
Instructor: Emre Mengi

Math 304 (Spring 2010)

Study Guide for Weeks 6-7
Homework 5 concerns the topics listed below.

• The inverse and Rayleigh iterations (Watkins 5.3)

• Hessenberg matrix; recall that before applying the QR algorithm the matrix whose eigen-
values are sought is reduced into an Hessenberg matrix by applying orthogonal similarity
transformations (Watkins 5.5)

• The QR algorithm without shifts (Watkins - 5.6, Fausett - 5.3)

• The QR algorithm with shifts, in particular with Rayleigh and Wilkinson shifts (Watkins -
5.6, Fausett - 5.3)

• The equivalence of the QR algorithm and simultaneous iteration (Watkins - 6.2, we did not
discuss this in detail in class, but see question 2. below. That question is self-contained and
describes the simultaneous iteration.)

• The bisection, Newton’s and secant methods for finding the roots of a univariate function

Homework 5 (due on April 16th, Friday by 4pm)
In Matlab question (questions 2, 4, 5) attach the Matlab outputs and print-outs of the
Matlab routines that you implemented.

1. The QR algorithm is one of the standard approaches to compute the eigenvalues of a
matrix A ∈ Rn×n. Below a pseudocode is provided for the QR algorithm. It generates a
sequence of matrices {Ak} that usually converges to an upper triangular matrix in the limit
as k →∞.

Algorithm 1 The QR Algorithm without Shifts
A0 ← A
for k = 0, 1, . . . do

Compute a QR factorization Ak = Qk+1Rk+1

Ak+1 ← Rk+1Qk+1

end for

The QR Algorithm converges only linearly. To speed-up its convergence one can use the
following variant given below with shifts.



Algorithm 2 The QR Algorithm with Shifts
A0 ← A
for k = 0, 1, . . . do

Choose a shift µk

Compute a QR factorization Ak − µkI = Qk+1Rk+1

Ak+1 ← Rk+1Qk+1 + µkI
end for

The QR algorithm with Rayleigh or Wilkinson shifts converges quadratically. Below in both
parts perform calculations by hand.

(a) Apply one iteration of the QR algorithm to the matrix A provided below.
(Note : λ1 = 5 and λ2 = 1 are the eigenvalues of A.)

A =

[
12 −2
5 5

]
(b) Apply one iteration of the QR algorithm to the matrix A given in (a) with shift µ = 24.

2. The QR algorithm without shifts (Algorithm 2 in Question 4.) is equivalent to the
simultaneous (power) iteration given below.

Algorithm 3 Simultaneous Iteration

for k = 1, . . . do
Compute a QR factorization Ak = Q̂kR̂k

Ak ← Q̂T
kAQ̂k

end for

In particular it can be shown that the sequences {Ak} generated by the simultaneous iteration
and the QR algorithm are the same.

Recall that the iterates of the power iteration qk = Akq0/‖Akq0‖ generically converges to the
eigenvector associated with the eigenvalue with largest modulus as k → ∞. Therefore the
Rayleigh quotient qT

k Aqk converges to the associated eigenvalue with largest modulus.

The simultaneous iteration above can be viewed as the power iteration applied to the initial
vectors e1, e2, . . . , en simultaneously, where ej denotes the jth column of the identity matrix.

For a symmetric matrix Ak = Q̂T
kAQ̂k generically converges to a diagonal matrix with

eigenvalues on the diagonal as k →∞. For a non-symmetric matrix Ak generically converges
to an upper triangular matrix whose diagonal entries are the eigenvalues of A.

The purpose of this question is to verify the equivalence of the QR algorithm with the
simultaneous iteration in practice on the following example.

A =

 3 −1 −3
−1 3 −1
−3 −1 3





Calculate A5 generated by the simultaneous iteration (use Algorithm 3) and the QR algo-
rithm without shifts in Matlab. Do you obtain identical matrices that are close to a diagonal
matrix?
(Note: The command [Q,R] = qr(A) computes the QR factorization A = QR in Matlab.)

