is displayed for various ε. The inner-most curve 
represents the boundary of Λε,2(P ) for ε equal to the distance to a nearest matrix polynomial with an 
eigenvalue of algebraic multiplicity at least three. The blue asterisk (located at z = −0.2260) marks the 
triple eigenvalue of such a nearest matrix polynomial. The red asterisk (positioned at z = 0.04882) marks 
the double eigenvalue of a nearest matrix polynomial with a multiple eigenvalue.

In [20], for matrices, it was conjectured that this distance can be posed as the small-
est ε such that two components of the ε-pseudospectrum of order two coalesce. The 
ε-pseudospectrum of order two refers to the set consisting of multiple eigenvalues of all 
matrices within an ε neighborhood of the original matrix with respect to the matrix 
2-norm. This conjecture is still open. The numerical evidence is in favor of it. The gener-
alization of the ε-pseudospectrum of order two for a matrix polynomial P can be defined 
formally by

Λε,2(P ) :=
⋃

‖Δ‖2≤ε

Λ2(P + Δ)

=
{
z ∈ C

∣∣∣ sup
γ∈R

σ−2

([
P (z) 0
γP ′(z) P (z)

])
≤ ε

}
.

Above Λ2(P ) denotes the set of eigenvalues of P of algebraic multiplicity ≥ 2. The 
computed distance from the polynomial (26) to a nearest one with an eigenvalue of 
algebraic multiplicity ≥ 3 is 0.6309. In Fig. 4, a plot of Λε,2(P ) is given. Two components 
of Λε,2(P ) coalesce for ε = 0.6309. Furthermore, the optimal μ for the outer minimization 
in (29), given by μ∗ = −0.2260 and marked with a blue asterisk in the figure, appears to 
be a point of coalescence of two components of Λε,2(P ). The extension of the conjecture 
in [20] to the matrix polynomial setting seems to hold based on this example.
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7. Concluding remarks

We derived a singular value optimization characterization for the distance from a 
matrix polynomial to a nearest one with a specified number of eigenvalues belonging 
to a specified set. We restricted ourselves to square matrix polynomials. Extensions to 
rectangular matrix polynomials are straightforward as long as the leading coefficient 
matrix is full rank.

There are two important open problems that are not solved fully by this paper. First, 
it may be more desirable to admit perturbations of all coefficient matrices for some 
applications. In this case, a lower bound is deduced here, but an exact singular value 
optimization characterization is not known. Secondly, the results are proven under mul-
tiplicity and linear independence assumptions. Our experience with special instances 
indicates that the singular value optimization formulas remain valid, even when these 
assumptions are not met. These assumptions in the special case when two eigenvalues 
are prescribed are discussed here. We plan to address the multiplicity and linear inde-
pendence assumptions in full generality in future work.
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Appendix A. Proof of attainment of the supremum of the singular value function

Below we establish that the supremum

sup
Γ

σ−r

(
Q(μ, Γ, P )

)
(A.1)

is attained if r ≤ n. The block lower triangular matrix Q(μ, Γ, P ) ∈ C
nr×nr above is as 

in Theorem 3.3. The attainment result here is a generalization of the result presented in 
the appendix in [16].

Theorem A.1. Suppose that P [μk, μl] has full rank for each k and l such that k < l. We 
have

σ−j

(
Q(μ, Γ, P )

)
→ 0

as at least one of the entries of Γ tends to ∞ in modulus for each j = 1, . . . , n.
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Proof. Choose an unbounded entry γlk of Γ so that l − k is as small as possible. Thus 
|γij | is bounded for each i, j such that i − j < l − k.

