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Non-smoothness at optimal points is a common phenomenon in many eigenvalue optimization problems.
We consider two recent algorithms to minimize the largest eigenvalue of a Hermitian matrix dependent
on one parameter, both proven to be globally convergent unaffected by non-smoothness. One of these
models the eigenvalue function with a piece-wise quadratic function, and is effective in dealing with
non-convex problems. The other projects the Hermitian matrix into subspaces formed of eigenvectors,
and is effective in dealing with large-scale problems. We generalize the latter slightly to cope with non-
smoothness. For both algorithms, we analyze the rate-of-convergence in the non-smooth setting, when
the largest eigenvalue is multiple at the minimizer and zero is strictly in the interior of the generalized
Clarke derivative, and prove that both algorithms converge rapidly. The algorithms are applied to, and the
deduced results are illustrated on the computation of the inner numerical radius, the modulus of the point
on the boundary of the field of values closest to the origin, which carries significance for instance for the
numerical solution of a symmetric definite generalized eigenvalue problem and the iterative solution of a
saddle point linear system.

Keywords: eigenvalue optimization; non-smooth optimization; global optimization; rate-of-convergence;
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1. Introduction

A pair of Hermitian matrices A,B ∈ Cn×n is said to be definite if

γ(A,B) := min
z∈Cn,‖z‖2=1

√
(z∗Az)2 + (z∗Bz)2

= min
z∈Cn,‖z‖2=1

|z∗(A+ iB)z| = min{|w| | w ∈ F(A+ iB)} > 0,
(1.1)

where F(C) denotes the field of values of C ∈ Cn×n, the subset of C defined by

F(C) := {z∗Cz ∈ C | z ∈ Cn, ‖z‖2 = 1} .

The definiteness of (A,B) carries significance for the numerical solution of the generalized eigen-
value problem Ax = λBx (Cheng & Higham (1999); Davies et al. (2001)). If (A,B) is known to be
definite, the generalized eigenvalue problem can be transformed into another related problem Ãx = λ B̃x
with λmin(B̃) = γ(A,B); indeed the eigenvalues of the original problem and the transformed problem are
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related by a rotation. The transformed problem can be solved by calculating a Cholesky factorization
B̃ = R∗R, and computing the eigenvalues of the Hermitian matrix R−∗ÃR−1. This is a plausible proce-
dure with a small backward error provided γ(A,B) is not small. Two other application areas concern
Hermitian quadratic eigenvalue problems, in particular checking the hyperbolicity of such problems
(Higham et al. (2002)), and saddle point linear systems with symmetric indefinite coefficient matrices,
in particular setting up a conjugate gradient iteration for such systems (Liesen & Parlett (2008)).

Motivated by such applications, Cheng and Higham have focused on procedures for efficient deter-
mination of whether a given pair (A,B) of Hermitian matrices is definite or not (see Cheng & Higham
(1999)). If the Hermitian pair is not definite, in the same paper, the authors have also considered the
computation of a pair (A+∆A∗,B+∆B∗) where (∆A∗,∆B∗) solves the following minimization problem
for a prescribed positive real number δ :

dδ (A,B) := min
{∥∥[ ∆A ∆B

]∥∥
2

∣∣∣∣ γ(A+∆A,B+∆B) > δ

}
. (1.2)

It is shown in Cheng & Higham (1999) that whether the pair (A,B) is definite or not, and, if it is not
definite, the optimal (∆A∗,∆B∗) can be determined by the global minimizer of

min
θ∈[0,2π]

λmax(Acosθ +Bsinθ), (1.3)

where and elsewhere λmax(·) represents the largest eigenvalue of its matrix argument. The eigenvalue
optimization problem in (1.3) is non-convex, indeed it is argued in Cheng & Higham (1999) that the
major challenge for the estimation of dδ (A,B) and the optimizer (∆A∗,∆B∗) is the global solution of
this problem. Geometrically, ζ (A,B) := |minθ∈[0,2π] λmax(Acosθ +Bsinθ)| corresponds to the inner
numerical radius of A+ iB, the modulus of the point on the boundary of F(A+ iB) closest to the origin.

The optimization problem in (1.3) is only a special instance of a family of eigenvalue optimization
problems

min
ω∈Ω

λmax(A (ω)), A (ω) :=
κ

∑
j=1

f j(ω)A j, (1.4)

where Ω is a closed interval in R, the matrices A1, . . . ,Aκ ∈ Cn×n are Hermitian, and the functions
f1, . . . , fκ : Ω →R are real analytic on their domain Ω , which is an open interval in R containing Ω . An
eigenvalue optimization problem of the form (1.4) is typically non-convex excluding the very special
affine case A (ω) = A1 +ωA2.

Recently we have proposed general algorithms (Mengi et al. (2014); Kangal et al. (2018)) that are in
many cases effective in solving non-convex eigenvalue optimization problems of the form (1.4) globally.
The former of these in Mengi et al. (2014), an adaptation of the algorithm in Breiman & Cutler (1993)
for eigenvalue optimization, employs piece-wise quadratic functions to model the objective eigenvalue
function, and is meant for small- to medium-scale problems. The latter in Kangal et al. (2018) intro-
duces a subspace framework to deal with problems when the size of A (ω) is large. It repeatedly projects
A (ω) to small subspaces, and minimizes the largest eigenvalue of the resulting projected matrix-valued
function. Such subspace ideas have also been explored in special contexts such as convex semidefinite
programs (Helmberg & Rendl (2000); Helmberg et al. (2014)), and the computation of the pseudospec-
tral abscissa (Kressner & Vandereycken (2014); Meerbergen et al. (2017)).
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1.1 Contributions

Here we present the adaptations of the algorithms in Mengi et al. (2014); Kangal et al. (2018) for the
solution of (1.3). This paves the way for efficient determination of whether a Hermitian pair (A,B) is
definite or not, as well as efficient computation of the distance dδ (A,B) in (1.2) and a nearest definite
pair (Ã, B̃) such that γ(Ã, B̃) > δ . The adaptation of the algorithm in Mengi et al. (2014) is guaranteed
to converge to the global minimizer of (1.3), and performs well in practice on small- to medium-scale
problems. The subspace framework in Kangal et al. (2018) extends the range of applicability to quite
large Hermitian matrix pairs.

Important contributions of this work are on the theoretical side. Global convergence of the algo-
rithms has already been established; the subspace framework in Kangal et al. (2018) is globally conver-
gent for the family of optimization problems (1.4) provided the projected problems are solved globally,
whereas the algorithm in Mengi et al. (2014) is globally convergent for problems of the form (1.4) pro-
vided a global lower bound is known on λ ′′max(A (ω)) over all ω where λmax(A (ω)) is differentiable.
We are also quite informed about the rate-of-convergences of these algorithms in the smooth case when
λmax(A (ω∗)) is simple at a converged global minimizer ω∗; the subspace framework converges at a su-
perlinear rate (see Kangal et al. (2018); Kressner et al. (2018)) both in theory and in practice, while we
observe that the algorithm in Mengi et al. (2014) converges at a linear rate (even though a formal proof
is open, numerical experiments indicate a linear convergence convincingly). However, little is known
about the rate-of-convergences in the presence of non-smoothness when λmax(A (ω∗)) is not simple. In
this work, we analyze the rate-of-convergences of the algorithms in Mengi et al. (2014) and in Kangal
et al. (2018); Kressner et al. (2018) on the problems of the form (1.4) in the non-smooth setting, when
λmax(A (ω∗)) is multiple. We prove, in this non-smooth case and under generic assumptions, that if the
maximum of the errors of the last two iterates of the algorithm in Mengi et al. (2014) is h, the error of the
next iterate is O(h2). We also generalize the subspace framework in Kangal et al. (2018) to cope with
the non-smooth setting, and show rigorously that the iterates of the proposed generalized framework
converge at a quadratic rate in the presence of non-smoothness generically.

1.2 Outline

We present our work in the following order. Background on definite pairs and on the distance dδ (A,B)
are summarized in Section 2; in particular the links between these concepts, the eigenvalue optimization
problem (1.3) and the inner numerical radius of A+ iB have been discussed. The crucial task is the
solution of (1.3), equivalently the computation of the inner numerical radius of A+ iB. In Section 3,
the algorithm in Mengi et al. (2014) based on piece-wise quadratic support functions is presented in
the general scope of (1.4) pointing out how it can be adapted for (1.3) to compute the inner numerical
radii for small to medium size matrices. The remarkable contribution is a rate-of-convergence analysis
in Section 3.2 for the piece-wise quadratic support based algorithm in the non-smooth setting when
λmax(A (ω)) is multiple and not differentiable at a converged global minimizer. The analysis indicates
a rapid convergence, surprisingly faster than the smooth case when λmax(A (ω)) is simple at the min-
imizer. This is followed by Section 4 which is devoted to the subspace framework to deal with (1.4)
when the Hermitian matrices A1, . . . ,Aκ are large; the proposed framework generalizes the basic one
in Kangal et al. (2018), Kressner et al. (2018) taking into account also the possible non-smoothness at
the optimal point. It is in particular applicable to solve (1.3) and to compute the inner numerical radius
of A+ iB for large A, B . In Section 4.3, we establish a quadratic rate-of-convergence of the proposed
subspace framework formally in the non-smooth case, which was left open by the previous works. Nu-
merical examples at the ends of Sections 3 and 4 illustrate the efficiency of the algorithms, and confirm
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that the rate-of-convergences established in theory are realized in practice.

2. Background on Definite Pairs and Nearest Definite Pairs

2.1 Generalized Eigenvalue Problems involving Definite Hermitian Pairs

As argued in the opening, the significance of the definiteness of (A,B) is that, it turns out there exists
a related Hermitian pair (Ã, B̃) such that λmin(B̃) = γ(A,B). Such a (Ã, B̃) can be obtained by applying
rotations to the field of values as explained next.

It can be readily seen that F(e−iθ (A+ iB)) = e−iθ F(A+ iB), so F(e−iθ (A+ iB)) is obtained from
F(A+ iB) by a rotation in the complex plane in the clock-wise direction by the angle of θ . Thus, setting
(A(θ),B(θ)) to the Hermitian pair satisfying A(θ)+ iB(θ) = e−iθ (A+ iB), that is

A(θ) := Acosθ +Bsinθ and B(θ) := −Asinθ +Bcosθ ,

we must have γ(A,B) = γ(A(θ),B(θ)) > λmin(B(θ)) for all θ ∈ [0,2π]. Furthermore, it can be shown
that γ(A,B)= γ(A(ϕ),B(ϕ))= λmin(B(ϕ)) for ϕ :=−π/2+φ where φ ∈ [0,2π] is such that γ(A,B)eiφ =
argminz∈F(A+iB) |z|. Let us also remark that there is an explicit one-to-one correspondence between the
eigenvalues of (A,B) and (A(ϕ),B(ϕ)); for details, we refer to Cheng & Higham (1999); Stewart (1979).

The optimal ϕ := φ − π/2 in the discussions above is defined in terms of φ ∈ [0,2π] satisfying
γ(A,B)eiφ = argminz∈F(A+iB) |z|. Such a φ can be obtained by solving the optimization problem in
(1.3); indeed φ = θ∗+π for

θ∗ := argmin
θ∈[0,2π]

λmax(A(θ) := Acosθ +Bsinθ), (2.1)

(Cheng & Higham (1999)), which in turn implies ϕ = θ∗+π/2.
In summary, the Hermitian matrices Ã := A(ϕ) and B̃ := B(ϕ) for the angle ϕ = θ∗+π/2 satisfy

Ã+ iB̃ = e−iϕ(A+ iB) with λmin(B̃) = γ(A,B).

2.2 Inner Numerical Radius

In geometric terms, regardless of (A,B) is definite or not, the globally smallest value of (1.3) in absolute
value corresponds to the modulus of the point on the boundary of F(A + iB) closest to the origin.
Formally,

ζ (A,B) := min{|z| | z is on the boundary of F(A+ iB)}

=

∣∣∣∣ min
θ∈[0,2π]

λmax(Acosθ +Bsinθ)

∣∣∣∣ . (2.2)

The quantity ζ (A,B) is called the inner numerical radius of A+ iB.
The definiteness of a Hermitian pair (A,B) is equivalent to whether ζ (A,B) = γ(A,B), and this can

be determined by the sign of λ∗ := minθ∈[0,2π] λmax(Acosθ +Bsinθ). In particular, the pair (A,B) is
definite if and only if λ∗ < 0 (Cheng & Higham (1999)).

