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Abstract: We present a method for the certification of algorithms that approximate the L∞-
or H∞-norm of transfer functions of large-scale (descriptor) systems. This certification is needed
because such algorithms depend heavily on user input, and may converge to a local maximizer
of the related singular value function leading to an incorrect value, much lower than the actual
norm. Hence, we design an algorithm that determines whether a given value is less than the
L∞-norm of the transfer function under consideration, and that does not require user input
other than the system matrices. In the algorithm, we check whether a certain structured matrix
pencil has any purely imaginary eigenvalue by repeatedly applying a structure-preserving shift-
and-invert Arnoldi iteration combined with an appropriate shifting strategy.
Our algorithm consists of two stages. First, an interval on the imaginary axis which may contain
imaginary eigenvalues is determined. Then, in the second stage, a shift is chosen on this interval
and the eigenvalues closest to this shift are computed. If none of these eigenvalues is purely
imaginary, then an imaginary interval around the shift of appropriate length is removed such that
two subintervals remain. This second stage is then repeated on the remaining two subintervals
until either a purely imaginary eigenvalue is found or no critical subintervals are left.
We show the effectiveness of our method by testing it without any parameter adaptation on a
benchmark collection of large-scale systems.
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1. INTRODUCTION

Consider a real-rational transfer function

H(s) := C(sE −A)−1B +D, (1)

where E, A ∈ Rn×n are such that the pencil sE −
A ∈ R[s]n×n is regular, i. e., det(sE − A) is not the zero
polynomial, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. If H
has no poles on the imaginary axis, then the L∞-norm of
H is defined by

‖H‖L∞
:= sup

ω∈R
‖H(iω)‖2 = sup

ω∈R
σ1(H(iω)),

where σi(·) denotes the ith largest singular value of its
matrix argument. If H has no poles with nonnegative real
part, then the L∞-norm of H coincides with its H∞-norm
which is defined by
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‖H‖H∞
:= sup

λ∈C+

‖H(λ)‖2,

where C+ := {λ ∈ C | Re(λ) > 0}.
Well established and globally convergent algorithms for
computing the L∞-norm from Boyd and Balakrishnan
[1990], Bruinsma and Steinbuch [1990] as well as their
extension to the case E 6= In (where In denotes the
identity matrix in Rn×n) in Benner et al. [2012] are based
on the following fact: Let the pencil sE − A have no
imaginary eigenvalues, and define the matrix pencil

s

0 −ET 0 0
E 0 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

=:N

−

 0 −AT −CT 0
−A 0 0 −B
−C 0 γIp −D
0 −BT −DT γIm


︸ ︷︷ ︸

=:Mγ

∈ R[s]q×q, (2)

where q = 2n + m + p. Then, for ω ∈ R, the matrix
iωN − Mγ ∈ Cq×q is singular if and only if there is
an i ∈ {1, . . . , min(m, p)} such that σi(H(iω)) = γ.
If we additionally have that γ > infω∈R ‖H(iω)‖2, then
‖H‖L∞

< γ if and only if (2) has no imaginary eigenvalues.



In the numerical methods, the latter condition must be
checked repeatedly for various values of γ and, at each
such step, the computation of all imaginary eigenvalues of
sN − Mγ is required. Since these pencils are even, that
is N = −NT and Mγ = MT

γ , structured factorization
techniques discussed in Benner et al. [2016] can be used to
compute these imaginary eigenvalues in a reliable manner.
However, since sparsity cannot be exploited with such
factorization methods, these are limited to the small and
dense case with q being a few thousand at most.

Methods for computing the L∞-norm of transfer functions
with large sparse matrices E and A have been under
consideration only recently. Some are based on optimiza-
tion over spectral value sets and are only applicable to
the H∞-norm computation (Guglielmi et al. [2013], Voigt
[2015]), others rely on Newton’s method (Freitag et al.
[2014]), or use model order reduction techniques (Aliyev
et al. [2017], Schwerdtner and Voigt [2018]). The latter
class of algorithms is even applicable to irrational transfer
functions. However, all of these methods converge only to a
local maximizer of σ1(H(i·)). In other words, it cannot be
guaranteed that what they return is the globally maximal
value of σ1(H(i·)).

