Math 409/509: Optimization

 $\begin{array}{c} {\rm Midterm\ \textbf{-}\ Spring\ 2011} \\ {\rm Duration:\ 75\ minutes} \end{array}$

	#1	30	
	#2	30	
Name	 #3	20	
~	#4	20	
STUDENT ID	 Σ	100	
SIGNATURE			

- Put your name and student ID in the space provided above.
- \bullet No calculators or any other electronic devices are allowed.
- \bullet This is a closed-book and closed-notes exam.
- Show all of your work; full credit will not be given for unsupported answers.

Midterm 2

Question 1. To compute $\frac{1}{\sqrt{5}}$ one approach is to apply Newton's method to function $f(x) = x^2 - \frac{1}{5}$.

- (a) (5 points.) Find the sequence $\{x_k\}$ resulting from the application of Newton's method to $f(x) = x^2 \frac{1}{5}$.
- (b) (10 points.) Derive the order of convergence for the Newton sequence $\{x_k\}$ defined in part (a) assuming $\lim_{k\to\infty} x_k = \frac{1}{\sqrt{5}}$.
- (c) (15 points) Consider in general Newton's method for a zero of a univariate function $f: \mathbb{R} \to \mathbb{R}$ that is continuously differentiable. Let p_k be the Newton step associated with a point x_k at which both $f(x_k)$ and $f'(x_k)$ are nonzero. Show that

$$\left. \frac{d}{d\alpha} |f(x_k + \alpha p_k)| \right|_{\alpha = 0} < 0.$$

Question 2. Consider a multivariate function $f: \mathbb{R}^n \to \mathbb{R}$ that is twice continuously differentiable.

- (a) (5 points) State the second order sufficient conditions so that if a point $x_* \in \mathbb{R}^n$ satisfies these conditions, then it is a local minimizer of f.
- (b) (10 points) Specifically consider the function

$$f(x_1, x_2) = 3x_1^2 - x_1x_2 + x_2^2 + 7x_1 - 3x_2 + 4.$$

Find the stationary point of f(x) and classify the stationary point as local a minimizer or not.

(c) (15 points) Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is a quadratic function of the form

$$f(x) = \frac{1}{2}x^T A x + b^T x + c$$

where A is symmetric and positive semidefinite. Prove that any stationary point of f(x) is a global minimizer.

Question 3. (20 points) Let $x_k, x_{k+1} \in \mathbb{R}^n$ be two consecutive estimates generated by a quasi-Newton method for the unconstrained optimization of a twice-continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}$. Quasi-Newton methods typically form a symmetric matrix H_{k+1} that approximates $(\nabla^2 f(x_{k+1}))^{-1}$ and satisfies the secant equation

$$H_{k+1}y_k = s_k \tag{1}$$

where $y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$ and $s_k = x_{k+1} - x_k$.

Suppose also that you are given a symmetric H_k which is an approximation for $(\nabla f^2(x_k))^{-1}$ used at the previous iteration. Find a rank-one update formula of the form

$$H_{k+1} = H_k + \sigma u u^T$$

where H_{k+1} is symmetric and satisfies (1), $\sigma \in \mathbb{R}$, and $u \in \mathbb{R}^n$. In particular you need to determine $\sigma u u^T$ in terms s_k, y_k , and H_k .

Midterm 3

Question 4. Consider the nonlinearly constrained problem

minimize_{$$x \in \mathbb{R}^2$$} $3x_1^2 + (x_2 - 1)^2$
subject $x_2 - \sin(x_1) = 0$. (2)

- (a) (10 points) Compute the tangent cone and the null space of the constraint Jacobian at $\bar{x} = (0,0)^T$ for problem (2). Is the constraint qualification satisfied at \bar{x} ?
- (b) (10 points) Write down the first order optimality conditions for problem (2) at point $\bar{x} = (0,0)$. Is (0,0) a local minimizer?