2.3 Nearest Definite Pairs

For a prescribed real number δ > 0, we consider dδ (A,B) defined as in (1.2). It is shown in Cheng &
Higham (1999) that

dδ (A,B) = max{δ +λ∗,0} (2.3)
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where λ∗ :=minθ∈[0,2π] λmax(Acosθ +Bsinθ). Moreover, letting θ∗ as in (2.1), and Acosθ∗+Bsinθ∗=
Qdiag(λi)Q∗ with λn 6 · · ·6 λ1 be a spectral decomposition, an optimal solution (∆A∗,∆B∗) for (1.2)
is given by

∆A∗ = cosθ∗Qdiag(min{−δ −λi,0})Q∗, ∆B∗ = sinθ∗Qdiag(min{−δ −λi,0})Q∗. (2.4)

It is also deduced in Cheng & Higham (1999) that

γ(A+∆A∗,B+∆B∗)eiφ = argmin
z∈F(A+∆A∗+i(B+∆B∗))

|z|

for φ = θ∗+π . Now it follows from the discussions in Section 2.1 that, letting Ã, B̃ such that Ã+ iB̃ =
e−iϕ(A+∆A∗+ i(B+∆B∗)) for ϕ = θ∗+π/2, we have λmin(B̃) = γ(A+∆A∗,B+∆B∗)> δ .

Finally, it is argued in Cheng & Higham (1999) that the most challenging part in the determination
of the optimal angle ϕ , as well as the optimal perturbations ∆A∗,∆B∗ is the solution of (1.3) globally.
In the next section we focus on the solution of these non-convex eigenvalue optimization problems.

3. Computation of Inner Numerical Radius and Beyond

The problem at hand can be expressed as ζ (A,B) =
∣∣minθ∈[0,2π] f (θ)

∣∣, where f (θ) = λmax(Acosθ +
Bsinθ). It is possible to devise a quadratically convergent level-set method to minimize f (θ) globally
analogous to the one to compute the numerical radius described in Mengi & Overton (2005), and an
extension of the Boyd-Balakrishnan algorithm to compute the H∞-norm (Boyd & Balakrishnan (1990)).
This is discussed in detail in Kangal & Mengi (2018), a longer version of this text. The computational
bottleneck is that the method needs to extract all eigenvalues of unit modulus of a 2n×2n matrix pencil
in order to determine the α-level set of f (θ) (i.e., the set {θ | f (θ) = α}) for a given α; see Theorem
3.1 in Mengi & Overton (2005), Theorem 2 in He & Watson (1997).

The support based algorithm discussed next requires the computation of only the largest eigenval-
ues of A(θ) := Acosθ +Bsinθ several times. Unlike the level-set method whose rate-of-convergence
is diminished to a linear convergence in the non-smooth setting when λmax(A(θ∗)) is multiple at the
minimizer θ∗ defined in (2.1), the support based algorithm converges rapidly in the same non-smooth
setting, which is stated precisely and proved formally in Section 3.2.

3.1 Support Based Algorithm

The algorithm that we employ in this section for computing the inner numerical radius is borrowed from
Mengi et al. (2014). Throughout the section, we consider the general setting of (1.4). The algorithm
that we discuss here to solve (1.4) globally is based on the boundedness of the second derivatives of the
objective eigenvalue function. It replaces the eigenvalue functions with piece-wise quadratic support
functions that underestimate λmax(A (ω)) globally.

We first introduce formally the quadratic support functions, which are the main ingredients of the al-
gorithm built on the analytical properties of λmax(A (ω)). The next result states the analytical properties
that are relevant to the derivation (see e.g. Rellich (1969); Kato (1995); Lancaster (1964)).

LEMMA 3.1 Let A (ω) : R→ Cn×n be a Hermitian matrix-valued function as in (1.4) and ω̃ ∈ R. The
following hold:

(i) The eigenvalues of A (ω) can be permuted in a way so that the permuted eigenvalues λ̃1(ω), . . . ,

λ̃n(ω) are real analytic functions of ω everywhere.
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(ii) For a given p ∈ R, letting φ(α) := λmax(A (ω̃ +α p)), the left-hand derivative φ ′−(α) and the
right-hand derivative φ ′+(α) of φ(α) exist everywhere, furthermore they satisfy φ ′+(α) > φ ′−(α)
at all α ∈ R.

(iii) If λmax(A (ω̃)) is simple, λmax(A (ω)) is real analytic at ω̃ with the derivatives

dλmax(A (ω̃))

dω
= v∗

dA (ω̃)

dω
v, and

d2λmax(A (ω̃))

dω2 = v∗
d2A (ω̃)

dω2 v

+ 2
n

∑
k=2

1
λmax(A (ω̃))−λk(A (ω̃))

∣∣∣∣v∗k dA (ω̃)

dω
v
∣∣∣∣2 , (3.1)

where λk(A (ω̃)) denotes the kth largest eigenvalue of A (ω̃), and v, vk are unit eigenvectors
corresponding to λmax(A (ω̃)), λk(A (ω̃)), respectively, for k = 2 . . . ,n.

In the next result we present the quadratic support functions. The proof of the fact that these func-
tions are global under-estimators for the largest eigenvalue functions follows from part (ii) of Lemma
3.1. We omit the proof because of its similarity to the proof of Theorem 2.2 in Mengi (2017), the
analogous result that constructs upper support functions for smallest eigenvalue functions.

THEOREM 3.1 (Quadratic Lower Support Functions) Suppose λmax(A (ω)) is simple at ω(k) ∈ Ω .
Additionally, suppose γ satisfies λ ′′max(A (ω))> γ for all ω ∈Ω such that λmax(A (ω)) is simple. Then,
we have

λmax(A (ω)) > qk(ω) := λk +λ
′
k(ω−ω

(k))+
γ

2
(ω−ω

(k))2 ∀ω ∈Ω (3.2)

where λk := λmax(A (ω(k))), λ ′k := λ ′max(A (ω(k))).

We call qk(ω) as in (3.2) the quadratic support function about ω(k). Such a quadratic support func-
tion is defined in terms of a lower bound γ for the second derivatives of the eigenvalue function, which
can occasionally be obtained from expression (3.1) for the second derivatives of λmax(A (ω)). Since
the summation term at the bottom row of (3.1) is non-negative, we must have

d2λmax(A (ω))

dω2 > v∗
d2A (ω)

dω2 v > −
∥∥∥∥d2A (ω)

dω2

∥∥∥∥
2

at all ω where λmax(A (ω)) is simple. Hence γ =−maxω∈Ω

∥∥d2A (ω)/dω2
∥∥

2 is a theoretically sound
choice.

In the case of computing the inner numerical radius of A+ iB for a given Hermitian pair (A,B), we
minimize λmax(A(θ) := Acosθ +Bsinθ) over θ . By the arguments of the previous paragraph

d2λmax(A(θ))
dθ 2 > −‖Acosθ +Bsinθ‖2 > −‖A‖2−‖B‖2 ,

so we set γ =−‖A‖2−‖B‖2.
Finally we present the algorithm based on these support functions. It generates a sequence {ω(k)}

of estimates for a global minimizer of λmax(A (ω)), a sequence {`(k)} of lower bounds for the globally
smallest value of λmax(A (ω)) and a sequence {q̄k(ω)} of piece-wise quadratic model functions for
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λmax(A (ω)). At the kth iteration, the point ω(k+1) is set equal to a global minimizer of the piece-
wise quadratic model function qk(ω) := max j=0,...,k q j(ω). This is followed by the construction of the
quadratic support function qk+1(ω) about ω(k+1), and inclusion of qk+1(ω) in the piece-wise quadratic
model function. A formal description is given in Algorithm 1.

Algorithm 1 Support Based Algorithm
Input: The matrix-valued function A (ω), a closed interval Ω ⊂R, the lower bound γ on λ ′′max(A (ω))

for all ω ∈Ω such that λmax(A (ω)) is simple.
Output: The sequences {ω(k)} and {`(k)}, or a failure.

1: ω(0)← an initial point in Ω

2: for k = 0,1, . . . do
3: if λmax(A (ω(k))) is simple then
4: qk(ω)← the quadratic support function about ω(k)

5: else
6: Return with failure
7: end if
8: q̄k(ω)←max

{
q j(ω) | j = 0, . . . ,k

}
9: ω(k+1)← argminω∈Ω q̄k(ω) and `(k+1)← q̄k(ω

(k+1))
10: end for

REMARK 3.1 (Generalization of Algorithm 1 to deal with non-differentiability of λmax(A (ω)) at ω(k))
The algorithm as stated above terminates with a failure if λmax(A (ω(k))) is not simple, as in this
situation λ ′max(A (ω)) may not be differentiable at ω(k) and qk(ω) as in (3.2) may not be well-defined.

The support functions and the algorithm can be generalized to deal with the case when λmax(A (ω))
is multiple at ω(k). Theorem 3.1, in particular (3.2), hold even when λ (A (ω(k))) is not simple provided
that in the definition of qk(ω) the vector λ ′k is now any vector that belongs to the Clarke generalized
derivative ∂λmax(A (ω(k))). Thus, in this non-smooth setting, one could define Algorithm 1 the same as
above but based on this generalized definition of qk(ω). Recall that the generalized Clarke derivative
of f (ω) at ω̃ , for a univariate function f that is differentiable almost everywhere excluding a set Γ of
measure zero, is given by (Clarke (1990))

∂ f (ω̃) := Co
{

lim
k→∞

f ′(ω̃(k))
∣∣ ω̃

(k)→ ω̃, ω̃
(k) /∈ Γ ∀k

}
(3.3)

with Co(S) denoting the convex hull of the set S.
By part (i) of Lemma 3.1, any point where λmax(A (ω)) is not differentiable is isolated, so the set

of such points of non-differentiability over Ω is of measure zero. In practice we employ Algorithm 1 by
setting λk as the computed largest eigenvalue of A (ω(k)) after rounding errors; we have not encoun-
tered an example where this strategy causes numerical difficulties. However, if it happens that {ω(k)}
approaches a point ω∗ where λmax(A (ω)) is not differentiable, the rate-of-convergence of {ω(k)} is
affected by the non-differentiability at ω∗. This is the main issue studied in Section 3.2 below.

ASSUMPTION 3.2 Throughout the rest of this section, it is always assumed that λmax(A (ω(k))) is simple
for all k. However, it is straightforward to verify that the global convergence and rate-of-convergence
results below extend to the generalized version of Algorithm 1 described in Remark 3.1.
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The next result draws global convergence conclusions regarding the sequences {ω(k)} and {`(k)} by
Algorithm 1. This has been proven in Theorem 8.1 in Mengi et al. (2014).

THEOREM 3.3 Every convergent subsequence of the sequence {ω(k)} by Algorithm 1 converges to a
global minimizer of λmax(A (ω)) over ω ∈Ω . Furthermore,

lim
k→∞

`(k) = min
ω∈Ω

λmax(A (ω)).

The next result immediately follows from Theorem 3.3.

THEOREM 3.4 Suppose that λmax(A (ω)) has a unique global minimizer over all ω ∈ Ω , say at ω∗.
Then the sequence {ω(k)} by Algorithm 1 converges to ω∗.

3.2 Rate-of-Convergence of the Support Based Algorithm

In numerous numerical experiments, we observe that Algorithm 1 converges at a linear rate in the smooth
case if λmax(A (ω)) is simple at its global minimizers, but a formal proof of this observation is open at
the moment.

Here we turn our attention to the non-smooth case, in particular provide a formal rate-of-convergence
analysis in this case. Remarkably the presence of non-smoothness accelerates Algorithm 1. This is quite
a contrast to the level-set method discussed in Kangal & Mengi (2018), whose quadratic convergence in
the smooth case is hindered and limited to a linear convergence by the existence of non-smoothness.

Throughout the rest we assume λmax(A (ω)) has a unique global minimizer at ω∗ that is strictly in
the interior of Ω , and λmax(A (ω∗)) is multiple with 0 ∈ Int ∂λmax(A (ω∗)), where ∂λmax(A (ω∗)) is
the generalized Clarke derivative of λmax(A (ω)) at ω∗ (see (3.3) for the definition of the generalized
Clarke derivative), Int ∂λmax(A (ω∗)) is the interior of ∂λmax(A (ω∗)).