1.1 Problems with Local Optimality and Need for Global
Optimality Certification

We illustrate the problems that arise from convergence
to only a local maximizer with linorm subsp 1 , an imple-
mentation of the algorithm proposed in Aliyev et al. [2017].
This algorithm uses interpolatory model order reduction to
reduce the large-scale L∞-norm computation problem to
a small-scale one, which then can be dealt with using well
established and globally convergent methods. It is based on
a greedy interpolation strategy; in each iteration, a point
on the imaginary axis where the L∞-norm of the current
reduced transfer function is attained is added to the set of
interpolation points, in particular the projection subspaces
are expanded accordingly. In case of convergence, this
method converges superlinearly to a local maximum of
σ1(H(i·)). In many cases, users know the critical interval
in which the L∞-norm might be attained, and can thus
place initial interpolation points there to avoid stagnation
at only a local maximum. However, this is not the case in
general. This is illustrated in the following example.

The peec 2 system has a maximum singular value plot
consisting of many sharp peaks such that the greedy
interpolation strategy can miss certain peaks entirely. This
is shown in Fig. 1. It can be seen that the maximum
singular value of the reduced transfer function that is
obtained after running linorm subsp does not interpolate
the maximum singular value of the given transfer function
at its global maximizer on iR, and at nearby points. Hence,
a value much smaller than the actual L∞-norm is returned.
Note that the peak at which the L∞-norm is attained is so
sharp that it was not captured with the original plotting
resolution, so we had to manually add this maximizer.
Thus, if the methods described above are not started at a

1 code available at https://www.math.tu-berlin.de/index.php?

id=186267
2 example system data available at http://slicot.org/20-site/

126-benchmark-examples-for-model-reduction

0 2 4 6 8 10 12
10−6

10−5

10−4

10−3

10−2

10−1

100

ω

σ
1

σ1(Horig(i·))
σ1(Hred(i·))
‖Horig‖L∞

‖Hred‖L∞

Figure 1. Maximum singular value plots of the original
transfer function Horig (depicted with a continuous
blue line), and the final reduced transfer function Hred

after applying linorm subsp (plotted with red dashed
line) with their respective L∞-norms highlighted.

point very close to the global maximizer, such sharp peaks
are easily missed.

Therefore, it is necessary to certify the results of the algo-
rithms for large-scale L∞-norm computations, in particu-
lar to determine whether stagnation at a local maximizer
that is not globally optimal has occurred. A requirement
for certification methods is that they should not require
a priori knowledge about the system to return the correct
result.

Such a certification routine may be used in combination
with iterative algorithms that minimize the L∞-norm of a
large-scale transfer function to optimize parameters or to
synthesize robust controllers. In this case, the certification
can be run either at the end of the minimization algorithm
or every few iterations to check if, in fact, the correct
L∞-norm and not just a local maximizer of σ1(H(i·)) is
minimized. Hence, the certification does not need to be
as fast as the L∞-norm computation methods, but should
still exploit sparsity of the system matrices.

1.2 Contributions and Outline

In this paper, we make the following main contributions.

• We develop an algorithm to determine whether a
given value is lower than the L∞-norm of a transfer
function that does not require nontrivial user input.

• We implement 3 and heavily test the proposed
method on a benchmark collection of large-scale sys-
tems to show its practical applicability.

The text is organized as follows. In the next section,
we introduce the new algorithm for global optimality
certification. We first show how to compute or estimate
a critical interval in which σ1(H(i·)) may be larger than
some provided value γ. Then, we explain how this interval

3 code available at https://doi.org/10.5281/zenodo.3546221

alongside scripts to reproduce all figures in this paper
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is scanned for values ω at which σ1(H(iω)) = γ. The
technique used here is inspired by the complex frequency
hopping introduced in Chiprout and Nakhla [1995], and
employed in a similar way in Grivet-Talocia [2007] to
enforce passivity of a given system. Another approach
similar to ours is introduced in Gu et al. [2006], where
the authors propose a method, based on shift-and-invert
Arnoldi iterations, to find all real eigenvalues of a matrix in
the context of computing the distance to uncontrollability
of a linear control system. We also refer to Kressner [2006]
concerning the use of similar ideas but for a special case of
our setting, namely the distance to instability of a matrix.

