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ON THE ESTIMATION OF THE DISTANCE TO
UNCONTROLLABILITY FOR HIGHER ORDER SYSTEMS∗
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Abstract. A higher order dynamical system of order k is called controllable if the trajectory of
the system as well as its first k− 1 derivatives can be adjusted to pass through any given point at a
finite time by choosing the input appropriately. The distance to uncontrollability is the norm of the
smallest perturbation yielding an uncontrollable system. We derive a singular value minimization
characterization for the distance to uncontrollability and present a trisection algorithm exploiting
the singular value characterization. The algorithm is devised for low accuracy and depends on the
extraction of the imaginary eigenvalues of even-odd matrix polynomials of degree 2k and size 2n
with n denoting the size of the system. The well-studied first order distance to uncontrollability can
be recovered as a special case.
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1. Introduction. A fundamental question concerning the kth order continuous
time-invariant dynamical system

(1.1) Kkx
(k)(t) + · · ·+K1x

′(t) +K0x(t) = Bu(t), x(0) = x′(0) = · · · = x(k−1) = 0

is the dimension of the subspace of reachable configurations at a given time t′ where
B ∈ C

n×m, K0,K1, . . .Kk ∈ C
n×n, x(t) ∈ C

n, and u(t) ∈ C
m. Here x(t) denotes the

state vector, u(t) denotes the control input, and c0, c1, . . . , ck−1 ∈ C
n are given initial

conditions. By a configuration at time t′ we mean the vector consisting of x(t′) as
well as its first k − 1 time derivatives at time t′. We define the space of reachable
configurations at time t′ as

Rt′ = {[ε0, ε1, . . . , εk−1] : ∃u(t) such that (1.1) satisfies

ε0 = x(t′), ε1 = x′(t′), . . . , εk−1 = x(k−1)(t′)}.

We have full control over the system (1.1) if all of the configurations can be attained
by choosing u(t) appropriately, that is

(1.2) dim(Rt′) = nk.

In this case the system (1.1) is called controllable. Otherwise, the system is called
uncontrollable. For convenience we will frequently refer to the tuple of matrices
(Kk, . . . ,K1,K0, B) as controllable whenever the system (1.1) is controllable.

Controllability of a first order system, specifically with k = 1, K1 = I (the identity
matrix) and K0 = −A (an arbitrary matrix), is well known [9] to be equivalent to
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either of the conditions

rank([B AB A2B · · · An−1B]) = n

or

(1.3) rank([A− λI B]) = n for all λ ∈ C.

A similar characterization for the controllability of a descriptor system with k =
1, K1 = E, and K0 = −A exists [7, 8]. In particular when E is nonsingular the
controllability reduces to the condition

(1.4) rank([A− λE B]) = n for all λ ∈ C.

When E is singular, the above condition needs to be accompanied by an additional
rank condition that involves the null space of E. Throughout this paper we will assume
that the leading coefficient is nonsingular and additionally, when perturbations to the
leading coefficient are allowed, the leading coefficient remains nonsingular under all
perturbations under consideration. (This condition is stated formally in Lemma 2.2.)
Under this nonsingularity assumption, the rank characterizations (1.3) and (1.4) can
be generalized to the higher order system and the nearby systems as follows. First
observe that (1.1) can be embedded into the first order system

(1.5) x̃′(t) = Ax̃(t) + Bu(t), x̃(0) =

⎡
⎢⎢⎢⎣

ck−1

ck−2

...
c0

⎤
⎥⎥⎥⎦ ,

where

x̃(t) =

⎡
⎢⎢⎢⎢⎢⎣

x(k−1)(t)
x(k−2)(t)
x(k−3)(t)

...
x(t)

⎤
⎥⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎢⎣

K−1
k B
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦ , and

A =

⎡
⎢⎢⎢⎢⎢⎣

−K−1
k Kk−1 −K−1

k Kk−2 . . . −K−1
k K1 −K−1

k K0

I 0 0 0
0 I 0 0
...

. . .
...

0 0 I 0

⎤
⎥⎥⎥⎥⎥⎦ .

Now the higher order system is controllable if and only if the matrix [A− λI B] has
full rank for all λ. Furthermore, for a given λ suppose

[A− λI B]

⎡
⎢⎢⎢⎣

xk−1

...
x0

y0

⎤
⎥⎥⎥⎦ = 0.

Using the definitions of A and B, it is straightforward to deduce that xj = λjx0 and

[P (λ) B]

[
x0

y0

]
= 0,
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where

(1.6) P (λ) =

k∑
j=0

λjKj .

Therefore the null spaces of [A− λI B] and [P (λ) B] have the same dimension, say
l ≥ m, which means rank([A−λI B]) = nk+m− l and rank([P (λ) B]) = n+m− l.
We conclude that the controllability of the higher order system is equivalent to

(1.7) rank([P (λ) B]) = n for all λ ∈ C

which was already mentioned in [18] without derivation.
Controllability is thus a rank determination problem, which cannot be performed

reliably in the presence of rounding errors. A controllable system may still have
nearby uncontrollable systems which potentially is an indicator of a problem with the
model. Therefore in [22] for the first order system the distance to uncontrollability
was defined as

(1.8) τ(A,B) = inf{‖[ΔA ΔB]‖ : the pair (A + ΔA,B + ΔB) is uncontrollable}

with ‖ · ‖ denoting either the spectral norm or the Frobenius norm. Later Eising
[10] proved that, in both cases, the distance to uncontrollability is equivalent to a
minimization problem involving complex vectors of size n