By part (i) of Lemma 3.1, the eigenvalue function λmax(A (ω)) is continuous and piece-wise real
analytic at ω∗, indeed there exists an open interval I ⊆ Int Ω containing ω∗ and two real analytic
eigenvalue functions λ̃1(A (ω)), λ̃2(A (ω)) such that

λmax(A (ω)) =

{
λ̃1(A (ω)) ω ∈I , ω > ω∗,

λ̃2(A (ω)) ω ∈I , ω 6 ω∗.
(3.4)

Now we cannot have λ̃ ′1(A (ω∗)) < 0 as this would contradict the fact that ω∗ is a minimizer of
λmax(A (ω). Furthermore, λ̃ ′1(A (ω∗)) 6= 0 due to the assumption 0 ∈ Int ∂λmax(A (ω∗)). Hence, we
must have λ ′∗,+ := λ̃ ′1(A (ω∗))> 0. By an analogous argument λ ′∗,− := λ̃ ′2(A (ω∗))< 0. The quantities
λ ′∗,+ and λ ′∗,− correspond to the right-hand and left-hand derivatives, respectively, of λmax(A (ω)) at

ω∗. In what follows, we also use the notations λ ′′∗,+ := λ̃ ′′1 (A (ω∗)), λ ′′∗,− := λ̃ ′′2 (A (ω∗)), which cor-
respond to one-sided second derivatives of λmax(A (ω)) at ω∗, and λ∗ := λmax(A (ω∗)). Additionally,
the short-hands λk,λ

′
k,λ

′′
k represent λmax(A (ω(k))), λ ′max(A (ω(k))), λ

′′
max(A (ω(k))) at an iterate ω(k)

of Algorithm 1. Finally, the lower bound γ for the second derivatives of λmax(A (ω)) is assumed to be
negative throughout this subsection without loss of generality.

The next result characterizes the global minimizer ω(k+1) of qk(ω) for large k. This point always
turns out to be the intersection point of the two quadratic support functions about the iterates that are
closest to ω∗ among the iterates on the left-hand and on the right-hand side of ω∗. Moreover, if the
distance between the iterates about which these two support functions are constructed is h, then ω(k+1)

is located at a distance of O(h2) to ω∗.
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LEMMA 3.2 (Minimizers of the Support Functions) Suppose ω∗ is the unique global minimizer of
λmax(A (ω)) over ω ∈ Ω such that ω∗ ∈ Int Ω , and the eigenvalue λmax(A (ω∗)) is multiple, 0 ∈
Int ∂λmax(A (ω∗)), γ < 0. Additionally, suppose that the sequence {ω(k)} by Algorithm 1 is such
that ω(k) 6= ω∗ for all k. Then {ω(k)} satisfies the following for all k large enough:

(i) The point ω(k+1) is the intersection point of q`(k)(ω) and qr(k)(ω), where `(k),r(k) ∈ {0, . . . ,k}
are given by

`(k) := argmin{ω∗−ω
( j) | j ∈ {0, . . . ,k} s.t. ω∗ > ω

( j)} and

r(k) := argmin{ω( j)−ω∗ | j ∈ {0, . . . ,k} s.t. ω∗ < ω
( j)}.

(ii) Letting h := max{ω∗−ω(`(k)),ω(r(k))−ω∗}, we have

ω
(k+1) = α ·ω∗+β ·

(
ω(`(k))+ω(r(k))

2

)
+O(h2), (3.5)

where α,β ∈ R+ are such that α +β = 1 and β =Θ(h).

(iii) Furthermore, |ω(k+1)−ω∗| = O(h2).

Proof. (i) The real analyticity of λ̃1(A (ω)), λ̃2(A (ω)) imply that these eigenvalue functions are
continuously differentiable. Furthermore, by (3.4), we have λ ′max(A (ω)) = λ̃ ′1(A (ω)) for all ω ∈ I

such that ω > ω∗, and λ ′max(A (ω)) = λ̃ ′2(A (ω)) for all ω ∈I such that ω < ω∗. Hence, there exists
an interval Ĩ := (ω∗−δ ,ω∗+δ )⊆I for some δ > 0 such that

λ
′
max(A (ω))>

λ ′∗,+
2

∀ω ∈ (ω∗,ω∗+δ ) and λ
′
max(A (ω))6

λ ′∗,−
2

∀ω ∈ (ω∗−δ ,ω∗).

We can choose δ as small as we wish. In particular, in the subsequent arguments, we assume δ 6
min{(λ ′∗,−)/(4γ),−(λ ′∗,+)/(4γ)} without loss of generality.

We first show that ω(k+1) ∈ [ω(`(k)),ω(r(k))]. Theorem 3.4 asserts that ω(k)→ω∗ as k→∞, so for all
k large enough ω(k) ∈ Ĩ . Letting ω

(k)
r := ω(r(k)), as the sequence {ω(k)

r } is monotonically decreasing
and bounded below by ω∗, it must converge to a point, say ω∗,r > ω∗. Similarly, letting ω

(k)
` := ω(`(k)),

the sequence {ω(k)
` } must converge to a point ω∗,` 6 ω∗. The conditions ω∗,` 6= ω∗ and ω∗,r 6= ω∗

contradict the convergence of {ω(k)} to ω∗. Hence, at least one of {ω(k)
r } and {ω(k)

` } must converge

to ω∗. Without loss of generality suppose this is the case with {ω(k)
` }. As a result, we also deduce

ω(`(k)) ∈ Ĩ for all large k. For such a large k, we have

q′`(k)(ω
(`(k))) = λ

′
max(A (ω(`(k)))) 6

λ ′∗,−
2

.

Additionally, the inequality δ 6 (λ ′∗,−)/(4γ) implies

q′`(k)(ω) = λ
′
max(A (ω(`(k))))+ γ(ω−ω

(`(k))) 6
λ ′∗,−

2
− γδ 6

λ ′∗,−
4
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for all ω ∈ (ω∗ − δ ,ω(`(k))). This means q`(k)(ω) is decreasing on this interval. Notice also that
q`(k)(ω(`(k))) = λmax(A (ω(`(k)))), as well as λmax(A (ω))> qk(ω)> q`(k)(ω) for all ω , together imply

λmax(A (ω(`(k)))) = qk(ω
(`(k))) = q`(k)(ω

(`(k))). (3.6)

Hence, we deduce

qk(ω
(`(k))) = q`(k)(ω

(`(k))) < q`(k)(ω) 6 qk(ω) ∀ω ∈ (ω∗−δ ,ω(`(k))).

Consequently, ω(k+1), the global minimizer of qk(ω), cannot lie in (ω∗− δ ,ω(`(k))), that is ω(k+1) ∈
[ω(`(k)),ω∗+δ ).

If ω(r(k)) /∈ Ĩ , then ω(r(k))−ω∗ > δ , so we must have ω(k+1) ∈ [ω(`(k)),ω∗+δ )⊆ [ω(`(k)),ω(r(k))]

as desired. Otherwise, ω(r(k)) ∈ Ĩ , and analogous arguments as in the previous paragraph apply to
qr(k)(ω) to conclude that ω(k+1) /∈ (ω(r(k)),ω∗+δ ), which in turn implies ω(k+1) ∈ [ω(`(k)),ω(r(k))].

As for the global minimizer of qk(ω) in [ω(`(k)),ω(r(k))], we first note that

qk(ω) = max{q`(k)(ω),qr(k)(ω)} ∀ω ∈ [ω(`(k)),ω(r(k))],

as it turns out

(a) q`(k)(ω)> q j(ω) ∀ω > ω(`(k)) and for all j 6 k such that ω( j) < ω∗,

(b) qr(k)(ω)> q j(ω) ∀ω 6 ω(r(k)) and for all j 6 k such that ω( j) > ω∗.

To see (a), consider any j such that j6 k and ω( j) < ω∗ (implying also ω( j) 6ω(`(k))). For such a j, we
have λ`(k) = λmax(A (ω(`(k))))> q j(ω

(`(k))). Additionally, letting ω̃1 < ω̃2 < · · ·< ω̃κ−1 be the points
in (ω( j),ω(`(k))) where λmax(A (ω)) is not differentiable, as well as setting ω̃0 :=ω( j) and ω̃κ :=ω(`(k))

(recalling also the notations λ ′`(k) = λ ′max(A (ω(`(k)))), λ ′j = λ ′max(A (ω( j)))),

λ
′
`(k) = λ

′
j +

κ−1

∑
`=0

∫ 1

0
λ
′′
max(A (ω̃`+ t(ω̃`+1− ω̃`)))(ω̃`+1− ω̃`)dt

> λ
′
j +

κ−1

∑
`=0

∫ 1

0
γ(ω̃`+1− ω̃`)dt = λ

′
j + γ(ω(`(k))−ω

( j)) = q′j(ω
(`(k))).

Now by expanding q j(ω) around ω(`(k)) (instead of ω( j)), for all ω > ω(`(k)), we obtain

q j(ω) = q j(ω
(`(k)))+q′j(ω

(`(k)))(ω−ω
(`(k)))+ γ/2(ω−ω

(`(k)))2

6 λ`(k)+λ
′
`(k)(ω−ω

(`(k)))+ γ/2(ω−ω
(`(k)))2 = q`(k)(ω)

proving (a). An analogous argument shows (b).
Now the global minimum of qk(ω) over [ω(`(k)),ω(r(k))] must be attained either at one of the end

points ω(`(k)) or ω(r(k)), or at a point where qk(ω) is differentiable with derivative equal to zero, or at
a point of non-differentiability for qk(ω), that is at the intersection point of q`(k)(ω) and qr(k)(ω). The
minimum cannot be attained at the end points; for ω(`(k)), we have

q`(k)(ω
(`(k))) = λmax(A (ω(`(k))))> λmax(A (ω∗))> min

ω∈Ω
qk(ω), (3.7)
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where the first inequality is due to the uniqueness of the global minimizer ω∗, the second inequality is
due to λmax(A (ω))> qk(ω) for all ω ∈Ω . By replacing `(k) with r(k) in (3.7), we also deduce ω(r(k))

is not the global minimizer. A point ω̃ where qk(ω) is differentiable with derivative equal to zero can
also not be the global minimizer, because q′′k (ω̃) = γ < 0. Hence, the minimum must be attained at the
intersection point of q`(k)(ω) and qr(k)(ω).

(ii) It follows from part (i) that ω(k+1) satisfies q`(k)(ω(k+1)) = qr(k)(ω
(k+1)). Now, recalling λ`(k) =

λmax(A (ω(`(k)))), λr(k) = λmax(A (ω(r(k)))), λ ′`(k) = λ ′max(A (ω(`(k)))), λ ′r(k) = λ ′max(A (ω(r(k)))), and

solving this equation for ω(k+1) yields

ω
(k+1) =

λ`(k)−λr(k)+λ ′r(k)ω
(r(k))−λ ′`(k)ω

(`(k))− γ

2

([
ω(r(k))

]2
−
[
ω(`(k))

]2
)

(
λ ′r(k)−λ ′

`(k)

)
− γ
(
ω(r(k))−ω(`(k))

) .

By applications of Taylor’s theorem with second order remainder to λr(k), λ`(k), λ ′r(k),λ
′
`(k), specifically

by expressing them in terms of λmax(A (ω)) and one-sided derivatives of λmax(A (ω)) at ω∗, we obtain

ω
(k+1) =

{ [
λ∗+λ

′
∗,−(ω

(`(k))−ω∗)+O(h2)

]
−
[

λ∗+λ
′
∗,+(ω

(r(k))−ω∗)+O(h2)

]
+[

λ
′
∗,++λ

′′
∗,+(ω

(r(k))−ω∗)+O(h2)

]
×
[
(ω(r(k))−ω∗)+ω∗

]
−[

λ
′
∗,−+λ

′′
∗,−(ω

(`(k))−ω∗)+O(h2)

]
×
[
(ω(`(k))−ω∗)+ω∗

]
− (γ/2)

[[
ω

(r(k))
]2
−
[
ω

(`(k))
]2
] } /

{ [
λ
′
∗,++λ

′′
∗,+(ω

(r(k))−ω∗)+O(h2)

]
−
[

λ
′
∗,−+λ

′′
∗,−(ω

(`(k))−ω∗)+O(h2)

]
− γ

[
ω

(r(k))−ω
(`(k))

] }
.

This can be rearranged into

ω
(k+1) =

(α+−α−) ·ω∗+η ·
(

ω(`(k))+ω(r(k))

2

)
α+−α−+η

+ O(h2)

where

α+ :=
[
λ
′
∗,++λ

′′
∗,+(ω

(r(k))−ω∗)
]
,

α− :=
[
λ
′
∗,−+λ

′′
∗,−(ω

(`(k))−ω∗)
]
, η :=−γ

(
ω

(r(k))−ω
(`(k))

)
.

The desired result follows from α+−α− > 0, as indeed λ ′∗,+−λ ′∗,− > 0 is a constant independent of h
so that

α+−α− = (λ ′∗,+−λ
′
∗,−)+O(h) = Θ(1),

and by setting α := (α+−α−)/(α+−α−+η), β := η/(α+−α−+η).
(iii) This is immediate from equation (3.5) by observing∣∣∣ω(k+1)−ω∗

∣∣∣ = ∣∣∣∣∣α ·ω∗+β ·

(
ω(`(k))+ω(r(k))

2

)
− (α +β ) ·ω∗

∣∣∣∣∣+O(h2),

=

∣∣∣∣∣β ·
[(

ω(`(k))+ω(r(k))

2

)
−ω∗

]∣∣∣∣∣+O(h2) = O(h2).
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�
The main rate-of-convergence result concerning Algorithm 1 in the non-smooth case is presented

next. It asserts that if the maximum of the errors of the last two iterates is h, the error of the next iterate
is O(h2). A similar rapid convergence conclusion is drawn for the sequence {`(k)} as well.