The novelty of our work compared to Grivet-Talocia [2007]
and Gu et al. [2006] is (beside the fact that this concerns
the application of a similar scheme in a different context)
that we pay special attention to the structure of the
resulting eigenvalue problems during the shift-and-invert
Arnoldi iterations. This allows to distinguish between
eigenvalues that are purely imaginary and eigenvalues that
have small nonzero real parts in absolute value in a reliable
fashion. Furthermore, compared to Grivet-Talocia [2007],
we do not require the a priori knowledge of all eigenvalues
of the system matrix A, or the pencil sE −A. This makes
the proposed method applicable to the large and sparse
setting for which such information is only available, if at
all, at an excessive computational cost.

Then, in Section 3, we conduct a series of numerical
experiments in which we provide values for γ smaller and
larger than the actual L∞-norm of benchmark transfer
functions. We check whether the algorithm returns the
correct results in all such test cases. Finally, we outline
other problems for which this algorithm may be used.

2. CERTIFICATION ALGORITHM

The algorithm is divided into two parts. First, as an initial-
ization, an interval on the imaginary axis containing the
points where the norm of the transfer function might be
larger than the given value γ > 0 is determined. Secondly,
this interval is scanned in finitely many iterations until
either such a point is found or its existence is ruled out.

We make use of the fact that the pencil (2) (which we
assume to be regular) has a purely imaginary eigenvalue
if and only if γ > infω∈R ‖H(iω)‖2 is less than or equal
to the L∞-norm of the given transfer function. Hence, our
algorithm is designed to find imaginary eigenvalues of (2).

2.1 Initialization

We propose two different initialization techniques to deter-
mine an interval i[a, b] ⊆ iR in which imaginary eigenvalues
of the pencil may occur. Since all matrices E, A, B, C, D
are real, we may always choose a = 0 due to the spectral
symmetry with respect to the real axis. Thus, it remains
to find a suitable value for the upper bound b. For this, it
suffices to compute the spectral radius

ρfin(N,Mγ) := max
λ∈C
{|λ| | det(λN −Mγ) = 0} (3)

of the finite part of the spectrum of the pencil sN −Mγ .

If N is singular, this upper bound cannot be as easily
computed as the spectral radius. However, in some cases,
we can transform the pencil sN −Mγ into

ΠT
1 (sN −Mγ) Π2 = s

[
N11 0

0 0

]
−
[
M11 M12

M21 M22

]
(4)

by some permutation matrices Π1 and Π2 such that N11,
M11, M12, M21, M22 are still sparse, and N11 is invertible.
If M22 is invertible, ρfin(N,Mγ) is equal to the spectral

radius of sN11 − (M11 − M12M
−1
22 M21), which can be

computed by finding the eigenvalue with largest modulus
using the Arnoldi iteration. The Arnoldi iteration has the
tendency to converge to the outermost eigenvalues first.

Note that despite the fact that sparsity is lost in the new
matrix M11−M12M

−1
22 M21, the Arnoldi iteration can still

be applied efficiently without explicitly forming this ma-
trix, as the Arnoldi iteration requires only the products of
this matrix with vectors. Such a product can be evaluated
efficiently by three matrix-vector multiplications, and one
solve with M22. In this way, the finite eigenvalue with
largest modulus can be found efficiently, and thus the
upper bound of the critical interval b.

For invertible E, the decomposition in (4) can be com-
puted directly by using the Schur complement. Namely, if,
additionally, R := DTD− γ2Im and S := DDT− γ2Ip are
invertible, then the finite eigenvalues of sN −Mγ coincide
with the eigenvalues of

s

[
E 0
0 ET

]
−
[
A−BR−1DTC −γBR−1BT

γCTS−1C −AT + CTDR−1BT

]
.

