
Instructor: Emre Mengi

Math 504 (Fall 2011)

Study Guide for Weeks 11-14
This homework concerns the following topics.

• Basic definitions and facts about eigenvalues and eigenvectors (Trefethen&Bau, Lecture 24)

• Similarity transformations (Trefethen&Bau, Lecture 24)

• Power, inverse and Rayleigh iterations (Trefethen&Bau, Lecture 27)

• QR algorithm with and without shifts (Trefethen&Bau, Lecture 28&29)

• Simultaneous power iteration and its equivalence with the QR algorithm (Trefethen&Bau,
Lectures 28&29)

• The implicit QR algorithm

• The Arnoldi Iteration (Trefethen&Bau, Lectures 33&34)

• GMRES (Trefethen&Bau, Lecture 35)

Homework 5 (Assigned on Dec 26th, Mon; Due on Jan 10th, Tue by 11:00)
Please turn in the solutions only to the questions marked with (*). The rest is to practice on
your own. Attach Matlab output, m-files, print-outs whenever they are necessary. The Dec
10, 11:00 deadline is tight.

1. (*) Consider the matrices

A1 =

[
1 7
3 5

]
and A2 =

 2 4 −5
0 1 3
0 0 1


(a) Find the eigenvalues of A1 and the eigenspace associated with each of its eigenvalues.

(b) Find the eigenvalues of A2 together with their algebraic and geometric multiplicities.

(c) Find a Schur factorization for A1.

(d) Let v0 and v1 be two linearly independent eigenvectors of A1. Suppose also that {qk}
denotes the sequence of vectors generated by the inverse iteration with shift σ = 2 and
starting with an initial vector q0 = α0v0 + α1v1 ∈ C2 where α0, α1 are nonzero scalars.

Determine the subspace that span{qk} is approaching as k →∞.

2. Consider the matrices

B1 =

 1 1 1
0 −2 1
0 0 −1

 and B2 =

[
2 −1
−3 0

]
.



(a) Write down the characteristic polynomials for B1, B2 and calculate their eigenvalues.

(b) Find the eigenspace associated with each eigenvalue of B1.

(c) Recall that power iteration (generically) converges to the dominant eigenvector as-
sociated with the eigenvalue with largest modulus. Suppose that power iteration is
applied to B1 and B2. For which of B1 and B2 would you expect the convergence to
the dominant eigenvector to be faster? Explain.

(d) Write down the companion matrix C1 whose eigenvalues are same as the roots of the
polynomial p1(z) = z3 + 2z2 − z − 2.

3. Consider the infinite sequence of integers

{f0, f1, f2, . . . }

where f0 = −9, f1 = 2 and for n ≥ 2

fn = 0.9fn−1 + 0.1fn−2.

(a) Define Fn =

[
fn
fn−1

]
. Find a 2× 2 matrix such that for n ≥ 2

Fn = AFn−1.

(b) Find the eigenvalues and an eigenvector associated with each of the eigenvalues of A.

(c) Write down F1 =

[
f1
f0

]
as a linear combination of the eigenvectors of A.

(d) Using your answers to parts (a)-(c) find a general formula for fn in terms of n.

4. (Watkins 2nd Ed, Exercise 5.1.22, page 302) (*) Consider a mass attached to a wall by a
spring as shown below. At time zero the mass is at rest at its equilibrium position x = 0.

12N

1kg

16N/m

At that moment a steady force of 12 newtons applied, pushing the cart to the right. Assume
that the rolling friction is −kẋ(t) newtons. Do parts (a)-(c) by hand.



(a) Set up a system of first-order differential equations of the form ẋ = Ax − b for the
motion of the mass.

(b) Find the characteristic polynomial of A and solve it by the quadratic formula to obtain
an expression (involving k) for the eigenvalues of A.

(c) There is a critical value of k at which the eigenvalues of A change from real to complex.
Find this critical value.

(d) Using Matlab solve the initial value problem for the cases (i) k = 2, (ii) k = 6, (iii)
k = 10, and k = 14. Rather than reporting your solutions, simply plot x1(t) for
0 ≤ t ≤ 3 for each of your solutions on a single set of axes. Comment on your plot. In
particular how fast is the rate of decay, does the motion exhibit oscillations or not?