THEOREM 3.5 (Rate-of-convergence) Suppose that λmax(A (ω)) has a unique global minimizer over
Ω at ω∗, and that ω∗ ∈ Int Ω . Suppose also γ < 0, the eigenvalue λmax(A (ω∗)) is multiple, 0 ∈
Int ∂λmax(A (ω∗)), and the sequence {ω(k)} generated by Algorithm 1 is such that ω(k) 6= ω∗ for all k.
The following hold for {ω(k)} for all k large enough:

(i) k ∈ {`(k),r(k)}.

(ii)
∣∣∣ω(k+1)−ω∗

∣∣∣ = O
(

max
{∣∣∣ω(k)−ω∗

∣∣∣ , ∣∣∣ω(k−1)−ω∗

∣∣∣}2
)
.

(iii) If γ is large enough in absolute value, then λ∗− `(k+1) = O((λ∗− `(k−1))2).

Proof. (i) If ω(k)>ω∗, then it is apparent from (3.5) that, for large k, we must have ω(k) ∈ (ω∗,(ω(`(k−1))+
ω(r(k−1)))/2) implying ω(k)−ω∗ < ω(r(k−1))−ω∗. Hence, in this case, r(k) = k.

Similarly, if ω(k) < ω∗, then ω(k) ∈ ((ω(`(k−1))+ω(r(k−1)))/2),ω∗) for large k by (3.5). This in turn
implies ω∗−ω(k) < ω∗−ω(`(k−1)), so `(k) = k.

(ii) Let us suppose k = r(k) without loss of generality. (Otherwise, k = `(k) by part (i) and a similar
argument applies.) This means that `(k) 6= k, so `(k) = `(k− 1). If `(k) = `(k− 1) = k− 1, then part
(iii) of Lemma 3.2 implies

|ω(k+1)−ω∗| = O(max{ω∗−ω
(`(k)),ω(r(k))−ω∗}2) = O(max{ω∗−ω

(k−1),ω(k)−ω∗}2).

Hence, let us suppose `(k−1) 6= k−1. But then r(k−1) = k−1 by part (i). Furthermore, as ω(r(k)) =
ω(k) ∈ (ω∗,(ω

(`(k−1))+ω(r(k−1)))/2), we must have

ω
(k−1)−ω∗ = ω

(r(k−1))−ω∗ > ω∗−ω
(`(k−1)) = ω∗−ω

(`(k))

from which we deduce

max{|ω(k−1)−ω∗|, |ω(k)−ω∗|} > max{ω∗−ω
(`(k)),ω(r(k))−ω∗}.

Hence, letting h := max{|ω(k−1)−ω∗|, |ω(k)−ω∗|}, we have max{ω∗−ω(`(k)),ω(r(k))−ω∗} = O(h).
It follows from part (iii) of Lemma 3.2 that |ω(k+1)−ω∗|= O(h2), completing the proof.

(iii) Part (i) of Lemma 3.2 asserts that the point ω(k−1) is the intersection point of q`(k−2)(ω) and
qr(k−2)(ω). Without loss of generality, let us assume ω(r(k−2))−ω∗ > ω∗−ω(`(k−2)). We have

`(k−1) = qr(k−2)(ω
(k−1))

= λr(k−2)+λ
′
r(k−2)(ω

(k−1)−ω
r((k−2))+

γ

2
(ω(k−1)−ω

(r(k−2)))2.

Now applications of Taylor’s theorem about ω∗ yield

`(k−1) =

[
λ∗+λ

′
∗,+(ω

(r(k−2))−ω∗)+
λ ′′∗,+

2
(ω(r(k−2))−ω∗)

2
]
+[

λ
′
∗,++λ

′′
∗,+(ω

(r(k−2))−ω∗)

]
(ω(k−1)−ω

(r(k−2)))+
γ

2
(ω(k−1)−ω

(r(k−2)))2

+ O((ω(r(k−2))−ω∗)
3),



ALGORITHMS FOR EIGENVALUE OPTIMIZATION & INNER NUMERICAL RADIUS 13 of 33

where we use ω(k−1)−ω∗ = O((ω(r(k−2))−ω∗)
2) due to part (iii) of Lemma 3.2. Letting h := λ∗−

`(k−1), the last equation yields

h = − λ
′
∗,+(ω

(k−1)−ω∗) −
λ ′′∗,+

2
(ω(r(k−2))−ω∗)

2

− λ
′′
∗,+(ω

(r(k−2))−ω∗)(ω
(k−1)−ω

(r(k−2)))

− γ

2
(ω(k−1)−ω

(r(k−2)))2 + O((ω(r(k−2))−ω∗)
3)

= − λ
′
∗,+(ω

(k−1)−ω∗) +
λ ′′∗,+

2
(ω(r(k−2))−ω∗)

2

− γ

2
(ω(r(k−2))−ω∗)

2 + O((ω(r(k−2))−ω∗)
3).

Assuming γ is large enough, the terms on the right-hand side of the last equality are Θ((ω(r(k−2))−
ω∗)

2). Hence, (ω(r(k−2))−ω∗)
2 =Θ(h), that is ω(k−1)−ω∗ = O((ω(r(k−2))−ω∗)

2) = O(h).
Letting h2 := λ∗− `(k) 6 λ∗− `(k−1) (notice that {`(k)} is increasing bounded from above by λ∗),

and following similar steps, we also deduce ω(k)−ω∗ = O(h2) = O(h). Now it follows from part (ii)
that |ω(k+1)−ω∗| = O(h2). The point ω(k+1) is the intersection point of q`(k)(ω) and qr(k)(ω), where
`(k) = k or r(k) = k, so

`(k+1) = qk(ω
(k+1)) = qk(ω

(k+1)) = λk +λ
′
k(ω

(k+1)−ω
(k))+

γ

2
(ω(k+1)−ω

(k))2.

Assume for now ω(k) > ω∗. Recalling ω(k)−ω∗ = O(h), and once again applying Taylor’s theorem to
λk, λ ′k about ω∗ gives rise to

`(k+1) =

[
λ∗+λ

′
∗,+(ω

(k)−ω∗)+O((ω(k)−ω∗)
2)

]
+[

λ
′
∗,++O(ω(k)−ω∗)

]
(ω(k+1)−ω

(k)) +
γ

2
(ω(k+1)−ω

(k))2

= λ∗ + λ
′
∗,+(ω

(k+1)−ω∗) + O(h2) = λ∗+O(h2),

which in turn implies λ∗− `(k+1) = O(h2) as desired. If ω(k) < ω∗, all of the equalities above still hold
but by applying Taylor’s theorem on the left-hand side of ω∗. This results in the same expressions except
that occurrences of λ ′∗,+ are replaced by λ ′∗,−. �

REMARK 3.2 The rate-of-convergence result assumes that the global minimizer ω∗ belongs to Int Ω .
As for the eigenvalue optimization problem (1.3) associated with the inner numerical radius, given two
distinct θ1,θ2 ∈ [0,2π), we could evaluate λmax(Acos θ j +Bsin θ j) for j = 1,2. Unless the largest
eigenvalues are equal at these two distinct points, letting θ̃ be one of θ1,θ2, whichever of these points
lead to a larger largest eigenvalue, we could perform the optimization over Ω := [θ̃ , θ̃ +2π]. Then the
global minimizer of λmax(Acos θ +Bsin θ) over θ ∈ Ω belongs to Int Ω as required by the rate-of-
convergence analysis above.

3.3 Numerical Experiments

All numerical experiments in this paper have been carried out in MATLAB 9.2.0.556344 (R2017a).
They all involve the computation of the inner numerical radius, that is the minimization of λmax(A(θ) :=
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Acosθ + Bsinθ) over θ ∈ [0,2π] for a given pair of Hermitian matrices A,B ∈ Cn×n. We employ
eigopt (see Section 10 in Mengi et al. (2014)), a Matlab implementation of Algorithm 1, for these
minimization problems. This implementation generates a sequence of lower bounds and a sequence
of upper bounds for the minimal value of λmax(A (θ)), and terminate when the bounds differ by less
than a prescribed tolerance, which we set equal to 10−15 unless otherwise specified. Additionally, a
global lower bound γ on the second derivatives of the largest eigenvalue function needs to be supplied
to eigopt. We set γ = −‖A‖2−‖B‖2 in all our numerical experiments; this is a theoretically sound
choice as discussed above.

We have proven above that there exist constants c1,c2 such that the sequences {`(k)} and {ω(k)} by
Algorithm 1 satisfy the following for all k large enough:

λ∗− `(k+1) 6 c1(λ∗− `(k−1))2 and |ω(k+1)−ω∗| 6 c2 max
{
|ω(k)−ω∗|, |ω(k−1)−ω∗|

}2
.

In the logarithmic scale and by letting ek := λ∗− `(k) and ξk := |ω(k)−ω∗|, these inequalities could
equivalently be expressed as

ln(ek+1) 6 2ln(ek−1)+ ln(c1) and ln(ξk+1) 6 2ln(max{ξk,ξk−1})+ ln(c2).

On the examples that exhibit non-smoothness (i.e., the examples for which the largest eigenvalue is
multiple at the global minimizer), we check whether these inequalities hold in practice at the later stages
of the algorithm when the errors are extremely small. Hence, on these examples, we run the algorithm
to a very high precision by employing Advanpix Multiprecision Computing Toolbox1, a high precision
toolbox for Matlab. For these non-smooth examples, the tolerance for termination supplied to eigopt
is much smaller than 10−15; the precise tolerance values are specified below.

Distance to a Nearest Definite Pair. Consider the matrices A= diag(−3 : 3)∈R7×7 (i.e., A is the 7×7
diagonal matrix with a j j =−3+( j−1) for j = 1, . . . ,7) and B∈R7×7 defined by bi j = 1/(i+ j) except
b11 = b77 =−1. This is an indefinite Hermitian pair example taken from Cheng & Higham (1999). We
run Algorithm 1 to compute the inner numerical radius ζ (A,B) and the distance dδ (A,B) for δ = 10−8.
The computed distance by the algorithm is dδ (A,B) = 0.8118872239262. The left column in Figure 1
illustrates the field of values of A+ iB, A+∆A∗+ i(B+∆B∗) and Ã+ iB̃ = e−iϕ(A+∆A∗+ i(B+∆B∗)),
where ∆A∗,∆B∗ are the minimal normed perturbations that solve (1.2) given by (2.4), and ϕ = θ∗+π/2
for θ∗ as in (2.1). Note that B̃ is positive definite with λmin(B̃) = 10−8.

Comparison of Algorithm 1 with the Level-Set Method. Next we compare the performances of the
level-set based and support based algorithms to compute the inner numerical radius of An + iBn for
various n, where An is the Fiedler matrix and Bn is the Moler matrix of size n× n. In Table 1, we
provide CPU times and the number of iterations required by each algorithm. The reason why the level-
set approach requires more time is that it computes all eigenvalues of matrix pencils of size 2n× 2n,
whereas the support based algorithm computes only the largest eigenvalues of n×n matrices.

The Case when λmax(A(θ∗)) is not Simple. The next example illustrates the order of convergence for
Algorithm 1 when the largest eigenvalue is not simple at the global minimizer. Consider the tridiagonal

1Available at http://www.advanpix.com
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FIG. 1: The figure depicts the field of values of (Top) A+ iB, (Middle) (A+∆A∗)+ i(B+∆B∗), (Bot-
tom) e−iϕ((A+∆A∗)+ i(B+∆B∗)), where ∆A∗,∆B∗, ϕ are as in (2.4), (2.1) for the given Hermitian
pair (A,B) and prescribed δ . On the left column, (A,B) is the Hermitian pair taken from Cheng &
Higham (1999) and δ = 10−8, whereas, on the right column, (A,B) is such that A = (G̃+ G̃∗)/2 and
B = −i(G̃− G̃∗)/2 with G̃ := Geiπ/6, G denoting the 640× 640 Grcar matrix, and δ = 10−2. In each
plot, the diamond marks the point where the inner numerical radius is attained, while, in the plots on the
left, the circles mark the eigenvalues.