Let us first suppose that none of μ1, . . . , μr is an eigenvalue of P (λ). Our approach 
is based on establishing that the largest n singular values of Q(μ, Γ, P )−1 diverge to ∞
as |γlk| → ∞. Clearly, this is equivalent to the decay of the smallest n singular values of 
Q(μ, Γ, P ) to zero. In this respect, we claim that Q(μ, Γ, P )−1 is of the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P (μ1)−1 0 0 . . . 0
X21 P (μ2)−1 0 0
X31 X32 P (μ3)−1

. . .
P (μr−1)−1 0

Xr1 Xr2 Xr(r−1) P (μr)−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Above

Xlk = −γlkP (μl)−1P [μk, μl]P (μk)−1 + Plk (A.2)

and Plk is a polynomial in γij for j = k, . . . , l − 1, i = j + 1, . . . , l and (i, j) 	= (l, k). 
Notice that all these γij that Plk depends on are bounded. The validity of (A.2) can be 
verified by induction on l− k. As the base case, we obtain an expression for X(j+1)j for 
each j by left-multiplying the (j + 1)th block row of Q(μ, Γ, P )−1 with the jth block 
column of Q(μ, Γ, P ). This results in

X(j+1)jP (μj) + P (μj+1)−1(γ(j+1)jP [μj , μj+1]
)

= 0

=⇒ X(j+1)j = −γ(j+1)jP (μj+1)−1P [μj , μj+1]P (μj)−1

as desired. For the inductive case, let us denote the submatrix at the ith block row and 
jth block column of Q(μ, Γ, P ) by Qij . Furthermore, let X�� := P (μ�)−1. We obtain an 
expression for Xij with i > j by left-multiplying the ith block row of Q(μ, Γ, P ) with 
the jth block column of Q(μ, Γ, P )−1. This yields 

∑i
�=j Qi�X�j = 0, that is

Xij = −γijP (μi)−1P [μj , μi]P (μj)−1

−
∑

(s0,s1,...,s�)

γs1s0 . . . γs�s�−1P (μi)−1P [μs0 , . . . , μs� ]P (μj)−1

−
i−1∑

�=j+1

P (μi)−1Qi�X�j .

Above the first summation is over all increasing sequences of integers of length ≥ 3
starting with j and ending with i. In the second summation, by the inductive hypothesis, 
for each 
 = j + 1, . . . , i − 1 the matrix X�j is a polynomial in γqp for p = j, . . . , 
 − 1, 
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q = p + 1, . . . , 
 and (q, p) 	= (
, j) (i.e., p ∈ [j, i − 2] and q ∈ [p + 1, i − 1] meaning 
q − p < i − j). This establishes that

Xij = −γijP (μi)−1P [μj , μi]P (μj)−1 + Pij

for some Pij , which is a polynomial in γqp for p = j, . . . , i − 1, q = p + 1, . . . , i and 
(q, p) 	= (i, j). Thus, the validity of (A.2) is confirmed.

It follows from (A.2) that σj(Xlk) → ∞ for j = 1, . . . , n, where we exploit the full 
rank assumption on P [μk, μl]. Finally, we employ the inequality

σj(Xlk) ≤ σj

(
Q(μ, Γ, P )−1)

to obtain σj(Q(μ, Γ, P )−1) → ∞ for each j = 1, . . . , n, as desired.
Now suppose μj for some j ∈ [1, r] is an eigenvalue of P (λ). For each β > 0, there 

exists Δ ∈ C
n×n such that (i) ‖Δ‖2 ≤ β and (ii) P̃ (λ) := P (λ) +Δ does not contain in its 

spectrum any μk for k = 1, . . . , r. The previous argument applies to P̃ . In particular, the 
smallest n singular values of Q(μ, Γ, P̃ ) decay to zero as |γlk| → ∞. Thus, for some δβ , 
for all γlk such that |γlk| > δβ , we have

σ−j

(
Q(μ, Γ, P̃ )

)
< β =⇒ σ−j

(
Q(μ, Γ, P )

)
< 2β.

This means that σ−j(Q(μ, Γ, P )) → 0 as |γlk| → ∞. �
Observe that the hypothesis that P [μk, μl] is full rank for each k < l is satisfied on a 
dense subset of the set of complex pairs (μk, μl). Consequently, the theorem above and 
the continuity of the singular values guarantee that the supremum (A.1) is attained for 
each μ ∈ C

r if r ≤ n.
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