5. A matrix A is called normal if it satisfies the property A∗A = AA∗. Show that a matrix
A ∈ Cn×n is normal if and only if it has a factorization of the form

A = QΛQ∗

where Q ∈ Cn×n is unitary and Λ ∈ Cn×n is diagonal.

6. Suppose A ∈ Rn×n has distinct eigenvalues. Denote the eigenvalues of A by λ1, λ2, . . . , λn
and the associated eigenvectors by v1, v2, . . . , vn. Since A has distinct eigenvalues, λj 6= λk
for all j, k such that j 6= k. For simplicity assume that the eigenvalues and eigenvectors are
real, that is λj ∈ R, vj ∈ Rn for j = 1, . . . , n.

Show that the set of eigenvectors {v1, v2, . . . , vn} is linearly independent, that is the vector
equation

c1v1 + c2v2 + · · ·+ cnvn = 0

with c1, c2, . . . , cn ∈ R holds only for c1 = c2 = · · · = cn = 0. (Hint: Show by induction that
all subsets {v1, . . . , vj} are linearly independent for j = 1, . . . , n.)

7. Suppose A ∈ Rn×n is a symmetric matrix, that is AT = A. Show that A is positive
definite (i.e. xTAx > 0 for all non-zero x ∈ Rn) if and only if all of the eigenvalues of A are
positive.
(Note: A symmetric matrix is normal; consequently from question 5 it is unitarily diagonal-
izable. A symmetric matrix also has real eigenvalues.)

8. Consider the sequence of real numbers {xk} defined recursively as

xk+1 =
xk
2

+
5

2xk

for k = 0, 1, 2, ... given an x0. It can be shown that if x0 is sufficiently close to
√

5, then

lim
k→∞

xk =
√

5.

Show that the rate of convergence is q-quadratic when the sequence converges to
√

5.



9. Suppose that the power iteration is applied to a Hermitian matrix A ∈ Cn×n such that
|λ1| = |λ2| > |λ3| where λ1, λ2, λ3 denote the largest three eigenvalues of A in modulus.
Would you expect the power iteration to converge in exact arithmetic? If it converges,
which vector does it converge? What is the q-rate of convergence? Explain.

10. (*) Implement a Matlab routine rayleigh iter.m to compute an eigenvalue λ and an
associated eigenvector v of an n× n matrix A by Rayleigh iteration.

Your routine must return two output arguments, the computed eigenvalue λ and the as-
sociated eigenvector v. It must take one input argument, the n × n matrix A for which
an eigenvalue and an eigenvector are sought. You can choose a randomly generated vector
(by typing the command randn(n,1)) as your initial estimate q0 ∈ Cn for the eigenvector.
Display the estimate for the eigenvalue at each iteration (by typing display(q’*A*q) where
q is the current estimate for the eigenvector with 2-norm equal to one) so that you can ob-
serve the rate of convergence. You should terminate when the eigenvector estimates qk and
qk+1 at two consecutive iterations are sufficently close to each other, e.g. ‖qk−qk+1‖ ≤ 10−15.

Test your implementations with the following matrices.

B1 =

 1 0 1/10
0 −0.8 0

1/10 0 1

 , B2 =

 1 0 1/100
0 −0.8 0

1/100 0 1


Run your routine to compute an eigenvalue and an associated eigenvector for B1, B2. Run it
several times (e.g. six, seven times). Does it always converge to the same eigenvalue? What
kind of rate of convergence do you observe in practice?

11. (*) The QR algorithm is one of the standard approaches to compute the eigenvalues
of a matrix A ∈ Rn×n. Below a pseudocode is provided for the explicit QR algorithm. It
generates a sequence of matrices {Ak} that usually converges to an upper triangular matrix
in the limit as k →∞.

Algorithm 1 Explicit QR Algorithm without Shifts
A0 ← A
for k = 0, 1, . . . do

Compute a QR factorization Ak = Qk+1Rk+1

Ak+1 ← Rk+1Qk+1

end for

The QR Algorithm converges only linearly. To speed-up its convergence one can use the
following variant given below with shifts. Below in both parts perform the calculations by
hand.

(a) Apply one iteration of the QR algorithm to the matrix A provided below.
(Note : λ1 = 5 and λ2 = 1 are the eigenvalues of A.)