16 of 33 F. KANGAL AND E. MENGI

LEVEL-SET SUPPORT-BASED
n iter t n iter t

120 5 1.60 120 84 0.40
240 5 8.90 240 119 1.39
360 6 45.44 360 143 4.04
480 6 107.99 480 162 6.28

Table 1: CPU times (in seconds) and the number of iterations required by the level-set method and
Algorithm 1 to compute the inner numerical radius of An + iBn for various n, where An is the Fiedler
matrix and Bn is the Moler matrix of size n×n.

k `(k+1)
∣∣∣ω(k+1)−θ∗

∣∣∣
12 -1.000024850740653 0.000903071031368
13 -1.000002750999332 0.000041649882203
14 -1.000000001968154 0.000001828314169
15 -1.000000000011313 0.000000003906009
16 -1.000000000000000 0.000000000007542
17 -1.000000000000000 0.000000000000000

Table 2: The sequence {`(k+1)} and the error of the sequence {ω(k+1)} by Algorithm 1 are listed with
respect to k on the example involving the computation of the inner numerical radius of C = C̃eiπ/6,
where C̃ is as in (3.8).

matrix

C̃ =


1 i
i 1 i

i a3
. . .

. . . . . . i
i an

+0.5iIn with a j = 2+
j
n

(3.8)

for n = 10 and let C = C̃eiπ/6. Letting A := (C+C∗)/2, B :=−i(C−C∗)/2, we have C = A+ iB. The
global minimum of λmax(Acosθ +Bsinθ) is attained at θ∗ = 3.665191429188092 and λmax(Acosθ∗+
Bsinθ∗) has multiplicity 2. We observe a fast convergence for Algorithm 1 consistent with the rate-
of-convergence result in Theorem 3.5; Table 2 depicts this in double precision. We also perform the
computations up until 600 decimal digit accuracy is satisfied, that is up until the lower and upper bounds
by eigopt differ by an amount less than 10−600. On the left-column of Figure 2 the plot of ln(e2k+1)
vs. ln(e2k−1), as well as ln(ξk+1) vs. ln(max{ξk,ξk−1}) are provided. The plot of ln(e2k+2) vs. ln(e2k)
turns out to be similar to the plot of ln(e2k+1) vs. ln(e2k−1), hence we omit it for brevity. The plots
confirm our theoretical findings; in particular it is evident that the errors in the logarithmic scale decay
linearly with slope two as expected in theory.

Linear Systems in Saddle Point Form. This is another example where the eigenvalue function is
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non-smooth at the optimizer. The matrix of a saddle point linear system is of the form

A =

[
A BT

B −C

]
, (3.9)

where A ∈ Rn×n is symmetric positive definite, B ∈ Rm×n with m 6 n and C ∈ Rm×m is symmetric
positive semidefinite. The matrix A is usually large and sparse, and can be reduced to the block diagonal
matrix diag(A,S) with S =−(C+BA−1BT ) by row and column operations; indeed XT A X = diag(A,S)
for some invertible X ∈R(n+m)×(n+m). Now observe that S is symmetric negative semidefinite implying
that A is indefinite with n positive eigenvalues and rank(S) negative eigenvalues.

The indefiniteness of A is a hurdle for iterative solvers such as Krylov subspace methods; it slows
down the convergence. It has been shown in Liesen & Parlett (2008) that, letting J := diag(In,−Im),
if there is a real scalar µ such that M (µ) = A − µJ is positive definite or negative definite, then
a conjugate gradient iteration that depends on this value of µ can be constructed to solve the linear
system A x = b. It is straightforward to verify that the positive definiteness or negative definiteness
of M (µ) for some µ ∈ R is equivalent to the positive definiteness of −A sinθ +J cosθ for some
θ ∈ [0,2π]. Now the discussions in Section 2.1 suggests testing the definiteness of the pair (A ,J ). If
this pair is definite, then, by those discussions, the matrix −A sinϕ +J cosϕ is positive definite with
λmin(−A sinϕ +J cosϕ) = γ(A ,J ) for ϕ :=−π/2+φ , where φ is the angle such that γ(A ,J )eiφ

is the point in F(A + iJ ) closest to the origin. This in turn implies that M (µ) is positive definite or
negative definite for µ := cosϕ/sinϕ depending on whether sinϕ is negative or positive.

We consider a linear system in saddle point form that arises from a stable discretization of a Stokes
equation with the coefficient matrix A of the form (3.9). This linear system is generated by the
MATLAB package “Incompressible Flow Iterative Solution Software (IFISS) version 3.5" Elman et al.
(2007); the sparse matrices A,B,C are constructed by running the script file stokes_testproblem
with the default options, resulting in A of size n = 578 and C of size m = 256. For compatibility with
the particular examples worked through in Liesen & Parlett (2008); Guo et al. (2009), we shift A by
0.0764In, and run support based algorithm to determine the definiteness of the pair (A ,J ). We de-
tect that the pair is definite in the light of the discussions at the end of Section 2.2, as it turns out
minθ∈[0,2π] λmax(A cosθ +J sinθ) < 0. Moreover computations yield µ = 0.0541 for which M (µ)
is positive definite, indeed λmin(M (µ)) = 0.0222. The non-smoothness in these computations is en-
countered in a strong fashion, as λmax(A cosθ +J sinθ) at the minimizing θ has multiplicity three.
Table 3 indicates rapid convergence for the sequences {`(k)} and {ω(k)} by Algorithm 1. In particular,
according to the table, the sequences {`(2k)}, {`(2k+1)} appear to be converging at a quadratic rate. Ad-
ditionally, the number of accurate decimal digits of ω(k) is doubled at every two iterations. We also see
that these observations do hold in a higher precision on the right-hand column of Figure 2, where the
plots are constructed when 400 decimal digit accuracy is required in the computed results. Once again,
these are consistent with the assertions of Theorem 3.5. We omit the plot of ln(e2k+2) with respect to
ln(e2k) in Figure 2 on the right-hand column because of its similarity to the plot illustrating ln(e2k+1)
with respect to ln(e2k−1).

4. Subspace Framework for Large-Scale Computation of Inner Numerical Radius

We now deal with the general univariate eigenvalue optimization problems of the form (1.4) when
the Hermitian matrices A1, . . . ,Aκ involved are of large size. This setting encompasses the eigenvalue
optimization characterization (1.3) for the inner numerical radius when the matrices A,B are large.
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k `(k+1)
∣∣∣ω(k+1)−θ∗

∣∣∣
11 -0.022231442152684 0.000008162291389
12 -0.022224901919276 0.000006757114932
13 -0.022224901723492 0.000000000136544
14 -0.022224901666671 0.000000000058712
15 -0.022224901666670 0.000000000000000

Table 3: This table is analogous to Table 2, but it concerns the example of the saddle point linear
system arising from the Stokes equation, in particular the positive definiteness or negative definiteness
of A −µJ for some µ , where A ∈ R(n+m)×(n+m) is as in (3.9) and J := diag(In,−Im).

0 300 600
0

300

600

900

1200

Support-Based

Slope 2.0

0 200 400
0

200

400

600

800

Support-Based

Slope 2.0

0 300 600
0

300

600

900

1200

Support-Based

Slope 2.0

0 200 400
0

200

400

600

800

Support-Based

Slope 2.0

FIG. 2: The figure illustrates the convergence order of the support-based algorithm on the computation
of the inner numerical radius (Left Column) of C = C̃eiπ/6 for C̃ as in (3.8), and (Right Column) of
the example related to the saddle point linear system arising from the Stokes equation.
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Hence, the approach discussed in this section can be employed to determine the definiteness of a large-
scale Hermitian pair (A,B), or for such a large definite Hermitian pair, it can be used to find an angle ϕ

such that Ã+ iB̃ = e−iϕ(A+ iB) with λmin(B̃) = γ(A,B).
Here we generalize the basic subspace procedure in Kangal et al. (2018); Kressner et al. (2018),

taking into account also the non-smooth case when λmax(A (ω)) is multiple at the converged global
minimizer. We prove that the convergence of the generalized subspace procedure occurs at a quadratic
rate asymptotically in the non-smooth case. The previous works have established an R-order of conver-
gence equal to 1+

√
2 (see for instance Theorems 2.3 and 2.4 in Kressner et al. (2018)) in the smooth

case, but left the rate-of-convergence issue in the non-smooth setting open.

4.1 Generalized Subspace Procedure

The subspace procedure operates on the reduced problems of the form

min
ω∈Ω

λmax(A
V (ω)), (4.1)

where

A V (ω) := V ∗A (ω)V = f1(ω)V ∗A1V + · · ·+ fd(ω)V ∗AdV

for a given small dimensional subspace V , say dimV = k, and an n× k matrix V whose columns form
an orthonormal basis for V . Note that (4.1) involves smaller k× k eigenvalue problems compared with
(1.4), which involves n×n eigenvalue problems.

In the remaining part of this subsection, we shall describe a procedure to construct a small dimen-
sional subspace V such that the global minimizers and the globally minimal values of λmax(A (ω)) and
λV

max(A (ω)) are nearly the same. To this end, we remind a result from Sirkovic & Kressner (2016);
Kangal et al. (2018) that relates the eigenvalues of A (ω) and A V (ω). Here and throughout the rest
of this section λ j(A (ω)) and v j(A (ω)) denote the jth largest eigenvalue (counting the multiplicities)
and a corresponding unit eigenvector of A (ω).

LEMMA 4.1 Let V1,V2 be two subspaces of Cn such that V1 ⊆ V2. We have the following:

(i) (Monotonicity) For each k = 1, . . . ,dim V1 and for all ω ∈ Ω , the inequalities λk(A
V1(ω)) 6

λk(A
V2(ω))6 λk(A (ω)) hold.

(ii) (Hermite Interpolation) For a given ω ∈ Ω , if V1 contains v1(A (ω)), . . . , v j(A (ω)), then the
following hold for each k = 1, . . . , j:

• λk(A
V1(ω)) = λk(A (ω)).

• If λk(A (ω)) is simple, so is λk(A
V1(ω)) and λ ′k(A

V1(ω)) = λ ′k(A (ω)).

The subspace procedure is presented formally in Algorithm 2. At every iteration, the subspace
procedure first solves a projected small-scale problem for a given subspace V . Then, denoting the
global minimizer of this small problem with ω̃ , the subspace is expanded with the inclusion of an
eigenvector corresponding to λmax(A (ω̃)), as well as eigenvectors corresponding to other eigenvalues
of A (ω̃) that are at most ε away from λmax(A (ω̃)).

The procedures proposed in Kangal et al. (2018), Kressner et al. (2018) add only an eigenvector
corresponding to the largest eigenvalue λmax(A (ω̃)), but not the eigenvectors corresponding to nearby
eigenvalues. If λmax(A (ω̃)) is multiple or nearly multiple, practical implementations of Kangal et al.



20 of 33 F. KANGAL AND E. MENGI

Algorithm 2 The Subspace Procedure
Input: Matrix-valued function A (ω), closed interval Ω ⊂ R, and ε ∈ R+.
Output: The sequence {ω(k)}.

1: ω(1)← a point in Ω

2: v(1)1 , . . . ,v(1)`1
← eigenvectors corresponding to eigenvalues

λ1(A (ω(1))), . . . , λ`1(A (ω(1))) of A (ω(1)) such that
λmax(A (ω(1)))−λ j(A (ω(1))6 ε for j = 1, . . . , `1

3: V1← span
{

v(1)1 , . . . ,v(1)`1

}
4: for k = 1,2, . . . do
5: ω(k+1)← argminω∈Ω λmax(A Vk(ω))

6: v(k+1)
1 , . . . ,v(k+1)

`k+1
← eigenvectors corresponding to eigenvalues

λ1(A (ω(k+1))), . . . , λ`k+1(A (ω(k+1))) of A (ω(k+1)) such that
λmax(A (ω(k+1)))−λ j(A (ω(k+1))6 ε for j = 1, . . . , `k+1

7: Vk+1← Vk ⊕ span
{

v(k+1)
1 , . . . ,v(k+1)

`k+1

}
8: end for

(2018), Kressner et al. (2018) resolve the ties based on rounding errors. This may result in eigenvectors
added into the subspaces that are quite different, even if interpolation points (e.g., minimizers of the
small-scale problems at two consecutive subspace iterations) are close. Algorithm 2 overcomes this
issue by adding the whole subspace spanned by all of the eigenvectors corresponding to the eigenvalues
close to the largest eigenvalues. This subspace appears to be better conditioned than the eigenvector
corresponding to the largest eigenvalue in the case when λmax(A (ω̃)) is multiple or nearly multiple.

The following interpolation result between the eigenvalues of the full and projected problems gen-
erated by Algorithm 2 is an immediate corollary of part (ii) of Lemma 4.1.

THEOREM 4.1 The following are satisfied by the sequences {ω(k)} and {Vk} generated by Algorithm
2 for each j, each k = 1, . . . , j and each p = 1, . . . , `k:

(i) λp(A
V j(ω(k))) = λp(A (ω(k))).