(1.9) τ(A,B) = inf
q∈Cn,‖q‖=1

√
q∗BB∗q + q∗A(I − qq∗)A∗q

and a singular value minimization problem, i.e.,

(1.10) τ(A,B) = inf
λ∈C

σmin([A− λI B]),

where σmin denotes the smallest singular value. The most efficient computational
techniques for the distance to uncontrollability exploit the definition (1.10), though
there are hybrid-algorithms [24] developed following Eising’s characterizations that
make use of both (1.9) and (1.10). Boley observed the connection between the sen-
sitivity of the Kronecker structure of a matrix pencil and distance to uncontrollabil-
ity and based on (1.10) suggested a practical but an imprecise way to approximate
the distance by solving a standard eigenvalue problem [1]. Byers introduced classes
of algorithms working on one dimensional or two dimensional grids [5] to minimize
σmin([A − λI B]). Later Gao and Neumann [11] and He [16] modified Byers’ idea
for more efficient computation. Byers’ grid-based algorithms and its successors are
well-suited for the computation of the distance to uncontrollability with a few digits
of precision but are too costly for high accuracy. Gu’s bisection algorithm [14] is the
first technique that retrieves the global minimum for the problem (1.10) within a fac-
tor of two without depending on a grid. Gu’s algorithm later was improved by Burke,
Lewis, and Overton [3] who suggested a trisection algorithm that computes τ(A,B)
to arbitrary precision. With O(n6) complexity1 these algorithms are applicable only
to small systems. In [15], it is described how we can benefit from inverse iteration and
shift-and-invert preconditioned Arnoldi to reduce the average running time to O(n4)

1When we refer to operation counts, we assume eigenvalue computations are atomic operations
with cubic complexity.
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making the computation of the distance to uncontrollability for medium size systems
feasible. For descriptor systems the distance to uncontrollability is discussed and a
generalization of the characterization (1.10) is provided in [6].

In this work we extend the definition (1.8) for the first order system to the higher
order system (1.1) as

τ(P,B, α) = inf{‖[ΔKk · · · ΔK1 ΔK0 ΔB]‖ : the tuple

(Kk + αkΔKk, . . . ,K0 + α0ΔK0, B + ΔB) is uncontrollable},

(1.11)

where the vector α = [αk · · · α1 α0] consists of nonnegative real numbers. Notice
that with k = 1, K1 = I, K0 = −A, and α = [0 1] we recover the definition (1.8)
for the first order system. Our motivation in introducing the scaling α is mainly
to restrict the perturbations to some of the coefficient matrices, by choosing the
scaling corresponding to other coefficients to be zero. It also serves the purpose of
weighting the perturbations to the coefficients. For instance one may be interested in
perturbations in a relative sense with respect to the norm of the coefficients in which
case it is desirable to set α = [‖Kk‖ · · · ‖K1‖ ‖K0‖].

The distance to uncontrollability of the higher order system defined by (1.11)
and the embedded system (1.5) are related yet different quantities. The closest un-
controllable descriptor system to the embedded system would usually be obtained by
perturbing the block rows of A other than the first one, so the resulting uncontrollable
system does not correspond to an embedding of a higher order system. For instance
if one of the coefficient matrices, say Kj , is considerably larger than the other coeffi-
cients as well as B in norm and K−1

k Kj is close to a multiple of the identity matrix,
then small perturbations to the (j + 1)th block row of [A B] makes it rank deficient
and the embedding uncontrollable. Typically we expect that τ(A,B) < τ(P,B, α),
since in the definition of τ(A,B) we have more degrees of freedom when choosing
perturbations. Such an example where these two distances differ significantly is given
in section 4.2. It is not clear how the existing algorithms to compute τ(A,B) can be
modified to impose the constraints on perturbations to A and B so that perturbed
systems correspond to the embeddings of higher order systems.

In the next section we provide a singular value minimization characterization
for the definition (1.11). We will see that the definition (1.11) in the spectral norm
and the Frobenius norm are equivalent just as in the first order case and the char-
acterization we derive reduces to (1.10) for the first order system. The derivation
of the singular value characterization uses the rank definition of the controllability
(1.7) for the higher order system and all nearby systems which holds only if the lead-
ing coefficient is nonsingular and sufficiently away from the closest singular matrix.
The equivalent singular value characterization is typically nonconvex. A standard
optimization technique such as BFGS will converge only to a local minimum. Apply-
ing BFGS repeatedly with various starting points might occasionally fail to return a
global minimum. Therefore in section 3 we describe a trisection algorithm locating
the global minimum of the equivalent optimization problem. This algorithm is not
a generalization of the algorithm of [3], because such an approach is too expensive.
The first few steps of the new algorithm are comparatively cheap, but as we require
more accuracy the algorithm becomes computationally intensive. With a complexity

of O
(

1
arccos(1−( tol

k )2)
n3k4

)
with tol denoting the accuracy required, it is devised for

a few digits of precision. Section 4 is devoted to numerical examples illustrating the
efficiency of the algorithm.
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2. Properties of the higher order distance to uncontrollability and a
singular value characterization. The set of controllable tuples is clearly a dense
subset of the whole space of matrix tuples. But this does not mean that the uncontrol-
lable tuples are isolated points. On the contrary there are uncontrollable subspaces.
For instance the system (1.1) with K0 = 0 and rank(B) < n is uncontrollable for all
Kk, . . . ,K1. Therefore we shall first see that τ(P,B, α) is indeed attained at some
(ΔKk, . . . ,ΔK0,ΔB). Note that throughout this work we usually use ‖ · ‖ for either
the spectral or the Frobenius norm interchangeably when the results hold for both of
the norms or when the type of the norm is clear from the context. At other times
we clarify the choice of norm using the notation ‖ · ‖2, ‖ · ‖F for the spectral and the
Frobenius norm, respectively.

Lemma 2.1. There exists an uncontrollable tuple (Kk+αkΔKk, . . . ,K0+α0ΔK0,
B + ΔB) such that τ(P,B, α) = ‖[ΔKk · · · ΔK0 ΔB]‖ and ‖ΔKj‖ ≤ ‖B‖ for all
j, ‖ΔB‖ ≤ ‖B‖.

Proof. The matrix [P (λ) 0] is rank deficient at the eigenvalues of P . Therefore
τ(P,B, α) ≤ ‖B‖ meaning we can restrict the perturbations to the ones satisfying
‖ΔKj‖ ≤ ‖B‖ and ‖ΔB‖ ≤ ‖B‖.