A =

[
3 1
4 3

]



Algorithm 2 The QR Algorithm with Shifts
A0 ← A
for k = 0, 1, . . . do

Choose a shift µk

Compute a QR factorization Ak − µkI = Qk+1Rk+1

Ak+1 ← Rk+1Qk+1 + µkI
end for

(b) Apply one iteration of the QR algorithm to the matrix A given in (a) with shift µ = 6.
Do you particularly observe (or should you expect) that the QR algorithm with this
shift converge faster than the QR algorithm without shift? Why or why not?

12. The explicit QR algorithm without shifts (Algorithm 1 in the previous question) is
equivalent to the simultaneous power iteration. Pseudocode for the simultaneous power
iteration is given below.

Algorithm 3 Simultaneous Power Iteration

for k = 1, . . . ,m do
Compute a QR factorization Ak = Q̂kR̂k

Λ̂k ← Q̂T
kAQ̂k

end for

Implement both the explicit QR Algorithm and simultaneous power iteration. Test them on
the matrix

A =

 3 −1 −2
−1 3 −1
−2 −1 3

 .
In particular verify that A3 = Λ̂3. Repeat this test for a few random square matrices of
small size. (Note that the simultaneous power iteration as above is unstable; you should not
work on it with large m.)

13. (*) In this question you are expected to shed a light into the relation between the QR
algorithm and simultaneous iteration. Pseudocodes are provided in the previous questions
for the QR algorithm (Algorithm 1) as well as for the simultaneous iteration (Algorithm 3).

Show that a QR factorization for Ak is given by

Ak = Q1Q2 . . . Qk︸ ︷︷ ︸
Q̂k

Rk . . . R2R1︸ ︷︷ ︸
R̂k

.

(Hint: First try to express Ak in Algorithm 1 in terms of A and Qj for j = 1, . . . , k.)

14. (*) The purpose of this question is to establish the equivalence of the simultaneous
power iteration to its normalized variant, for which a pseudocode is provided below. Show
that Ak = Q̃kRk for some upper triangular matrix Rk.



Algorithm 4 Normalized Simultaneous Power Iteration
Z1 ← A
for k = 1, . . . ,m do

Compute a QR factorization Zk = Q̃kR̃k

Λ̃k ← Q̃∗kAQ̃k

Zk+1 ← AQ̃k

end for

15. When the QR algorithm is applied to A ∈ Cn×n, the sequence of matrices generated
(generically) converge to

Ã =

[
A1 B
0 A2

]
where A1 ∈ Cm×m, A2 ∈ C(n−m)×(n−m). Then the QR algorithm continues to iterate on A1

andA2. (Typically in practice when Wilkinson shifts are used, the matrixA1 is (n−1)×(n−1)
or (n− 2)× (n− 2). Therefore A2 is either a scalar corresponding to an eigenvalue of A or
A2 is 2× 2 corresponding to a conjugate pair of eigenvalues.) This process of repeating the
QR algorithm on smaller matrices is called the deflation.

Show that λ is an eigenvalue of A if and only if λ is eigenvalue of A1 or A2.

16. (*) The aim in this question is to implement the implicit QR algorithm with Wilkinson
shifts for the solution of dense eigenvalue problems. Your implementation should at least
work on real symmetric matrices.

(a) Implement one iteration of the implicit QR algorithm with a shift on a Hessenberg
matrix. In effect for any shift µ and a Hessenberg matrix Ak your routine must perform

Ak+1 = Rk+1Qk+1 + µI where (Ak − µI) = Qk+1Rk+1.

But you must do this implicitly via chase bulging. Make sure that the computational
cost is O(n2). Name your routine as qrIteration.