(ii) if λp(A (ω(k))) is simple, then the same holds for λp(A
V j(ω(k))), and

λ ′p(A
V j(ω(k))) = λ ′p(A (ω(k))).

In the case of the inner numerical radius, the projected small-scale problems can be solved globally
and efficiently by means of the algorithms in Section 3. The support based algorithm in Section 3 is ap-
plicable to solve the projected problems associated with various other eigenvalue optimization problems
of the form (1.4), as long as a global lower bound γ on λmax(A ′′(ω)) at the points of differentiability
is available. The main computational burden of the subspace procedure stems from lines 2, 6, which
require the computation of the eigenvectors of the full problem.

The subsequent two subsections are devoted to analyses of the convergence properties of Algorithm
2. The next subsection provides formal arguments in support of the fact that every convergent subse-
quence of the sequence {ω(k)} by the algorithm converges to a global minimizer of λmax(A (ω)). Then
Section 4.3 addresses how quickly this convergence occurs.
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4.2 Global Convergence

Here and in the next subsection, we consider the problem at hand in the infinite dimensional setting.
In particular, in this analysis the matrix-valued functions are replaced by self-adjoint compact operators
A (ω) : `2(N)→ `2(N), where `2(N) denotes the Hilbert space consisting of square summable infinite
sequences of complex numbers equipped with the inner product 〈v,w〉= ∑

∞
k=1 vkwk and the norm ‖v‖=√

∑
∞
k=1 |vk|2. The compact self-adjoint operator A (ω) dependent on the parameter ω is still assumed

to be of the form specified in (1.4); only now A j : `2(N)→ `2(N) are self-adjoint compact operators
for j = 1, . . . ,d. Intuitively A (ω) for each ω , as well as A1, . . . ,Aκ , can be considered as infinite
dimensional Hermitian matrices. This infinite dimensionality makes {ω(k)} an infinite sequence so that,
for instance, it is meaningful to analyze the order of convergence of this sequence as k→∞, as we do in
the next subsection. In the finite dimensional case, when A (ω) is a Hermitian matrix-valued function,
the sequence {ω(k)} is finite in exact arithmetic; however the rate-of-convergence analysis in the next
subsection extends to the finite dimensional setting, but by letting ω(1) → ω∗ (for a global minimizer
ω∗) rather than k→ ∞. Such a practice is followed for instance in (Aliyev et al., 2017, Section 3) in the
context of the large-scale computation of the H∞-norm.

The global convergence of the subspace procedure is a consequence of the monotonicity and in-
terpolation properties, as well as the uniform Lipschitz continuity of the reduced eigenvalue function
formally stated below.

LEMMA 4.2 (Uniform Lipschitz Continuity, Kangal et al. (2018)) There exists a positive real number η

such that for a prescribed J ∈ Z+ for each j = 1, . . . ,J and for all subspaces V of `2(N) (of dimension
J or greater) the following holds:∣∣λ j(A (ω1))−λ j(A (ω2))

∣∣6 η |ω1−ω2| ∀ω1,ω2 ∈Ω , and∣∣∣λ j(A
V (ω1))−λ j(A

V (ω2))
∣∣∣6 η |ω1−ω2| ∀ω1,ω2 ∈Ω ,

where λ j(·) denotes the jth largest eigenvalue of its Hermitian matrix argument.

Now let
{

ω(ηk)
}

be a convergent subsequence of
{

ω(k)
}

. The interpolation property (part (i) of
Theorem 4.1) implies

min
ω∈Ω

λmax(A (ω)) 6 λmax(A (ω(ηk))) = λmax(A
Vηk (ω(ηk))), (4.2)

while the monotonicity property (part (i) of Lemma 4.1) implies

min
ω∈Ω

λmax(A (ω)) > min
ω∈Ω

λmax(A
Vηk+1−1(ω))

= λmax(A
Vηk+1−1(ω(ηk+1))) > λmax(A

Vηk (ω(ηk+1))).
(4.3)

Thus, minω∈Ω λmax(A (ω)) is squeezed between λmax(A
Vηk (ωηk)), λmax(A

Vηk (ω(ηk+1))), the gap be-
tween which is decaying to zero as k→ ∞ due to uniform Lipschitz continuity (Lemma 4.2). This leads
to the following global convergence result. The details of the proof are omitted, as the proof is identical
to the one for Theorem 3.1 in Kangal et al. (2018).

THEOREM 4.2 (Global Convergence) Every convergent subsequence of the sequence
{

ω(k)
}

generated
by Algorithm 2 in the infinite dimensional setting converges to a global minimizer of λmax(A (ω)) over
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ω ∈Ω . Moreover,

lim
k→∞

λmax(A
Vk(ω(k+1))) = lim

k→∞
min
ω∈Ω

λmax(A
Vk(ω)) = min

ω∈Ω
λmax(A (ω)). (4.4)

4.3 Rate-of-Convergence

In this section, as has been done earlier for the rate-of-convergence analysis of the support based algo-
rithm, we assume λmax(A (ω)) has a unique global minimizer over Ω , say at ω∗. Under this assumption,
by employing Theorem 4.2, it follows that the sequence {ω(k)} itself converges to the unique global
minimizer ω∗ = argminω∈Ω λmax(A (ω)).

Here we are concerned with how quickly {ω(k)} by Algorithm 2 converges to ω∗. If the eigenvalue
λmax(A (ω∗)) is simple, then the eigenvalue function λmax(A (ω)) is real analytic at ω∗. In this case,
it has been shown in Kressner et al. (2018) that the precise R-order of convergence of {ω(k)} to ω∗ is
1+
√

2, i.e., there exists a sequence {ε(k)} converging to zero such that |ω(k)−ω∗|6 ε(k) for all k large
enough and ε(k+1) = O((ε(k))1+

√
2).

Otherwise, λmax(A (ω∗)) is multiple with algebraic multiplicity K > 2. Throughout this section, it
is assumed that ω∗ ∈ Int Ω , as well as

0 /∈ bd ∂λ j(A (ω∗)), for j = 1, . . . ,K, (4.5)

where λ j(A (ω)) denotes the jth largest eigenvalue of A (ω), and bd ∂λ j(A (ω)) denotes the bound-
ary of the generalized Clarke derivative ∂λ j(A (ω)) (we refer to (3.3) for the definition of the gen-
eralized Clarke derivative). This assumption is equivalent to having non-zero one-sided derivatives
of λ j(A (ω)) at ω∗ for j = 1, . . . ,K, and holds generically in the non-smooth case. As discussed
in Section 3.2, λmax(A (ω)) is continuous, piece-wise real analytic at ω∗, but usually not differen-
tiable. Furthermore, part (i) of Lemma 3.1 asserts the existence of real analytic eigenvalue functions
λ̃1(A (ω)), . . . , λ̃n(A (ω)) of A (ω). Precisely K of these n real analytic functions at ω∗ must be equal
to λmax(A (ω∗)) with non-zero derivatives; a zero derivative for one of these K functions at ω∗ contra-
dicts (4.5). Hence, without loss of generality, suppose

λ̃1(A (ω∗)) = . . . = λ̃K(A (ω∗)) = λmax(A (ω∗))

are such that

λ̃
′
1(A (ω∗)), . . . , λ̃

′
P(A (ω∗))> 0, λ̃

′
P+1(A (ω∗)), . . . , λ̃

′
K(A (ω∗))< 0.

Our arguments make use of the gap

ϕ := λmax(A (ω∗)) − λK+1(A (ω∗))

= λmax(A (ω∗)) − max
{

λ̃ j(A (ω∗))
∣∣ j = K +1, . . . ,n

}
,

(4.6)

as well as the real analytic eigenvalue functions of A Vk(ω) which we denote with λ̃1(A
Vk(ω)), . . . ,

λ̃dk(A
Vk(ω)), where dk := dim Vk.

The Hermite interpolation property extends to λ̃ j(A (ω)) and λ̃ j(A Vk(ω)) at the iterates ω(k) of
Algorithm 2 for large k in the way stated by Lemma 4.3 below. This result immediately follows from part
(ii) of Lemma 4.1, as the set {λ̃ j(A (ω)) | j = 1, . . . ,K} corresponds to the set of largest K eigenvalues
of A (ω) for all ω in an open interval I containing ω∗. Furthermore, ω(k) ∈ I for large k, and the
eigenvectors corresponding to λ̃ j(A (ω(k))) for j = 1, . . . ,K are included in the subspaces.
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LEMMA 4.3 Let {ω(k)} be the sequence generated by Algorithm 2, and ω∗ denote the unique global
minimizer of λmax(A (ω)) over Ω such that λmax(A (ω∗)) has algebraic multiplicity K > 2. For each
k ∈ Z+ large enough, there exist `1, . . . , `K ∈ {1, . . . , dim Vk} satisfying

λ̃ j(A (ω(k))) = λ̃` j(A
Vk(ω(k))), λ̃

′
j(A (ω(k))) = λ̃

′
` j
(A Vk(ω(k))) for j = 1, . . . ,K.

It is a matter of convention how we label the real analytic eigenvalue functions of A Vk(ω). For ease
of notation, from here on, we relabel if necessary so that ` j = j for j = 1, . . . ,K in Lemma 4.3. The
next lemma gives a description of ω(k+1), the global minimizer of λmax(A Vk(ω)), in terms of the real
analytic eigenvalues λ̃1(A

Vk(ω)), . . . , λ̃K(A Vk(ω)).

LEMMA 4.4 Suppose that λmax(A (ω)) has a unique global minimizer over Ω at ω∗, and that ω∗ ∈
Int Ω . Furthermore, suppose λmax(A (ω∗)) has algebraic multiplicity K > 2, and that (4.5) holds. The
following assertions are satisfied for all k large enough:

(i) Letting δ j := λ̃ ′j(A (ω∗)) > 0 for j = 1, . . . ,P, there exists ε j > 0 such that for all ω ∈ (ω∗−
ε j,ω∗+ ε j) we have

λ̃
′
j(A (ω))> 3δ j/4 and λ̃

′
j(A

Vk(ω))> δ j/2.

(ii) Letting δ j := λ̃ ′j(A (ω∗)) < 0 for j = P + 1, . . . ,K, there exists ε j > 0 such that for all ω ∈
(ω∗− ε j,ω∗+ ε j) we have

λ̃
′
j(A (ω))6 3δ j/4 and λ̃

′
j(A

Vk(ω))6 δ j/2.

(iii) The point ω(k+1) is such that

λmax(A
Vk(ω(k+1))) = λ̃ j1(A

Vk(ω(k+1))) = λ̃ j2(A
Vk(ω(k+1)))

for some j1 ∈ {1, . . . ,P} and some j2 ∈ {P+1, . . . ,K}.

Proof. (i) It follows from Proposition 2.9 in Kangal et al. (2018) that there exists an open interval
I ⊆ Int Ω containing ω∗ and a positive constant ν ∈R+ such that λ̃ ′′j (A (ω)), as well as λ̃ ′′j (A

Vk(ω))
for all k sufficiently large are bounded in absolute value by ν uniformly over all ω ∈ I and over all
such large k.

The uniform boundedness of |λ̃ ′′j (A (ω))| over I combined with λ̃ ′j(A (ω∗)) = δ j imply the exis-

tence of Î := (ω∗− ε̂,ω∗+ ε̂)⊆I such that λ̃ ′j(A (ω))> 3δ j/4 ∀ω ∈ Î .
Since the global minimizer ω∗ is assumed to be unique, by Lemma 3.4 we have ω(k)→ω∗ as k→∞.

Hence, choose k large enough so that ω(k) ∈ Î /2 := (ω∗− ε̂/2,ω∗+ ε̂/2). Now we employ the Hermite
interpolation property (Lemma 4.3) to deduce

λ̃
′
j(A

Vk(ω(k))) = λ̃
′
j(A (ω(k))) > 3δ j/4

for all such large k. Since |λ̃ ′′j (A Vk(ω))| is also uniformly bounded in Î by a constant independent of

k, there exists Ĩ := (ω(k)− ε̃,ω(k)+ ε̃)⊆ Î , in particular an ε̃ ∈ R+ independent of k, such that

λ̃
′
j(A

Vk(ω)) > δ j/2 ∀ω ∈ Ĩ
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for all such large k. By choosing k even larger if necessary, it can be ensured that |ω(k)−ω∗|< ε̃/2 so
that (ω∗− ε j,ω∗+ ε j)⊆ Ĩ for ε j := ε̃/2.

(ii) This can be proven in a way similar to part (i).
(iii) Setting ε := min{ε j | j = 1, . . . ,K} for ε j as in part (i) and (ii), there exists an open interval

I = (ω∗− ε,ω∗+ ε) such that for all large k the following hold:

λ̃
′
j(A

Vk(ω)) > δ j/2 > 0 ∀ω ∈I for j = 1, . . . ,P,

λ̃
′
j(A

Vk(ω)) 6 δ j/2 < 0 ∀ω ∈I for j = P+1, . . . ,K.

