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Question 1.

(a) (10 points) The hikers on a mountain measure the temperature at various hours
of the day as listed in the table below.

time t1 = 1 t2 = 6 t3 = 9
temperature T1 = 5 T2 = 12 T3 = 13

Pose the problem of finding the line τ(t) = x1t + x0 (representing the temper-
ature τ as a function of time t) minimizing√√√√ 3∑

i=1

(τ(ti)− Ti)2

with respect to the unknows x0, x1 ∈ R as a least-squares problem of the form
minimizex‖Ax− b‖2 .

(b) (10 points) Find x ∈ R2 such that∥∥∥∥∥∥
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 .

Question 2. Write a pseudocode to calculate the inverse A−1 ∈ Rn×n of a non-
singular matrix A ∈ Rn×n satisfying

A ·A−1 = In

where In denotes the n× n identity matrix. It is essential that the number of flops
your pseudocode performs is proportional to n3.

Question 3. Derive a quadrature formula for the integral∫ 4

0
f(x) dx

using x0 = 1 and x1 = 3 as the nodes with degree-of-exactness greater than or equal
to one.
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Question 4.
Find the monic orthogonal polynomial q2(x) = x2+α1x+α0 of degree two satisfying∫ 1

0
q2(x)p(x) dx = 0

for all p(x) ∈ P1.

Question 5. Let A,B ∈ Rn×n. A scalar µ ∈ R is called a finite real eigenvalue of
L(λ) := A + λB (where λ is a scalar) if there exists a nonzero v ∈ Rn such that

(A + µB)v = 0.

The vector v is called an eigenvector associated with µ.

(a) (10 points) Set up a system of nonlinear equations whose solution set is precisely
the set of eigenpairs (µ, v) of L(λ) where µ is a finite real eigenvalue of L(λ)
and v is a unit eigenvector associated with µ.

(b) (10 points) Derive the Newton sequence {xk} for the system of nonlinear equa-
tions in part (a). In particular determine how xk+1 and xk are related?