Furthermore the set of uncontrollable tuples is closed. To see this, consider any se-
quence {(K ′

k, . . . ,K
′
0, B

′)} of uncontrollable tuples. Now for any tuple in the sequence

define the associated polynomial as P ′(λ) =
∑k

j=0 λ
jK ′

j . The matrix [P ′(λ) B′] is
rank deficient for some λ, so all combinations of n columns of this matrix are linearly
dependent. Let us denote the l = (m+n

n ) polynomials associated with the deter-
minants of the combinations of n columns by p1(λ), p2(λ), . . . , pl(λ) in any order.
These polynomials must share a common root; otherwise [P ′(λ) B′] would not be
rank deficient for some λ. The common roots r1, r2, . . . , rl are continuous functions
of the tuple {(K ′

k, . . . ,K
′
0, B

′)} which means at any cluster point of the sequence
r1 = r2 = r3 = · · · = rl. This shows that the set is closed.

Since we are minimizing the spectral or the Frobenius norm over a compact set,
τ(P,B, α) must be attained at some ‖[ΔKk · · · ΔK0 ΔB]‖.

The main result of this section establishes the equivalence of τ(P,B, α) to the
solution of the singular value minimization problem

(2.1) ξ(P,B, α) = inf
λ∈C

σmin

([
P (λ)√
sα(|λ|)

B

])

when α0 �= 0, where

sα(|λ|) =

k∑
j=0

α2
j |λ|2j .

When establishing this equivalence, we seek the perturbations ΔP and ΔB yielding
a matrix function [(P +ΔP )(λ) B +ΔB] that is rank deficient at some λ. A relevant
problem is the distance to instability of a matrix polynomial which can be posed as

β(P, α)

= inf

⎧⎨
⎩‖[ΔKk ΔKk−1 . . .ΔK0]‖ : (P + ΔP )(λ) = 0, ∃λ ∈ Cb, ΔP =

k∑
j=0

αjλ
jΔKj

⎫⎬
⎭

where Cb is a closed subset of the complex plane corresponding to the unstable region
and ‖ · ‖ is the spectral norm. A simplified version of this problem with α equal to
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the vector of ones was studied in [13]. Let ∂Cb denote the boundary of the unstable
region. It is straightforward to modify Lemma 8 in [13] to deduce the equivalence of
β(P, α) with the minimization problem

inf
λ∈∂Cb

σmin

([
P (λ)√
sα(|λ|)

])
.

Another similar problem is the pseudospectrum of a matrix polynomial which consists
of the set of eigenvalues of nearby matrix polynomials. Let us formally define the ε-
pseudospectrum as

Λε(P, α)

=

⎧⎨
⎩λ ∈ C : (P + ΔP )(λ) = 0, ΔP =

k∑
j=0

αjλ
jΔKj , ‖[ΔKk ΔKk−1 · · · ΔK0]‖ ≤ ε

⎫⎬
⎭

where ‖ · ‖ denotes the spectral norm. Here we slightly depart from the original
definition suggested by Tisseur and Higham in [23] in the way the nearness to a
matrix polynomial is measured. (In [23] the norm of each of the perturbations ΔKj

is constrained to be less than ε.) The technique in [23] leads us to the singular value
characterization

Λε(P, α) =

{
λ ∈ C : σmin

([
P (λ)√
sα(|λ|)

])
≤ ε

}
.

The condition α0 �= 0, that is assumed throughout the derivations below, means
that the perturbations to K0 cannot be blocked and avoids the indeterminate case,
when sα(|λ|) = 0. At the end of this section we will present a more general equivalence
result that holds no matter what value is assigned to α as long as all of its components
are nonnegative. With this restriction on α0, ξ(P,B, α) must be attained either at a
finite λ or at ∞. The latter case is eliminated by the next lemma.

Lemma 2.2. Under the assumption that the leading coefficient of (1.1) is nonsin-
gular and remains nonsingular under perturbations with norm less than or equal to
αkξ(P,B, α) and α0 �= 0, the inequality

ξ(P,B, α) < lim
λ→∞

σmin

([
P (λ)√
sα(|λ|)

B

])

holds.
Proof. When αk = 0, the result immediately follows. When αk > 0, we have

σmin

([
Kk

αk
B

])
= lim

λ→∞
σmin

([
P (λ)√
sα(|λ|)

B

])
.

Suppose ξ(P,B, α) is attained at ∞ and therefore there exist u1, v ∈ C
n and u2 ∈ C

m

such that [ (
Kk

αk

)∗
B∗

]
v = ξ(P,B, α)

[
u1

u2

]
,
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where [uT
1 uT

2 ]T and v have unit length. Multiplying the upper blocks by αk, the
right-hand side by v∗v and collecting all terms on the left yields[

K∗
k − αkξ(P,B, α)u1v

∗

B∗ − ξ(P,B, α)u2v
∗

]
v = 0.

Consequently a perturbation to the leading coefficient with norm at most αkξ(P,B, α)
yields the singular matrix Kk−αkξ(P,B, α)vu∗

1, which contradicts the nonsingularity
assumption.

Theorem 2.3. With the assumptions of Lemma 2.2 for the system (1.1) the
equality τ(P,B, α) = ξ(P,B, α) holds for τ defined in (1.11) both in the spectral norm
and in the Frobenius norm.

Proof. First we assume that τ(P,B, α) in (1.11) is defined in the spectral norm
and show that ξ(P,B, α) ≤ τ(P,B, α). From Lemma 2.1, there exists ΔP (λ) =∑k

j=0 αjλ
jΔKj such that

τ(P,B, α) = ‖[ΔKk · · · ΔK0 ΔB]‖

and for some λ̃ the matrix [(P + ΔP )(λ̃) B + ΔB] is rank deficient, that is[
((P + ΔP )(λ̃))∗

B∗ + ΔB∗

]
v = 0

for some unit v ∈ C
n. We collect the perturbations on the right and divide the upper

blocks by
√
sα(|λ̃|) to obtain

⎡
⎣
(

P (λ̃)√
sα(|λ̃|)

)∗

B∗

⎤
⎦ v =

⎡
⎣
(
− ΔP (λ̃)√

sα(|λ̃|)

)∗

−ΔB∗

⎤
⎦ v.