Furthermore, let Ĩ := (ω∗− ε̃,ω∗+ ε̃) for ε̃ := min{ε,ϕ/(8η)}, where η is the uniform Lipschitz
constant in Lemma 4.2, and ϕ is as in (4.6). Without loss of generality, we make the following two
assumptions. First, the set {λ̃1(A (ω)), . . . , λ̃K(A (ω))} corresponds to the set of K largest eigenvalues
of A (ω) for all ω ∈ Ĩ . Secondly, ω(k), ω(k+1) := argminω∈Ω λmax(A Vk(ω)) ∈ Ĩ , since ω(k)→ ω∗
as k→ ∞.

We start by showing that λmax(A Vk(ω))> λ̃ j′(A
Vk(ω)) for all ω ∈ Ĩ and for j′=K+1, . . . ,dim Vk.

To this end, first observe that

λK(A (ω))−λK+1(A (ω)) > λK(A (ω∗))−λK+1(A (ω∗))−ϕ/4 = 3ϕ/4

for all ω ∈ Ĩ , where we employ the Lipschitz continuity of λK(A (ω)) and λK+1(A (ω)) with the
Lipschitz constant η (see Lemma 4.2). In particular, for each j ∈ {1, . . . ,K}, we have

3ϕ/4 6 λ̃ j(A (ω(k)))−λK+1(A (ω(k))) 6 λ̃ j(A
Vk(ω(k)))−λK+1(A

Vk(ω(k)))

where in the second inequality we exploit the interpolation property (Lemma 4.3), and the monotonicity
(i.e., λK+1(A (ω(k)))> λK+1(A

Vk(ω(k))) due to part (i) of Lemma 4.1). Now the last inequality implies

λ̃ j(A
Vk(ω))−λK+1(A

Vk(ω)) > λ̃ j(A
Vk(ω(k)))−λK+1(A

Vk(ω(k)))−ϕ/2 = ϕ/4 (4.7)

for all ω ∈ Ĩ . Note that above we make use of the uniform Lipschitz continuity of λ̃ j(A Vk(ω))
and λK+1(A

Vk(ω)) with the uniform Lipschitz constant η independent of the subspace Vk; the latter is
immediate from Lemma 4.2, whereas the former can be seen from |λ̃ ′j(A Vk(ω))|6 ‖A ′(ω)‖2. (Strictly
speaking η as in Lemma 4.2 is the uniform Lipschitz constant for the sorted eigenvalue λ j(A Vk(ω)), but
without loss of generality it can be chosen even larger if necessary so that it is also at least as large as the
uniform Lipschitz constant for λ̃ ′j(A

Vk(ω)).) Inequality (4.7) means that λK+1(A
Vk(ω)) is the largest

of λ̃ j′(A
Vk(ω)) for j′ = K +1, . . . ,dim Vk for ω ∈ Ĩ . Consequently, for every j′ = K +1, . . . ,dim Vk

and for all ω ∈ Ĩ , we deduce

λmax(A
Vk(ω))− λ̃ j′(A

Vk(ω)) > λmax(A
Vk(ω))−λK+1(A

Vk(ω)) > ϕ/4.

It follows from the previous paragraph that for all ω ∈ Ĩ the following holds: λmax(A Vk(ω)) =

λ̃ j(A Vk(ω)) for some j ∈ {1, . . . ,K}, yet λmax(A Vk(ω))> λ̃ j(A Vk(ω)) for j /∈ {1, . . . ,K}. Now con-
sider a point ω̃ ∈ Ĩ such that

• λmax(A Vk(ω̃)) = λ̃p1(A
Vk(ω̃)) = · · · = λ̃pq(A

Vk(ω̃)) ∃p1, . . . , pq ∈ {1, . . . ,P} for some q > 1,

yet λmax(A Vk(ω̃))> λ̃ j(A Vk(ω̃)) for j 6∈ {p1, . . . , pq}, or
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• λmax(A Vk(ω̃))= λ̃n1(A
Vk(ω̃))= · · ·= λ̃ns(A

Vk(ω̃)) ∃n1, . . . ,ns ∈{P+1, . . . ,K} for some s> 1,
yet λmax(A Vk(ω̃))> λ̃ j(A Vk(ω̃)) for j /∈ {n1, . . . ,ns}.

We shall show that such a point cannot be a minimizer of λmax(A Vk(ω)). For these two cases, we
respectively have

∂λmax(A
Vk(ω̃)) = Co

{
λ̃
′
p j
(A Vk(ω̃)) | j = 1, . . . ,q

}
⊆ (δp,min/2,∞),

∂λmax(A
Vk(ω̃)) = Co

{
λ̃
′
n j
(A Vk(ω̃)) | j = 1, . . . ,s

}
⊆ (−∞,δn,max/2),

where δp,min := min{δp j | j = 1, . . . ,q} > 0, δn,max := max{δn j | j = 1, . . . ,s} < 0, and Co(S) de-
notes the convex hull of a set S. In either case, 0 /∈ ∂λmax(A Vk(ω̃)) implying ω̃ is not a mini-
mizer of λmax(A Vk(ω)). This means that, since ω(k+1) ∈ Ĩ is a minimizer of λmax(A Vk(ω)), we
must have λmax(A Vk(ω(k+1))) = λ̃ j1(A

Vk(ω(k+1))) = λ̃ j2(A
Vk(ω(k+1))) for some j1 ∈ {1, . . . ,P} and

j2 ∈ {P+1, . . . ,K}. �
Now we are ready to present the main quadratic rate-of-convergence result in the non-smooth setting;

this result follows from the Hermite interpolation properties in Lemma 4.3, as well as Lemma 4.4.

THEOREM 4.3 (Quadratic Convergence in the Non-Smooth Case) Suppose that the global minimizer
ω∗ := argminω∈Ω λmax(A (ω)) is unique and such that ω∗ ∈ Int Ω , the eigenvalue λmax(A (ω∗)) is
multiple, condition (4.5) holds. The sequence

{
ω(k)

}
generated by Algorithm 2 satisfies

|ω(k+1)−ω∗| = O((ω(k)−ω∗)
2) (4.8)

for all large k.

Proof. Part (i) and (ii) of Lemma 4.4 show the existence of an open interval I := (ω∗− ε,ω∗+ ε) ⊆
IntΩ where λ̃ ′j(A (ω)) for j = 1, . . . ,P is bounded from below uniformly by a positive real number and

λ̃ ′j(A (ω)) for j = P+ 1, . . . ,K is bounded from above uniformly by a negative real number. Let us
consider k large enough so that ω(k) ∈I .

By part (iii) of Lemma 4.4, there exist j1 ∈{1, . . . ,P}, j2 ∈{P+1, . . . ,K} such that λ̃ j1(A
Vk(ω(k+1)))

= λ̃ j2(A
Vk(ω(k+1))). For such a pair of j1, j2 define the real analytic functions

λ (A (ω)) := λ̃ j1(A (ω))− λ̃ j2(A (ω)), λ (A Vk(ω)) := λ̃ j1(A
Vk(ω))− λ̃ j2(A

Vk(ω)).

Observe that there exists a constant ζ ∈ R+ such that

λ
′(A (ω(k))) = λ̃

′
j1(A (ω(k)))− λ̃

′
j2(A (ω(k))) > ζ =⇒

∣∣∣∣[λ ′(A (ω(k)))
]−1
∣∣∣∣ 6 ζ

−1

independent of k. Note also that the real analyticity of λ̃ j1(A (ω)), λ̃ j2(A (ω)) implies the Lipschitz
continuity of λ ′(A (ω)) on I .

The proof manipulates the following equation:

0 = λ (A (ω∗)) = λ (A (ω(k)))+
∫ 1

0
λ
′(A (ω(k)+ t(ω∗−ω

(k))))(ω∗−ω
(k))dt.
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We employ λ (A (ω(k))) = λ (A Vk(ω(k))) (due to Lemma 4.3) in this equation, then multiply both sides

by
[
λ ′(A (ω(k)))

]−1
to obtain

0 =
[
λ
′(A (ω(k)))

]−1
λ (A Vk(ω(k)))+(ω∗−ω

(k))+
[
λ
′(A (ω(k)))

]−1
×∫ 1

0

[
λ
′(A (ω(k)+ t(ω∗−ω

(k))))−λ
′(A (ω(k)))

]
(ω∗−ω

(k))dt.
(4.9)

An application of Taylor’s theorem to λ (A Vk(ω)) about ω(k) with second order remainder combined
with the equalities λ (A Vk(ω(k+1))) = 0 and λ ′(A Vk(ω(k))) = λ ′(A (ω(k))) (a corollary of Lemma 4.3)
lead us to [

λ
′(A (ω(k)))

]−1
λ (A Vk(ω(k))) = (ω(k)−ω

(k+1))+O((ω(k)−ω
(k+1))2).

Now using the last equality in (4.9) gives rise to

0 = (ω∗−ω
(k+1)) + O((ω(k)−ω

(k+1))2) +
[
λ
′(A (ω(k)))

]−1
×∫ 1

0

[
λ
′(A (ω(k)+ t(ω∗−ω

(k))))−λ
′(A (ω(k)))

]
(ω∗−ω

(k))dt,

implying

|ω(k+1)−ω∗| 6 O((ω(k)−ω
(k+1))2) +

∣∣∣∣[λ ′(A (ω(k)))
]−1
∣∣∣∣×∫ 1

0

∣∣∣λ ′(A (ω(k)+ t(ω∗−ω
(k))))−λ

′(A (ω(k)))
∣∣∣ |ω∗−ω

(k)|dt.
(4.10)

Finally the desired equality (4.8) follows from (4.10) by employing
∣∣∣∣[λ ′(A (ω(k)))

]−1
∣∣∣∣ 6 ζ−1, the

Lipschitz continuity of λ ′(A (ω)), as well as the inequality

(ω(k)−ω
(k+1))2 6 2

[
(ω(k+1)−ω∗)

2 +(ω(k)−ω∗)
2
]
.

�

REMARK 4.1 The eigenvalue function in (1.3) associated with the inner numerical radius, as well as its
reduced counter-part, are periodic functions with periods 2π . Even if ω∗ turns out to be an end-point of
Ω = [0,2π], the analysis and quadratic convergence result above apply to a sequence {ω̃(k)} such that
ω(k) = ω̃(k) mod2π (the actual sequence generated {ω(k)} is congruent to a sequence {ω̃(k)} generated
by the algorithm when it is applied on an interval containing ω∗ strictly in its interior). More generally,
the assumption ω∗ ∈ Int Ω is not essential for the quadratic convergence result above whenever the
eigenvalue function has periodic nature.

4.4 Numerical Experiments

In this section we test Algorithm 2 on various examples involving the computation of the inner numerical
radius (i.e., A (ω) = Acosω +Bsinω in all of the examples for a given pair A,B ∈ Cn×n of Hermitian
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matrices), majority of which exhibit non-smoothness at the global minimizer. In all of these examples,
the subspace framework is terminated when the condition

∣∣λmax(A Vk(ωk+1))−λmax(A Vk−1(ωk))
∣∣ <

tol is satisfied, where tol is a prescribed tolerance; we always set tol = 10−12 unless otherwise
specified. Additionally, the input parameter ε to Algorithm 2 is set equal to 10−16 ‖A (ω)‖2 unless
otherwise specified. The reduced eigenvalue optimization problems are solved by means of the support
based algorithm in Section 3.1, in particular the Matlab package eigopt (see Section 10 in Mengi
et al. (2014)). The largest eigenvalue of the full matrix A (ω) at a given ω is computed by means of
eigs in MATLAB.

At least quadratic convergence of the proposed subspace framework in the non-smooth case has been
established above. Some of the examples here are meant to confirm the realization of this theoretical
result in practice. Depending on double precision gives little insight; we typically observe a quadratic
convergence behavior at the last one or two subspace iterations before termination in double precision.
To illustrate the order of convergence more accurately and more convincingly, following also the practice
in Section 3.3, we perform computations in higher precision by means of the Matlab package Advanpix
Multiprecision Computing Toolbox. In the majority of the non-smooth examples below, the computa-
tions are performed to ensure 400 decimal digits accuracy, specifically tol = 10−400 for these exam-
ples. We illustrate the quick convergence of the subspace framework in the non-smooth case by plotting
ln(ek+1) vs. ln(ek), as well as ln(ξk+1) vs. ln(ξk) in high precision, where ek := λ∗−λmax(A Vk−1(ω(k)))
and ξk := |ω(k)−ω∗| with ω∗ denoting the global minimizer of λmax(A (ω)) and λ∗ := λmax(A (ω∗)).