The previously discussed ways for computing ρfin(N,Mγ)
are only efficiently applicable if N can be decomposed
into the form (4) where the transformed matrices are
sparse and M22 is invertible. This is not always the case.
Especially, if the matrix pencil sE−A has a higher index,
i. e., the infinite eigenvalues have nontrivial Jordan blocks
in the Weierstraß canonical form, then this may not be
achieved. However, in many applications such as fluid
dynamics or mechanical systems, the infinite eigenvalues
of sE − A can be implicitly deflated by applying certain
projectors, see Mehrmann and Stykel [2005] for details.

As an alternative, we also propose a heuristic to estimate
the critical interval as described in Alg. 1. This heuristic
does require a specified tolerance ε, however, it is only used
when the first option of computing the upper bound is not
applicable. Furthermore, we have successfully tested our
certification algorithm with the initialization provided in
Alg. 1 on a diverse set of test examples, all with ε = 10−6.

Algorithm 1 Heuristic to determine upper bound b

Input: Transfer function H, tolerance ε.
Output: Upper bound of the critical interval b ∈ R.

1: Set ω := 1.
2: Set G := 0p×m.
3: while ‖H(iω)−G‖2 > ε do
4: Set G := H(iω).
5: Set ω := 2ω.
6: end while
7: Set b := ω.

At the end of the initialization stage based on either
the decomposition (4) or the heuristic approach from
Alg. 1, a finite interval on the imaginary axis, in which
eigenvalues of the pencil in (2) may occur, is available.



Next, we explain how we determine whether eigenvalues
of (2) indeed exist in this interval.

2.2 Main Routine

Before discussing the critical steps of the proposed method
in detail, we first explain its main steps and how it
functions. After initialization, we are given the critical
interval i[0, b] ⊂ iR, and we must check whether there
are any eigenvalues of sN −Mγ in this interval. For this,
iθ ∈ iR is set equal to the midpoint of the critical interval.
A few eigenvalues of sN −Mγ close to iθ are computed
using the Arnoldi iteration (see, e. g., Bai et al. [2000]) in
conjunction with a spectral transformation.

If none of these eigenvalues is purely imaginary, then
we consider the disk around iθ of radius r, where r is
the distance from iθ to the eigenvalues closest to it. By
construction, this disk does not contain any eigenvalues.
Hence, the interval i(θ − r, θ + r) which is a subset of this
disk cannot contain any purely imaginary eigenvalues.

As a result, we only need to look for purely imaginary
eigenvalues in the set i[0, b] \ i(θ− r, θ+ r), which is either
empty, leading to the termination of the algorithm, or the
union of i[0, θ − r] and i[θ + r, b]. In the latter case, in a
recursive fashion, these two intervals can be checked for
purely imaginary eigenvalues in the same way.

In Fig. 2, a visualization of this method is shown. There,
the typical behavior of the algorithm can be observed.
First, the original interval is divided into smaller intervals.
These are then completely removed as the eigenvalue free
disks start to intersect.

In Alg. 2, our method is described in detail. After ini-
tialization (lines 1–2), the matrix CI with its ijth entry
denoted by CIij , and in which the bounds of the critical
intervals are stored, is formed. The number of intervals
nCI that need to be checked is the number of rows of CI.
In lines 5–7, an early stopping condition is checked. If the
norm of the transfer function evaluated at the midpoint
of the original interval is already larger than the specified
value γ, there is no need to perform a more involved search
for eigenvalues on the imaginary axis. In this case, the
algorithm terminates before entering the main loop.

The main loop of the algorithm can be separated into
two steps: an eigenvalue check (lines 9–19) and a con-
clusion step (lines 20–26). In each iteration, these two
steps are performed to determine whether the algorithm
terminates, and, if the algorithm does not terminate, the
currently checked interval is either deleted or divided into
two smaller intervals.

During the eigenvalue check, the shift iθ is chosen as the
midpoint of the currently considered interval; in Alg. 2,
this interval is always defined by the first row in CI. Then,
eigenvalues Λ close to this shift are computed by means of
the Arnoldi iteration using a spectral transformation that
is explained in Section 2.3. Finally, for every imaginary
eigenvalue in Λ, we check whether the norm of the transfer
function is in fact larger than γ around the imaginary
eigenvalue by sampling the transfer function around this
computed eigenvalue in an interval on the imaginary axis
of length 2 · εeigs. Here, εeigs is the convergence tolerance of

the Arnoldi method. The necessity for this extra check is
further explained in the next section.