Therefore

ξ(P,B, α) ≤ σmin

⎛
⎝
⎡
⎣ P (λ̃)√

sα(|λ̃|)
B

⎤
⎦
⎞
⎠

= σmin

⎛
⎝
⎡
⎣
(

P (λ̃)√
sα(|λ̃|)

)∗

B∗

⎤
⎦
⎞
⎠ ≤

∥∥∥∥∥∥
⎡
⎣
(

P (λ̃)√
sα(|λ̃|)

)∗

B∗

⎤
⎦ v
∥∥∥∥∥∥

=

∥∥∥∥∥∥
⎡
⎣
(

ΔP (λ̃)√
sα(|λ̃|)

)∗

ΔB∗

⎤
⎦ v
∥∥∥∥∥∥ ≤

∥∥∥∥∥∥
⎡
⎣
(

ΔP (λ̃)√
sα(|λ̃|)

)∗

ΔB∗

⎤
⎦
∥∥∥∥∥∥ =

∥∥∥∥∥∥
⎡
⎣ ΔP (λ̃)√

sα(|λ̃|)
ΔB

⎤
⎦
∥∥∥∥∥∥ .

Moreover,

⎡
⎣ ΔP (λ̃)√

sα(|λ̃|)
ΔB

⎤
⎦ = [ΔKk · · · ΔK0 ΔB]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

αkλ̃
kI√

sα(|λ̃|)
0

...
...

α1λ̃I√
sα(|λ̃|)

0

α0I√
sα(|λ̃|)

0

0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where the spectral norm of the rightmost matrix is one. It follows from the Cauchy–
Schwarz inequality that

ξ(P,B, α) ≤

∥∥∥∥∥∥
⎡
⎣ ΔP (λ̃)√

sα(|λ̃|)
ΔB

⎤
⎦
∥∥∥∥∥∥ ≤ ‖[ΔKk · · · ΔK0 ΔB]‖ = τ(P,B, α).

For the reverse inequality, still using the spectral norm, we have from Lemma 2.2
that for some ϕ,

ξ(P,B, α) = σmin

([
P (ϕ)√
sα(|ϕ|)

B

])
= σmin

⎛
⎝
⎡
⎣
(

P (ϕ)√
sα(|ϕ|)

)∗

B∗

⎤
⎦
⎞
⎠

or equivalently [
(P (ϕ))∗√
sα(|ϕ|)
B∗

]
v = ξ(P,B, α)

[
u1

u2

]
,

where v, u1 ∈ C
n, u2 ∈ C

m, and the vectors v and [uT
1 uT

2 ]T have unit length. We
multiply the right-hand side by v∗v, the upper blocks by

√
sα(|ϕ|) and collect all

terms on the left to obtain[
(P (ϕ))∗ −

√
sα(|ϕ|)ξ(P,B, α)u1v

∗

B∗ − ξ(P,B, α)u2v
∗

]
v = 0.

In other words, the matrix[
P (ϕ) −

√
sα(|ϕ|)ξ(P,B, α)vu∗

1 B − ξ(P,B, α)vu∗
2

]

is rank deficient. If we set ΔKj =
−αj ϕ̄

jξ(P,B,α)vu∗
1√

sα(|ϕ|)
and ΔB = −ξ(P,B, α)vu∗

2 and

define ΔP (λ) =
∑m

j=0 αjλ
jΔKj , then by noting

ΔP (ϕ) =
m∑
j=0

αjϕ
jΔKj = −

√
sα(|ϕ|)ξ(P,B, α)vu∗

1

we see that

[(P + ΔP )(λ) B + ΔB]

is rank deficient at λ = ϕ. The norm of the perturbations satisfies

‖[ΔKk · · · ΔK0 ΔB]‖

= ξ(P,B, α)

∥∥∥∥∥
[
αkϕ̄

k vu∗
1√

sα(|ϕ|)
. . . α0

vu∗
1√

sα(|ϕ|)
vu∗

2

]∥∥∥∥∥ ≤ ξ(P,B, α).

Therefore τ(P,B, α) ≤ ‖[ΔKk · · · ΔK0 ΔB]‖ ≤ ξ(P,B, α) as desired.
For the claim about the equality when τ(P,B, α) is defined in the Frobenius norm,

to show ξ(P,B, α) ≤ τ(P,B, α) the proof in the first part applies noting that

ξ(P,B, α) ≤ ‖[ΔKk · · · ΔK0 ΔB]‖2 ≤ ‖[ΔKk · · · ΔK0 ΔB]‖F = τ(P,B, α).
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The second part to show τ(P,B, α) ≤ ξ(P,B, α) applies without modification.
The second part of Theorem 2.3 explicitly constructed the closest uncontrollable

system which we state in the next corollary.
Corollary 2.4. Suppose the assumptions of Lemma 2.2 hold. Let ξ(P,B, α) be

attained at λ∗, and let the vectors [uT
1 uT

2 ]T and v be the unit right and left singular
vectors corresponding to

σmin

([
P (λ∗)

sα(|λ∗|)
B

])
,

respectively, where u1, v ∈ C
n and u2 ∈ C

m. A closest uncontrollable tuple is (Kk +
αkΔKk, . . . ,K0 + α0ΔK0, B + ΔB), where

ΔKj =
−αj λ̄

j
∗ξ(P,B, α)vu∗

1√
sα(|λ∗|)

, j = 0, . . . , k

and

ΔB = −ξ(P,B, α)vu∗
2.

Finally to remove the condition that α0 �= 0, clearly τ(P,B, α) depends on α0

continuously when α0 > 0 and is continuous from the right when α0 = 0. (Consider
the distance of (Kk,Kk−1, . . . , B) to any fixed uncontrollable tuple as a function of
α0 with all other αj fixed. If such a distance function is bounded around a given α0,
then it is continuous from the right and the minimum of these continuous distance
functions is τ(P,B, α) as a function of α0.) Therefore if α0 = 0, which is particularly
the case when sα(|λ|) = 0, then the limiting value of ξ(P,B, α) from the right must
approach τ(P,B, α).

