MATH 107: Introduction to Linear Algebra

Midterm 2, Part 1 - Spring 2020

#1	35	
#2	40	
#3	25	
Σ	100	

- The following time-frames are reserved for the questions.
 - Question 1, 19:00 19:30
 - Question 2, 19:30 20:00
 - Question 3, 20:30 21:00
- You must return your solution to each question by the end of the time-frame reserved for the question.

Question 1.

This question has three parts. The third part is unrelated to the first two.

(a) (20 points) Find a set of three linearly independent eigenvectors for the matrix

 $A = \begin{bmatrix} 0 & 0 & 6 \\ 1 & 0 & -1 \\ 0 & 1 & -4 \end{bmatrix}$ (1)

if one of its eigenvectors is $\begin{bmatrix} 6\\5\\1 \end{bmatrix}$, and two of its eigenvalues are -2 and -3.

(b) (8 points) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by $T(\mathbf{x}) = A\mathbf{x}$, where A is the matrix in (1).

What is the matrix for T relative to the basis composed of the eigenvectors in part (a)?

(c) (7 points) What is the dimension of the null space of $I - \lambda I$, where I is the $n \times n$ identity matrix, and λ is one of the eigenvalues of I.

What are the possible values for the dimension of the null space of $A - \lambda I$, where A is an $n \times n$ matrix, and λ is one of its eigenvalues? Explain.

Question 2.

Let $T: \mathbb{P}_2 \to \mathbb{P}_1$ be the linear transformation such that

$$T(\mathbf{p}) = \frac{d\mathbf{p}}{dt} - \frac{d^2\mathbf{p}}{dt^2}t.$$

In each part, indicate your reasoning.

- (a) (10 points) Find a basis for Kernel(T).
- (b) (10 points) What is the dimension of Range(T)?
- (c) (20 points) Find the matrix for T relative to the bases $B = \{t+t^2, 2+2t, 1-t\}$ for \mathbb{P}_2 and $C = \{t, 1+t\}$ for \mathbb{P}_1 .

Question 3. (25 points)

A matrix A is called symmetric if $A^T = A$. Moreover, the trace of a matrix is defined as the sum of its diagonal entries. Let S be the set of all 3×3 real symmetric matrices with trace equal to zero.

Indicate whether S is a vector space (over the set of real numbers, that is with the set of scalars equal to the set of real numbers).

- If S is a vector space, write down
 - (i) a basis for S, and
 - (ii) an isomorphism from S to \mathbb{R}^{κ} , where κ is the dimension of S.
- If S is not a vector space, explain why it is not.