(b) Implement the QR Algorithm with Wilkinson shifts using your routine qrIteration

from part (a). For initial reduction to Hessenberg form use the built-in Matlab routine
hess. Your implementation must use deflations, that is if any of the subdiagonal entries
is sufficiently close to zero, your routine must start solving smaller eigenvalue problems.
I suggest to implement a recursive routine (this would keep your implementation much
simpler) such as

function eigvals = myqrAlgorithm(A)

A = hess(A);

eigvals = myqrSub(A);

return;



function eigvals = myqrSub(A)

[n, n1] = size(A);

if (n == 1)

eigvals = [A];

return;

end

if (n == 2)

lambda1 = % one eigenvalue of A using the discriminant formula

lambda2 = % the other eigenvalue of A

eigvals = [lambda1; lambda2];

return;

end

for iter = 1:100 do

% Calculate the Wilkinson shift and set mu to the Wilkinson shift

A = qrIteration(A,mu);

% If any of the subdiagonal entries, say a_(j+1)j, is less than 10^-10

% eigvals1 = myqrSub(A(1:j,1:j);

% eigvals2 = myqrSub(A(j+1:n,j+1:n);

% eigvals = [eigvals1; eigvals2];

% return;

end

error(‘too many iterations: QR algorithm could not converge’);

return

Test your implementation with various 10× 10 random matrices. Compare the eigen-
values returned by your routine with the eigenvalues returned by the built-in solver
eig in Matlab.

17. (Trefethen&Bau, Exercise 33.1) Let A ∈ Cm×m and b ∈ Cm be arbitrary. Show that any
x ∈ Kn = span{b, Ab, . . . , An−1b} is equal to p(A)b for some polynomial p of degree ≤ n− 1.

18. (Trefethen&Bau, Exercise 33.2) Suppose that at the nth iteration of the Arnoldi’s
algorithm the Hessenberg matrix H̃(n+1)n is such that h(n+ 1)n = 0.

(a) Simplify the Arnoldi iteration
AQn = Qn+1H̃n.



What does this imply about the structure of a full m ×m Hessenberg reduction A =
QHQ∗ of A?

(b) Show that the Krylov subspace Kn is an invariant subspace of A, i.e., AKn ⊆ Kn.

(c) Show that Kn = Kj for all j > n.

(d) Show that each eigenvalue of Hn is an eigenvalue of A.

(e) Show that if A is nonsingular, then the solution x to the system of equations Ax = b
lies in Kn.

The appearance of an entry h(n+1)n = 0 is called a breakdown of the Arnoldi iteration, but
it is a breakdown of a benign sort. For application in computing eigenvalues or solving
linear systems (i.e., GMRES), because of (d) and (e), a breakdown usually means that
convergence has occured and the iteration can be terminated.

19. (Trefethen&Bau, Exercise 34.3) Let A be the N ×N bidiagonal matrix with ak(k+1) =

akk = 1/
√
k, N = 64. (In the limit N →∞, A becomes a non-self-adjoint compact operator.)

(a) Produce a plot showing the spectrum Λ(A) (i.e., the set of eigenvalues of A).

(b) Implement the Arnoldi iteration. Starting from a random initial vector, run the Arnoldi
iteration and compute Ritz values at steps n = 1, . . . , 30. Plot the Ritz values for
n = 10, 20, 30 on the same plot as Λ(A).

20. (Trefethen&Bau, Exercise 35.3)The recurrence

xn+1 = xn + αrn = xn + α(b− Axn),

where α is a constant scalar, is known as Richardson iteration. What polynomial p(A) at
step n does this correspond to?

21. (Trefethen&Bau, Exercise 35.4) (*) A 2× 2 Givens rotation is of the form

J =

[
cos θ sin θ
− sin θ cos θ

]
.

The effect of the transformation x→ Jx on the vector x ∈ R2 is a rotation in the clock-wise
direction by an angle of θ.

(a) Describe an algorithm with computational complexity O(n2) based on 2 × 2 Givens
rotations to solve the least squares problem resulting at the nth iteration of GMRES.

(b) Show how the operation count at the nth iteration can be improved to O(n) if the least
squares problem at iteration n− 1 have already been solved by using Givens rotations.



22. (Trefethen&Bau, Exercise 35.5) The standard description of the GMRES algorithm for
the solution of Ax = b begins with the initial guess x0 = 0, and the initial residual r0 = b.
Describe how the algorithm can be modified for an arbitrary initial guess x0.

23. Suppose that a matrix A ∈ Cm×m has the eigenvalue decomposition

A = V


λ1I 0 . . . 0
0 λ2I 0

. . .

0 λnI

V −1
where n ≤ m.

(a) Show that the Arnoldi iteration would converge to all of the eigenvalues of A after n
iterations.

(b) Show that the GMRES algorithm would converge to the exact solution of the linear
system Ax = b after n iterations for all b ∈ Cm.