Theorem 2.5. With the conditions stated in Lemma 2.2 except that α0 is allowed
to be any nonnegative real number (possibly zero), the equality

τ(P,B, [αk, αk−1, . . . , α0]) = lim
α′

0→α+
0

ξ(P,B, [αk, αk−1, . . . , α
′
0])

holds where τ is defined in either the spectral norm or the Frobenius norm.
Specifically when τ(P,B, α) = ‖[0 0 · · ·ΔB]‖ = ‖ΔB‖, that is a closest uncon-

trollable system can be obtained just by perturbing B (this has to be the case when
α = 0), the result above amounts to a minimization problem over the vectors that
are constrained to lie in the left eigenspace of P , SP , which we can see as follows. If
we restrict the perturbations only to B and without loss of generality assume α = 0,
then the definition of the higher order distance to uncontrollability simplifies as

τ(P,B) = inf{‖ΔB‖ : v∗[P (λ) B + ΔB] = 0, ∃v ∈ C
n, λ ∈ C}

= inf{‖ΔB‖ : v∗B = −v∗ΔB, v ∈ SP }.

The last minimization problem must be attained at a ΔB such that ‖ΔB‖ = ‖v∗ΔB‖,
where v ∈ SP , because otherwise we can obtain a matrix ΔB smaller in norm by
replacing all of the singular values larger than ‖v∗ΔB‖ with 0 that still satisfies the
constraint v∗B = −v∗ΔB. Therefore the last minimization problem is equivalent to

τ(P,B) = inf{‖v∗ΔB‖ : v ∈ Sp, v
∗B = −v∗ΔB} = inf

v∈Sp

‖v∗B‖.
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Now we can verify Theorem 2.5 for this special case, as indeed

lim
α0→0+

ξ(P,B, [0 0 · · · α0]) = lim
α0→0+

inf
λ∈C

σmin

([
P (λ)

α0
B

])

= lim
α0→0+

inf
λ∈C,v∈Cn

∥∥∥∥v∗
[
P (λ)

α0
B

]∥∥∥∥ .
Furthermore as α0 → 0+, any solution pair λ, v of the minimization problem must
correspond to an eigenvalue of P and the associated left eigenvector, respectively.
Therefore the minimization problem reduces to

lim
α0→0+

ξ(P,B, [0 0 · · · α0]) = inf
v∈SP

‖v∗B‖ = τ(P,B).

3. A practical algorithm exploiting the singular value characterization.
In Theorem 2.3 we established the equality

τ(P,B, α) = ξ(P,B, α) = inf
r≥0,θ∈[0,2π)

f(r, θ)

when α0 �= 0, where

f(r, θ) = σmin

([
P (reiθ)√
sα(r)

B

])
.

When α0 = 0, the limit of ξ(P,B, α) as α0 → 0+ approaches the distance to uncon-
trollability. Therefore, in essence the computation of the distance to uncontrollability
can be achieved by minimizing f(r, θ). In this section we present a trisection algo-
rithm to minimize the function f(r, θ) in polar coordinates. Let δ1 and δ2 trisect the
interval [L,U ] containing the distance to uncontrollability (see Figure 3.1). At each
iteration the algorithm updates either the upper bound to δ1 or the lower bound to
δ2 depending on whether the δ-level set of f(r, θ)

{reiθ : f(r, θ) = δ}

is intersected by any line in the set of lines passing through the origin with slopes
multiples of η, where δ and η are determined by δ1 and δ2 as

δ = δ1, η =
2

k
arccos

(
1 − 1

2

(
δ1 − δ2
ckKmax

)2
)
.

Above c is a positive real constant depending on the modulus of a point in the complex
plane where ξ(P,B, α) is attained and Kmax is a positive real constant depending on
the norms of the coefficient matrices. (The constants c and Kmax are defined precisely
in the paragraph preceding Theorem 3.2.) We say the angle η subtends all of the
components of the δ-level set of f , when no component has a pair of points whose
angles differ by more than η. At each iteration we verify only one of the following
(even though both of them may sometimes be true);

Fig. 3.1. The trisection algorithm keeps track of an interval [L,U ] containing ξ(P,B, α). At
each iteration either L is updated to δ2 or U is updated to δ1.
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• the δ-level set of f is not empty,
• the angle η subtends all of the components of the δ-level set of f .

By the definition of ξ(P,B, α) when the δ-level set is not empty

(3.1) δ = δ1 ≥ ξ(P,B, α)

and when η subtends all of the components of the δ-level set we will see below that

(3.2) ξ(P,B, α) > δ2

because of the choice of η and δ. The algorithm we present is inspired by the trisection
algorithm of [3] for the first order distance to uncontrollability. However, the technique
we use to verify which one of (3.1) and (3.2) holds is new and has no similarity with
the verification technique used in [3] to trisect an interval known to contain the first
order distance to uncontrollability. A straightforward modification of the technique for
the first order distance to uncontrollability would require the solution of polynomial
eigenvalue problems quadratic in size and double in degree as compared to the original
polynomial eigenvalue problem, which is too expensive even for systems of small size.

The trisection algorithm starts with the trivial upper bound U = σmin([Kk/αk B])
(or when αk = 0, U = σmin(B)) and the lower bound L = 0. At each iteration we
either update the upper bound to δ1 if the inequality (3.1) is verified or the lower
bound to δ2 if the inequality (3.2) is verified. First we need to be equipped with a
technique that checks for a given δ and θ whether there exists an r satisfying

(3.3) f(r, θ) = δ,

that is whether the line with slope θ passing through the origin, say L(θ), intersects
the δ-level set of f . Our first result in this section shows how this can be achieved by
solving a polynomial eigenvalue problem of double size and of double degree. Similar
results relating the δ-level set of g(x, y) = σmin(A − (x + yi)I), where A ∈ C

n×n,
x, y ∈ R and the imaginary eigenvalues of a matrix G(x, δ) of double size can be
found in [4] and [2]. More precisely these results suggest how to find the intersection
points of the δ-level set of g(x, y) and a vertical line; that is the results deduce that
if δ = g(x, y), then yi is an eigenvalue of G(x, δ).

