MATH 171B: Introduction to Numerical Optimization

MIDTERM 1

- Duration: 50 minutes.
- No calculators.
- Show your work.
- Put your name in the box above.

Question 1. Consider the function $f: \mathbf{R} \to \mathbf{R}$ defined as $f(x) = x^p$ where $p \ge 2$ is a fixed integer.

- (a) (10 points.) Find the sequence $\{x_k\}$ generated by Newton's method. In particular write down the relation between two consecutive iterates x_{k+1} and x_k of Newton's method. (Note: Your answer must depend on p.)
- (b) (20 points.) Assume that the sequence $\{x_k\}$ in part (a) converges to the unique root zero. Derive the order of convergence for the sequence $\{x_k\}$.

Question 2. Consider the vector-valued function $F: \mathbb{R}^2 \to \mathbb{R}^2$ such that

$$F(x) = \begin{bmatrix} x_1^2 + x_2^2 - 1 \\ (x_1 - 1)^2 + (x_2 - 1)^2 - 1 \end{bmatrix}.$$

(a) (20 points) Find the linear model L(x) for F(x) about $x_0 = (1/2, 3/2)$ such that

$$L(x_0) = F(x_0)$$
 and $L'(x_0) = F'(x_0)$.

- (b) (10 points) Write down the definition of a Lipschitz continuously differentiable function from $\mathbf{R}^n \to \mathbf{R}^m$. Is F(x) Lipschitz continuously differentiable? Justify your answer.
- (c) (10 points) Assume a sequence $\{x_k\}$ generated by Newton's method for F(x) converges to the root $x_* = (0,1)$. Does the sequence $\{x_k\}$ converge to (0,1) q-linearly, q-superlinearly or q-quadratically? Explain. (Note: Don't try to derive the order of convergence. Rely on a theorem discussed in class.)

Question 3. (30 points) Given the functions

$$f(x) = x_1^2 + 4x_1x_2 + 4x_2^2 + 2x_1 - 2x_2 + 1$$

$$g(x) = x_1^2 + x_2^2 + 4x_1 - 2x_2 + 3$$

from \mathbb{R}^2 to \mathbb{R} . For each of the functions indicate whether the function has a local minimizer or not. If the function has a local minimizer, determine a local minimizer and argue why it must be a local minimizer. If the function does not have any local minimizer, provide a formal argument why the function cannot have a local minimizer.