Distance to a Nearest Definite Pair. Consider the Hermitian pair (A,B) with

A = (G̃+ G̃∗)/2 and B = −i(G̃− G̃∗)/2

and G̃ := Geiπ/6, where G is the 640× 640 Grcar matrix. An application of the subspace frame-
work for the computation of the inner numerical radius of A+ iB yields the global minimizer θ∗ =
2.617992877994 of λmax(Acosθ + Bsinθ), as well as λmax(Acosθ∗ + Bsinθ∗) = 0.634045490256.
Now as explained at the end of Section 2.2, this implies the pair is not definite and 0 ∈ F(A+ iB);
this is confirmed by the plot of F(A+ iB) on the top right in Figure 1.

We deduce from (2.3) that dδ (A,B) = 0.644045490256 for δ = 10−2. The right column in Figure 1
illustrates the field of values of A+ iB, (A+∆A∗)+ i(B+∆B∗), Ã+ iB̃ = e−iϕ((A+∆A∗)+ i(B+∆B∗))
for the choice of δ = 10−2 and ϕ = θ∗+π/2, where ∆A∗,∆B∗ are as in (2.4). Although λmax(Acosθ∗+
Bsinθ∗) is simple, it turns out to be very close to the second largest eigenvalue; these two eigenvalues
differ by about 10−7. The order of convergence of our subspace framework on this example is at least
quadratic; this is depicted in Table 4, which lists the iterates of Algorithm 2 with ε = 10−6.

Testing Hyperbolicity of Quadratic Eigenvalue Problems. The quadratic eigenvalue problem (QEP)

Q(λ )x = (λ 2A+λB+C)x = 0 (4.11)

is said to be hyperbolic if A,B,C ∈ Cn×n are Hermitian, A is positive definite, as well as (x∗Bx)2 >
4(x∗Ax)(x∗Cx) for all non-zero x ∈ Cn. A hyperbolic QEP possesses appealing properties; for instance
a hyperbolic QEP with positive definite B and positive semidefinite C has n linearly independent eigen-
vectors and 2n real eigenvalues (as discussed in Section 7.6 in Lancaster (1966)). It is well known (see
e.g. Higham et al. (2002)) that the hyperbolicity of the QEP in (4.11) is equivalent to the definiteness of
(A1,B1) with

A1 =

[
−C 0

0 A

]
, B1 =−

[
B A
A 0

]
. (4.12)
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k p λmax(A Vk(ω(k+1))) ω(k+1)

4 4 0.629840138568 2.618127739876
5 5 0.632130046510 2.617077493245
6 6 0.634045279755 2.617993771783
7 8 0.634045490256 2.617993877986
8 10 0.634045490256 2.617993877986

Table 4: This table concerns the minimization of λmax(A (ω)), where A (ω) := Acosω + Bsinω

for Hermitian matrices A,B defined in terms of the 640 × 640 Grcar matrix. The quantities
λmax(A Vk(ω(k+1))) and ω(k+1) := argminω λmax(A Vk(ω)) by Algorithm 2 starting with ω(1) = 0.45
are listed along with p := dimVk with respect to k.

Consider in particular the QEP Q(λ ) = λ 2A+λB+C that is linked to a damped-mass spring system,
where A,B,C are 500×500 matrices such that A = I,

B = β



20 −10

−10 30
. . .

. . . . . . . . .
. . . 30 −10

−10 20


, C =


15 −5

−5
. . . . . .
. . . . . . −5

−5 15

 (4.13)

for a given real number β > 0. We determine the hyperbolicity of the QEP for different β values by test-
ing the definiteness of the associated 1000×1000 pair (A1,B1) as in (4.12). Table 5 indicates whether
the pair (A1,B1) is definite or not for eight equally spaced β values in the interval [0.500,0.528]. The
number of iterations to compute the inner numerical radius of A1 + iB1 (up to the prescribed toler-
ance tol= 10−12) is eight for each β value. This is a non-smooth example; the largest eigenvalue of
A1 cosθ +B1 sinθ has multiplicity 2 at the minimizing θ for each β value, yet we observe the quadratic
convergence of Algorithm 2 consistent with what is expected in theory. This is hinted by Table 6, which
lists the iterates λmax(A Vk(ω(k+1))) and ω(k+1) with respect to k for β = 0.512 and β = 0.524. In the
table the number of accurate digits of ω(k+1) is not doubled at the last rows for both values of β . This is
because the reduced problems are solved to ensure a prescribed accuracy for the computed value of the
minimum λ (k+1) := λmax(A Vk(ω(k+1))), but not for the computed value of the global minimizer ω(k+1).
Even though the values of λ (k+1) in the table are at least twelve decimal digits accurate, this is not nec-
essarily true for the values of ω(k+1). To get a better insight into the order of convergence, we also
perform computations with 400 decimal digits accuracy for the pair (A1,B1) defined as in (4.12), (4.13)
with β = 0.512 and A,B,C of size 50. Here we limit the sizes of A1,B1 to 100, because the computation
of the largest eigenvalues using eigs and with the high precision package takes considerable amount
of time for larger matrices. Figure 3 indicates that the orders of convergence of {λmax(A Vk−1(ω(k)))}
and {ω(k)} are at least quadratic.

Linear Systems in Saddle Point Form. We consider again the matrix pair (A ,J ) discussed in Sec-
tion 3.3, where A ∈ R(n+m)×(n+m) is the coefficient matrix of the form (3.9) that originates from a dis-
cretization of the Stokes equation, and J =diag(In,−Im). We run our subspace procedure to minimize
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β 0.500 0.504 0.508 0.512
definite no no no no

β 0.516 0.520 0.524 0.528
definite no yes yes yes

Table 5: The definiteness of the pair (A1,B1) defined as in (4.12) associated with the QEP (4.11) for
A,B,C as in (4.13) and for several values of β .

β = 0.512
k p λ (k+1) ω(k+1)

4 6 0.218717671040 1.972911641774
5 8 0.006821928930 1.890604000858
6 10 0.008594146027 1.897161234772
7 12 0.008594402114 1.897151450236
8 14 0.008594402114 1.897151450823

β = 0.524
k p λ (k+1) ω(k+1)

4 6 0.233188266820 1.985354587351
5 8 -0.006697302959 1.901962042436
6 10 -0.004923289259 1.908357152861
7 12 -0.004923056427 1.908348045018
8 14 -0.004923056427 1.908348041619

Table 6: The iterates λ (k+1) := λmax(A Vk(ω(k+1))), ω(k+1), and p := dimVk are listed, when Algorithm
2 is applied to the example concerning the hyperbolicity of a QEP.

λmax(A cosθ +J sinθ) over θ ∈ [0,2π]. The computed results coincide with the ones obtained from
a direct application of Algorithm 1 in Section 3.3. As remarked before, λmax(A cosθ∗+J sinθ∗) has
multiplicity three at the global minimizer θ∗. Our subspace framework again exhibits at least a quadratic
convergence; this is evident from Table 7, even more convincing evidence is provided by the plots of the
decays of the errors in Figure 4 obtained by requiring 400 decimal digits accuracy in the computations.

Influence of the Parameter ε on the Order of Convergence. Let us consider C = C̃eiπ/6, where
C̃ is as in (3.8), but now the size of C̃ is n = 100. It again turns out that, letting A := (C +C∗)/2,
B := −i(C−C∗)/2, the eigenvalue λmax(A (ω) := Acosω +Bsinω) has multiplicity 2 at the global
minimizer ω∗. We run Algorithm 2 to minimize λmax(A (ω)) requiring 600 decimal digits accuracy in
the computed results by setting ε = 0 and ε = 10−16(‖A‖2 +‖B‖2). Figure 5 indicates that, at least on
this example, including also the additional eigenvectors corresponding to eigenvalues close to the largest
eigenvalue in the subspaces leads to a faster convergence. We have also tested the choices for ε larger
than 10−16(‖A‖2+‖B‖2), e.g., ε = 10−6. They yield results nearly the same as ε = 10−16(‖A‖2+‖B‖2).
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FIG. 3: The orders of convergence of Algorithm 2 for the QEP example with A,B,C defined as in (4.13)
of size n = 50 and for β = 0.512.

k p λmax(A Vk(ω(k+1))) ω(k+1)

2 2 -0.876669786135 2.023688714623
3 4 -0.023285504705 3.088556373675
4 7 -0.022225058342 3.087503074213
5 10 -0.022224901666 3.087502918535
6 13 -0.022224901666 3.087502918535

Table 7: This table concerns the positive or negative definiteness of A −µJ for some µ , where A is
the matrix for the saddle point system arising from the Stokes equation, J := diag(In,−Im). The iterates
of Algorithm 2 and p := dimVk are listed when it is applied to minimize λmax(A cosω +J sinω).

Performance of the Subspace Framework. We test the performance of Algorithm 2 for the computa-
tion of ζ (An,Bn), where

An = (Cn +C∗n)/2, Bn = −i(Cn−C∗n)/2, (4.14)

Cn = Pn + iRn, the matrix Pn denotes the n×n matrix obtained from the finite difference discretization
of the Poisson operator by employing the five-point formula, and Rn denotes a random n× n sparse
matrix generated by the Matlab command sprand(n,n,20/n). Table 8 lists the computed values of
the inner numerical radius by the subspace framework, number of subspace iterations and run-times in
seconds to reach the specified accuracy for the pairs (An,Bn) of sizes varying between 10000 and 90000.
The number of subspace iterations, as well as the time to solve the reduced eigenvalue optimization
problems, do not vary much with respect to n. However, the time required for the computation of the
largest eigenvalue of the full problem at every iteration increases with respect to n. In essence the total
runtime is determined by these large-scale eigenvalue computations for large values of n.

5. Conclusion

The algorithm in Mengi et al. (2014) based on piece-wise quadratic model functions appears to be
quite effective in dealing with global minimization problems involving a non-convex largest eigenvalue
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FIG. 4: The order of convergence of Algorithm 2 for the saddle point linear system applied to minimize
λmax(A cosω +J sinω) where A is the coefficient matrix for the saddle point system arising from
the Stokes equation and J :=diag(In,−Im).
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FIG. 5: The effect of ε on the order of convergence is illustrated. In particular, setting ε > 0 (meaning
the additional eigenvectors corresponding to nearby eigenvalues close to the largest eigenvalue are also
included in the subspaces) leads to a faster convergence compared with ε = 0 (meaning only the eigen-
vector corresponding to the largest eigenvalue is included in the subspace). This example concerns the
computation of the inner numerical radius of C = C̃eiπ/6, where C̃ is as in (3.8) and of size n = 100.

n # iter total time reduced prob eigval comp ζ (An,Bn)

10000 21 22.62 4.41 17.16 653.69
22500 26 110.61 6.43 100.96 983.80
40000 24 168.44 5.91 156.91 1316.77
62500 20 315.34 13.18 291.97 1667.44
90000 21 594.99 11.12 569.67 1995.49

Table 8: The performance of the subspace framework (Algorithm 2) to compute ζ (An,Bn) for An,Bn ∈
Rn×n as in (4.14) in terms of Cn = Pn+ iRn, the Poisson matrix Pn and the sparse random matrix Rn. The
number of subspace iterations, total run-time, times for the reduced problems, large-scale eigenvalue
computations in seconds are given in the 2nd, 3rd, 4th, 5th columns, respectively.
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function of a Hermitian matrix depending on one parameter. On the other hand, the subspace framework
in Kangal et al. (2018) is quite effective to deal with such problems when the Hermitian matrix is large.
It accurately reduces the large dimensionality by projecting the Hermitian matrix to small subspaces
formed of eigenvectors. Here we have illustrated the efficiency of these algorithms on the computation
of the inner numerical radius.

As a by-product, we have generalized the subspace framework of Kangal et al. (2018) to better
cope with non-smoothness at the minimizer. The generalized subspace framework adds not only the
eigenvector corresponding to the largest eigenvalue, but also the eigenvectors corresponding to nearby
eigenvalues.

We have proven rapid convergence results for both algorithms in the non-smooth case when the
largest eigenvalue is not simple at the minimizer. The algorithm in Mengi et al. (2014) is shown to
generate a sequence {`(k)} of lower bounds such that both {`(2k)} and {`(2k+1)} converge to the globally
smallest value of the largest eigenvalue function at a quadratic rate. The generalized subspace frame-
work is shown to generate a sequence of iterates {ω(k)} that converges to the global minimizer at a
quadratic rate. What we witness in practice is consistent with these theoretical findings. To this end,
several numerical results concerning the inner numerical radius computation in the non-smooth case are
reported confirming the expected in theory.

Acknowledgements. The authors are grateful to two anonymous referees for reading the initial version
of this manuscript carefully, and providing constructive feedback.
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