Theorem 3.1. Given θ ∈ [0, 2π) and a positive real number δ, the matrix

[P (reiθ)√
sα(r)

B] has δ as a singular value if and only if the matrix polynomial of dou-

ble size Q(λ, θ, δ) =
∑2k

j=0 λ
jQj(θ, δ) has the imaginary eigenvalue ri where

Q0(θ, δ) =

[
−δα2

0I K∗
0

K0 BB∗/δ − δI

]
,

and, when l is odd,

Ql(θ, δ) =

[
0 (−1)(l+1)/2iK∗

l e
−ilθ

(−1)(l+1)/2iKle
ilθ 0

]
1 ≤ l ≤ k,

Ql(θ, δ) = 0 k + 1 ≤ l < 2k,

and, when l is even,

Ql(θ, δ) =

[
(−1)l/2+1δα2

l/2I (−1)l/2K∗
l e

−ilθ

(−1)l/2Kle
ilθ 0

]
1 ≤ l ≤ k,

Ql(θ, δ) =

[
(−1)l/2+1δα2

l/2I 0

0 0

]
k + 1 ≤ l ≤ 2k.
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Proof. The matrix [P (reiθ)√
sα(r)

B] has δ as a singular value if and only if both of the

equations [
P (reiθ)√
sα(r)

B

] [
v1

v2

]
= δu,

⎡
⎣
(

P (reiθ)√
sα(r)

)∗

B∗

⎤
⎦u = δ

[
v1

v2

]

are satisfied. From the bottom block of the second equation we have v2 = B∗u/δ. By
eliminating v2 from the other equation, we obtain

⎡
⎢⎣ −δI

(
P (reiθ)√

sα(r)

)∗

P (reiθ)√
sα(r)

BB∗/δ − δI

⎤
⎥⎦[ v1

u

]

=

[
−δsα(r)I

(
P (reiθ)

)∗
P (reiθ) BB∗/δ − δI

] [
v1/
√
sα(r)
u

]

=

2k∑
j=0

(ri)jQj(θ, δ)

[
v1/
√
sα(r)
u

]
= 0.

Therefore ri is an eigenvalue of Q(λ, θ, δ).

Suppose δ ≤ limλ→∞ σmin([ P (λ)√
sα(|λ|)

B]). To establish the existence of an r satis-

fying (3.3), it is sufficient that the polynomial Q(λ, θ, δ) has an imaginary eigenvalue.
When Q(λ, θ, δ) has an imaginary eigenvalue r′i, f(r′, θ) ≤ δ. Since δ ≤ f(r, θ) in the
limit as r → ∞, by the continuity of f with respect to r we deduce f(r̂, θ) = δ for
some r̂ ≥ r′.

For our trisection algorithm it suffices to check whether any of the lines L(0),L(η),
L(2η), . . . ,L(�π

η �η) intersect the δ-level set of f as illustrated in Figure 3.2. When
there is an intersection point the δ-level set is not empty; otherwise the angle η
subtends all of the components. The only part of the algorithm that is not clarified
so far is how we conclude a lower bound on ξ(P,B, α) when η subtends all of the
components, in particular the relation between δ2 in (3.2) and the pair δ and η. For
the next theorem addressing these issues let (r∗, θ∗) be a point where ξ(P,B, α) is
attained. We assume the existence of a constant c known a priori satisfying

(3.4) c ≥ max
0≤j≤k

rj∗√
sα(r∗)

= max

(
1√

sα(r∗)
,

rk∗√
sα(r∗)

)
.

Finding a constant c may be tedious in some special cases. However, when both
αk and α0 are nonzero we can set c = 1

min(α0,αk) . We furthermore use the notation

Kmax = max1≤j≤k ‖Kj‖. The algorithms in [14, 15, 3] for the first order distance
to uncontrollability benefit from an analogous result in [14] which can be stated as,
given a δ ≥ τ(A,B) for all η ∈ [0, 2(δ − τ(A,B))] there exists a pair of real numbers
x, y satisfying σmin([A− (x+ yi)I B]) = σmin([A− (x+ η+ yi)I B]) = δ. Throughout
the rest of this section we omit the parameters of ξ(P,B, α) assuming P , B, and α
are fixed.
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Fig. 3.2. To verify which one of (3.1) and (3.2) hold we check the intersection points of the
δ-level set of f and the set of lines with slopes multiples of η ranging from 0 to π. The closed curves
are the δ-level sets.

Theorem 3.2. Let

lim
λ→∞

σmin

([
P (λ)√
sα(|λ|)

B

])
≥ δ > ξ.

Given any η ∈ [0, 1
k arccos(1 − 1

2 ( δ−ξ
ckKmax

)2)], there exist r1 and r2 (depending on η)
such that

σmin

([
P (r1e

i(θ∗+η))√
sα(r1)

B

])
= δ and σmin

([
P (r2e

i(θ∗−η))√
sα(r2)

B

])
= δ.

Proof. We prove the first equality. The proof of the second equality is similar.
Assume

(3.5) σmin

([
P (rei(θ∗+η))√

sα(r)
B

])
> δ

holds for all r for an η in the interval specified. Since the singular values of a matrix
X are the eigenvalues of the symmetric matrix

[
0 X
X∗ 0

]
,
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they are globally Lipschitz with constant 1 (see Weyl’s Theorem [19, Theorem (4.3.1)])
meaning

δ − ξ < σmin

([
P (r∗e

i(θ∗+η))√
sα(r∗)

B

])
− σmin

([
P (r∗e

iθ∗)√
sα(r∗)

B

])

≤
∥∥∥∥∥
[
P (r∗e

i(θ∗+η))√
sα(r∗)

B

]
−
[
P (r∗e

iθ∗)√
sα(r∗)

B

]∥∥∥∥∥ =

∥∥∥∥∥
∑k

j=1 r
j
∗e

ijθ∗Kj(e
ijη − 1)√

sα(r∗)

∥∥∥∥∥ .
Notice that η ≤ π/k implying cos kη ≤ cos jη for j = 0, . . . , k. Therefore

kcKmax

√
2 − 2 cos kη ≥

k∑
j=1

c‖Kj

√
2 − 2 cos jη‖ ≥

∥∥∥∥∥
∑k

j=1 r
j
∗e

ijθ∗Kj(e
ijη − 1)√

sα(r∗)

∥∥∥∥∥ > δ − ξ

or

1 − 1

2

(
δ − ξ

kcKmax

)2

> cos kη.

Since the cosine function is strictly decreasing in the interval [0, π], we obtain the
contradiction that

η >
1

k
arccos

(
1 − 1

2

(
δ − ξ

kcKmax

)2
)
.

Thus, (3.5) cannot hold, so there exists r′1 satisfying

σmin

([
P (r′1e

i(θ∗+η))√
sα(r′1)

B

])
≤ δ.