In the conclusion step, first the radius r of the eigenvalue
free disk around iθ is computed as the minimum distance of
iθ to an eigenvalue in Λ. Then the bounds of the remaining
subintervals are appended to the interval matrix CI if they
are nonempty. Finally, the considered interval is removed
from CI.

Algorithm 2 Certification routine to check ‖H‖L∞
> γ

Input: Descriptor system matrices E, A, B, C, D defin-
ing (1), suspected L∞-norm value γ > 0.

Output: Returns true, if ‖H‖L∞
> γ; false otherwise.

1: Construct even pencil sN −Mγ as in (2).
2: Estimate upper bound b as in Section 2.1.
3: Set critical interval matrix CI := [0 b].
4: Set nCI := 1.
5: if ‖C(i b2E −A)−1B +D‖2 > γ then
6: Return true.
7: end if
8: while nCI > 0 do
9: Set θ := (CI11 +CI12)/2.

10: Compute Λ := {λ1, . . . , λ`} = eigenvalues of sN −
Mγ close to iθ.

11: for λi with Re(λi) = 0 do
12: Set h = − εeigs.
13: for k = 1, 2, 3 do
14: if ‖C((λi + ih)E −A)−1B +D‖2 > γ then
15: Return true.
16: end if
17: Set h := h+ εeigs.
18: end for
19: end for
20: Set r := min {|λ1 − iθ|, . . . , |λ` − iθ|}.
21: if r < (CI12−CI11) /2 then

22: Set C̃I :=

[
CI11 θ − r
θ + r CI12

]
.

23: Set CI :=

[
CI

C̃I

]
.

24: Set nCI := nCI + 2.
25: end if
26: Delete first row of CI and set nCI := nCI − 1.
27: end while
28: Return false.

2.3 Spectral Transformation and Eigenvalue Computation

The spectrum of a real, even pencil such as (2) is sym-
metric with respect to both the imaginary and real axis,
such that for an eigenvalue λi of (2), we have that −λi, λi,
and −λi are also eigenvalues of (2). This symmetry can be
be exploited during eigenvalue computation to distinguish
imaginary eigenvalues from eigenvalues that are just close
to the imaginary axis. As the identification of imaginary
eigenvalues is an important part of our method, symmetry
preservation is essential.

Since with the Arnoldi iteration the eigenvalues largest
in modulus are computed, a spectral transformation must
be applied when the eigenvalues closest to some shift
ξ are desired. The standard transformation used is the
shift-and-invert transformation, which results in the pencil
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Figure 2. Iterations of Alg. 2 for the build system (available in the SLICOT benchmark collection for model reduction)
with γ = 5.803963 · 10−3. The eigenvalues of sN −Mγ and the shifts are depicted with blue crosses and red circles,
respectively, the critical intervals are shown as red lines, and the blue circles represent the eigenvalue free regions.

s(Mγ − ξN) − N with the eigenvalue ηi := (λi − ξ)−1,
corresponding to an eigenvalue λi of (2).

This transformation, however, does not preserve the spec-
tral symmetry of (2). As a result, the imaginary eigen-
values of the original pencil are usually approximated
by eigenvalues that are just close to the imaginary axis.
This causes difficulties, since in Alg. 2 imaginary eigenval-
ues need to be distinguished from eigenvalues that have
nonzero real parts small in absolute value.

Instead, we use the symmetry-preserving transformation
from Mehrmann and Watkins [2001] and from Mehrmann
et al. [2012] for singular N , resulting in the matrix eigen-
value problem (ηI −K(ξ))x = 0 for x 6= 0, with

K(ξ) := (Mγ + ξN)−1N(Mγ − ξN)−1N. (5)

It can be verified that if λi is an eigenvalue of sN −Mγ ,
then ηi = 1/(λ2i−ξ2) is an eigenvalue of K(ξ). This implies
that the eigenvalues λi and −λi of (2) are mapped onto
the same eigenvalue of K(ξ). Note that also the spectral
symmetry with respect to the real axis is preserved by this
transformation for imaginary or real ξ, since it is shown in
Mehrmann et al. [2012] that then K(ξ) is a real matrix.