The first equality must therefore hold for some r1 ≥ r′1 because of the continuity of
f(r, θ∗ + η) with respect to r and the fact that limr→∞ f(r, θ∗ + η) ≥ δ.

As we have already indicated in (3.1), we first set δ = δ1. The assignment

(3.6) η =
2

k
arccos

(
1 − 1

2

(
δ1 − δ2
ckKmax

)2
)

leads us to the lower bound (3.2) in the case that none of the lines L(0),L(η),L(2η), . . . ,
L(�π

η �η) intersect the δ-level set of f , which we can see as follows. According to The-
orem 3.2 for all θ in the interval

(3.7)

[
θ∗ −

1

k
arccos

(
1 − 1

2

(
δ − ξ

ckKmax

)2
)
, θ∗ +

1

k
arccos

(
1 − 1

2

(
δ − ξ

ckKmax

)2
)]

,

the line L(θ) intersects the δ-level set of f . When none of the lines L(0),L(η),L(2η),
. . . ,L(�π

η �η) intersects the δ-level set of f , it follows that η must be greater than the

length of the interval in (3.7), that is

η =
2

k
arccos

(
1 − 1

2

(
δ1 − δ2
ckKmax

)2
)

>
2

k
arccos

(
1 − 1

2

(
δ − ξ

ckKmax

)2
)
.
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From this inequality it is straightforward to deduce the lower bound (3.2). Algorithm
1 summarizes the approach described.

As the accuracy and efficiency of the algorithm depend on the extraction of the
imaginary eigenvalues of the matrix polynomial Q(λ, θ, δ), it is worth pointing out
how these eigenvalues can be computed numerically in a reliable fashion. The ma-
trix polynomial Q(λ, θ, δ) has a special structure; its even coefficients are Hermitian,
while its odd coefficients are skew-Hermitian. The eigenvalues of polynomials with
this structure are either imaginary or in pairs (λ,−λ̄) [20]. The standard way to
solve a polynomial eigenvalue problem of size 2n and degree 2k is to reduce it to
an equivalent generalized eigenvalue problem H − λN of size 4nk by a transforma-
tion called linearization. The most widely used linearization is the companion form
[21]. In [21] vector spaces of linearizations that are generalizations of the companion
form are introduced. There are two issues one needs to consider when selecting a
linearization. First the structure must be preserved, that is the matrices H,N in
the transformation above must be Hermitian and skew-Hermitian, respectively. Sec-

Algorithm 1 Trisection algorithm for the higher order distance to uncontrollability

Call: [L,U ] ← HODU(P ,B,α,tol,c).
Input: P ∈ C

k×n×n (the matrix polynomial), B ∈ C
n×m, α ∈ R

k

(nonnegative scaling factors, not all zero), tol (desired toler-
ance), c (a positive real number satisfying (3.4)).

Output: L,U with L < U , U − L ≤ tol. The interval [L,U ] contains
the higher order distance to uncontrollability.

Initially set

U ← σmin

([
Kk

αk
B
])

if αk > 0,

U ← σmin(B) if αk = 0,

and L ← 0.
while U − L > tol do

% Trisection step
Set δ1 ← L + 2(U − L)/3 and δ2 ← L + (U − L)/3.
Set δ ← δ1 and η as defined in (3.6)
Set Intersection ← FALSE.
for θ = 0 to π in increments of η do

Compute the eigenvalues of Q(λ, θ, δ).
if Q(λ, θ, δ) has an imaginary eigenvalue then

% An intersection point is detected
Update the upper bound, U ← δ1.
Intersection ← TRUE.
Break. (Leave the for loop.)

end if
end for
if ¬Intersection then

% No intersection point is detected
Update the lower bound, L ← δ2.

end if
end while
Return [L,U ].
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ond the eigenvalues of the pencil H− λN have different condition numbers than the
eigenvalues of the matrix polynomial Q(λ, θ, δ). Ideally we must use a linearization
preserving the structure that does not degrade the conditioning of the eigenvalues of
the original problem. The linearizations in the vector spaces specified in [21] that
preserve the even-odd structure of Q(λ, θ, δ) are identified in [20]. Furthermore in
[17] it was shown that in these vector spaces there are linearizations preserving the
conditioning of the eigenvalues of Q(λ, θ, δ). How best to find such a linearization
preserving the structure and the conditioning combined with an even-odd generalized
eigenvalue solver is still under investigation. When such an implementation is used,
simple imaginary eigenvalues remain on the imaginary axis even in the presence of
rounding errors. Therefore tolerances are not needed.

At each iteration the algorithm requires the solution of the eigenvalue problems
Q(λ, 0, δ), Q(λ, η, δ), . . . , Q(λ, �π

η �η, δ), each typically at a cost of O(n3k3). The overall
complexity of an iteration is

(3.8) O

⎛
⎜⎜⎝ n3k4

arccos

(
1 − 1

2

(
δ1−δ2
ckKmax

)2
)
⎞
⎟⎟⎠ .

It is apparent that the initial iterations for which δ1−δ2 is relatively large are cheaper,
while the last iteration for which δ1 − δ2 ≈ tol/2 is the most expensive.

4. Numerical results. All of the numerical experiments in this section are
performed with MATLAB 6.5 running on a PC with 1000 MHz Intel processor and
256MB RAM.

4.1. Computing the distance to uncontrollability for first order sys-
tems. Even though it is much slower than the methods in [14, 3, 15], the trisection
algorithm suggested can be applied to estimate the first order distance to uncontrol-
lability with k = 1, K1 = I, and α = [0 1] so that perturbations to K1 = I are not
allowed. It is well known that in this case the distance to uncontrollability is attained
at a point λ∗ with |λ∗| = c ≤ 2(‖K0‖ + ‖B‖). We choose K0 as the Toeplitz matrix

⎡
⎢⎢⎣

1 3 0 0
−2 1 3 0
0 −2 1 3
0 0 −2 1

⎤
⎥⎥⎦

and B = [2 2 2 2]T . When we require an interval of length 10−2 or less, Algorithm 1
returns [0.473, 0.481] in 12 iterations which contains the distance to uncontrollability
0.477. Table 4.1 lists the cumulative running time after each iteration in seconds.
Overall we observe that reaching one digit accuracy is considerably cheaper than two
digit accuracy. When we allow the perturbations to the leading coefficient by setting
α = [1 1], there is a closer uncontrollable system at a distance of τ(P,B, α) ≤ 0.145
which is the upper bound returned by Algorithm 1.

4.2. A quadratic brake model. In [12] the vibrations of a drum brake system
are modeled by the quadratic equation

(4.1) Mx(2)(t) + K(μ)x(t) = f(t)
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Table 4.1

Total running time of the trisection algorithm after each iteration on a Toeplitz matrix and a
vector pair.

Iteration Total running time Interval [L,U ]
1 0.400 [0.000,0.667]
2 1.680 [0.222,0.667]
3 2.510 [0.222,0.519]
4 5.369 [0.321,0.519]
5 9.670 [0.387,0.519]
6 16.110 [0.431,0.519]
7 20.140 [0.431,0.489]
8 34.580 [0.450,0.489]
9 56.770 [0.463,0.489]
10 70.470 [0.463,0.481]
11 118.40 [0.469,0.481]
12 190.93 [0.473,0.481]

Table 4.2

The intervals computed by the trisection algorithm for the brake system for various μ values in
an absolute sense in the second column and in a relative sense in the third column.

μ Interval [L,U ] (Absolute) Interval [L,U ] (Relative)
0.05 [0.051,0.059] [0.038,0.046]
0.10 [0.097,0.105] [0.071,0.079]
0.15 [0.140,0.148] [0.104,0.112]
0.20 [0.184,0.191] [0.137,0.145]
0.50 [0.418,0.426] [0.325,0.333]
1 [0.676,0.684] [0.574,0.581]
10 [0.990,0.997] [0.984,0.991]
100 [0.993,1.000] [0.987,0.994]
1000 [0.993,1.000] [0.987,0.994]

with the mass and stiffness matrices

M =

[
m 0
0 m

]
, K(μ) = g

[
(sin γ + μ cos γ) sin γ −μ− (sin γ + μ cos γ) cos γ
(μ sin γ − cos γ) sin γ 1 + (−μ sin γ + cos γ) cos γ

]
.

Suppose the force on the brake system has just the vertical component determined
by the input

f(t) =

[
fx(t)
fy(t)

]
=

[
0
1

]
u(t).

For the parameters m = 5, g = 1 and γ = π
100 , we consider two cases. First by

setting α = [1 0 1], we impose equal importance on the perturbations to the mass
and stiffness matrices. Notice that for small μ and γ, the system is close to being
uncontrollable. In the second column in Table 4.2 the intervals of length 10−2 or
less containing the distance to uncontrollability returned by Algorithm 1 are provided
for various values of μ. The algorithm iterates 16 times to reach two digit accuracy.
Second we assign scaling to the perturbations proportional to the norms of the mass
and stiffness matrices, that is α = [‖M‖ 0 ‖K‖]. The intervals returned by Algorithm
1 for this second case are given in the rightmost column in Table 4.2. As expected
the distance to uncontrollability again increases with respect to μ. The system (4.1)
is closer to being uncontrollable in a relative sense than in an absolute sense.

If we allow perturbations to all coefficients with equal scaling (e.g., α = [1 1 1]),
then usually the first order distance uncontrollability of the embedded system (1.5) is
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Table 4.3

Running time of the trisection algorithm in seconds with respect to the size and order of the
systems with normally distributed coefficient matrices.

Size / order First order Quadratic Cubic
5 10 (10) 192 (12) 1237 (13)
10 83 (12) 1392 (11) 12485 (12)
15 271 (13) 6390 (14) 37324 (12)

considerably smaller than the actual value τ(P,B, α), since the perturbations are not
constrained so that the structure of the embedding can be preserved. For instance, for
the drum brake system with α = [1 1 1] and μ = 0.1, τ(P,B, α) ∈ [0.097, 0.105] (up
to two digit accuracy it does not make any difference whether we allow perturbations
to the zero coefficient K1 or not) whereas the standard unstructured distance to
uncontrollability of the embedding lies in the interval [0.012, 0.020].

4.3. Running time with respect to the size and order of the system.
We run the trisection algorithm on systems with random coefficients of various size
and order. To be precise the entries of all of the coefficient matrices are chosen from
a normal distribution with zero mean and variance one independently. Table 4.3
illustrates how the running time in seconds varies with respect to the size and order
of the system. In all of the examples intervals of length at most 10−2 containing
the absolute distance to uncontrollability (α is the vector of ones) are returned. The
numbers in parentheses correspond to the number of trisection iterations needed. The
variation in the running time with respect to the size and order is consistent with the
complexity suggested by (3.8).

Acknowledgments. A MATLAB implemention of the trisection algorithm is
available on the author’s web page.2 Most of this work was completed during the
author’s Ph.D. study at New York University and some part was completed during
the author’s visit to the numerical analysis and modeling group at the Technical
University of Berlin. The author is grateful to Michael Overton and Daniel Kressner
for reading a preliminary version of this paper, Volker Mehrmann for pointing out the
importance of the even-odd matrix polynomials and insightful discussions regarding
preserving the even-odd structure, and two anonymous referees.

REFERENCES

[1] D. Boley, Estimating the sensitivity of the algebraic structure of pencils with simple eigenvalue
estimates, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 632–643.

[2] J. V. Burke, A. S. Lewis, and M. L. Overton, Optimization and pseudospectra, with appli-
cations to robust stability, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 80–104.

[3] J. V. Burke, A. S. Lewis, and M. L. Overton, Pseudospectral components and the distance
to uncontrollability, SIAM J. Matrix Anal. Appl., 26 (2004), pp. 350–361.

[4] R. Byers, A bisection method for measuring the distance of a stable matrix to the unstable
matrices, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 875–881.

[5] R. Byers, Detecting nearly uncontrollable pairs, in Proceedings of the International Symposium
MTNS-89, vol. III, Amsterdam, 1989, Progr. Systems Control Theory 5, M. A. Kaashoek,
J. H. van Schuppen, and A. C. M. Ran, eds., Birkhäuser Boston, Boston, 1990, pp. 447–457.
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