The benefit of using the transformation (5) over the classi-
cal shift-and-invert strategy is that computed eigenvalues
that are originally on the imaginary axis have a zero real
part exactly when the transformation (5) is used in Alg. 2,
so we do not need to set a somewhat arbitrary tolerance
to distinguish imaginary eigenvalues from the rest of the
spectrum. On the other hand, for the eigenvalues com-
puted by the classical shift-and-invert Arnoldi, the spectral
symmetry is lost and the computed eigenvalues are not
located precisely on the imaginary axis.

One problem that must still be addressed is the occurrence
of an eigenvalue pair close to the imaginary axis which

may be computed as an imaginary eigenvalue pair due
to numerical errors. This can happen despite symmetry
preservation because the symmetry is not broken if both
eigenvalues in that pair become purely imaginary. For our
method, this implies that even though γ > ‖H‖L∞

, it
may happen that in line 10 of Alg. 2 eigenvalues with
zero real part are returned. Therefore, an extra check is
performed in lines 11–19, in which the transfer function
is evaluated around the computed imaginary eigenvalues
to check whether the transfer function evaluated near the
imaginary eigenvalue has in fact a norm larger than γ.

3. NUMERICAL EXPERIMENTS

The test setup for testing our method is straightforward.
We test the method on a set of 33 benchmark examples
taken from Chahlaoui and Van Dooren [2002], Rommes
and Martins [2006], Martins et al. [2007], Freitas et al.
[2008] that are regularly used to test L∞-norm computa-
tions and model order reduction methods. Furthermore, we
choose a factor αj from the set of values {α1 . . . , α8} :={

10−5, 10−3, 10−1, 0.99, 1.01, 1.1, 2, 10
}

.

Then, for all benchmark systems with system matri-
ces Ei, Ai, Bi, Ci, Di and transfer function Hi, we pass
Ei, Ai, Bi, Ci, and Di, as well as a value γj := αj ·‖Hi‖L∞
for i = 1, . . . , 33 and j = 1, . . . , 8 to our implementation
of Alg. 2. In this way, we obtain 264 test examples. The
verification condition is that Alg. 2 must return true for
αj < 1 and false for αj > 1.

Our algorithm returns the correct results for all 264
test cases. The tests are available with the MATLAB
implementation of our method. In our implementation,
we remove intervals of length smaller than εeigs from CI.
These small intervals only occur due to errors in the
eigenvalue computation, and are often close to eigenvalue



Table 1. Cumulative runtimes of Alg. 1 and 2

runtime in seconds
system dimension q α3 α4 α5

build 98 0.09 0.18 0.27
peec 962 1.79 8.21 37.39

M80PI n1 8062 94.16 286.39 659.82
M80PI n 8370 92.90 353.23 653.40

bips98 1450 22618 11.19 37.15 115.37
xingo afonso itaipu 26502 25.62 33.80 89.31

mimo8x8 system 26634 26.28 35.98 102.67
mimo46x46 system 26592 41.18 41.10 110.12

bips07 3078 42264 10.99 37.92 95.17

pairs with small nonzero real parts. If a shift is placed
close to such a pair, the matrix K(ξ) is ill-conditioned
and eigs may fail (since the desired accuracy cannot be
achieved). Without the removal of these small intervals,
our algorithm terminates with an exception during the
execution of the MATLAB function eigs for 7 out of
264 examples. With the removal enabled, all test examples
pass. We report the runtimes for a few examples in Table 1.
All examples have been solved in several minutes at most.
The runtime does not scale with the problem dimension,
but is highly dependent on the particular problem.

4. CONCLUSION AND OUTLOOK

In this work, we have developed and implemented a new
method for determining whether a large and sparse even
matrix pencil has imaginary eigenvalues. We have illus-
trated that the method facilitates the reliable computation
of the L∞-norm in the large-scale setting. Further applica-
tions include the verification of passivity or contractivity
of linear control systems, as well as checking feasibility of
linear-quadratic regular problems, see Benner et al. [2015].
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