3. The computation of eigenvalues (for dense matrices) is typically performed in two stages.
In the first stage the matrix A is reduced into Hessenberg form. The second stage is the QR
algorithm as discussed in question 1. The QR algorithm reduces the Hessenberg form into
a triangular form by applying orthogonal similarity transformations.

The reason for the initial reduction into Hessenberg form is the computational efficiency.
Each iteration of the QR algorithm requires O(n2) flops when the algorithm is started with
an Hessenberg matrix, whereas the cost of each QR iteration would be O(n3) without the
initial reduction.

In this question you will discover the advantages of the initial reduction for computational
complexity.

(a) Suppose Ak generated by the QR algorithm (Algorithm 1) is a nonsingular matrix in
Hessenberg form. Show that Ak+1 is also a nonsingular Hessenberg matrix.
(Hint: The product of a triangular matrix with an Hessenberg matrix is another Hes-
senberg matrix.)

(b) Taylor an algorithm to compute the QR factorization of a matrix in Hessenberg form
exploiting the structure and by performing O(n2) flops rather than O(n3) flops. Your
algorithm should be based on 2× 2 Householder reflectors. Write down a pseudocode
for your algorithm.

4. This is a continuation of question 3. from the previous homework. Implement a Matlab
routine inverse iter.m to compute an eigenvalue λ closest to a given shift σ and an asso-
ciated eigenvector v of an n× n matrix A by inverse iteration.

Your routine must must look like

function [eigval, eigvec] = inverse_iter(A,sigma)

[n,n1] = size(A);

q = randn(n,1);

qold = zeros(n,1);

while norm(q-qold) > 10^-15

...

end

...

return;



Test your implementation with the following matrices.

B1 =

 1 0 1
0 −0.8 0
1 0 1

 , B2 =

 1 0 1/10
0 −0.8 0

1/10 0 1

 , B3 =

 1 0 1/100
0 −0.8 0

1/100 0 1


(a) Run your inverse iteration routine to compute the eigenvalue closest to σ = 1.2 and

an associated eigenvector for each of B1, B2, B3. For which of these matrices the con-
vergence is fastest, for which the convergence is slowest? Explain the convergence
behavior you observe for B1, B2, B3.

(b) A Matlab m-file rayleigh iter.m is provided on the course website. It takes a matrix
A ∈ Cn×n as the input argument and returns a pair of an eigenvalue and an associated
eigenvector. (The correct way to run it is [eigval,eigvec] = rayleigh iter(A))
Run this routine to compute an eigenvalue and an associated eigenvector for B3 only.
Run it several times (e.g. fifteen, sixteen times). Does it always converge to the same
eigenvalue? Can you observe that the rate of convergence is quadratic (perhaps even
faster)?

5. Consider the polynomials f(x) = x3 + x and g(x) = x2.

(a) Give the update rules of Newton’s method (without backtracking) and the secant
method for the functions f and g.

(b) Using the update rules from part (a) derive the rates of convergence of Newton’s
method for f and g.

(c) Generate an m-file fun.m

function [f,g] = fun(x)

% Task : Computes the function x^2 and its derivative.

f = x^2;

g = 2*x;

return

which computes the function g(x) = x2 and the derivative g′(x) = 2x and stores these
values in the output arguments f and g, respectively.

(d) Generate an m-file similar to the one in (c) to compute the function value of f(x) =
x3 + x and its derivative. The name of the m-file must be same as the function name.

(e) A Matlab implementation of Newton’s method Newton.m for zero finding is provided
on the course webpage. Type help Newton for information about its input and output
arguments. Specifically, to compute the root of a function f : R→ R, Newton’s method
needs the function value f(x) and the derivative J(x) = f ′(x) at every iteration. (The
matlab routine is indeed for the more general multivariate case when f : Rn → Rm. In



this case the derivative is replaced by the Jacobian matrix J(x) as we shall see in class
soon. You don’t have to worry about the Jacobian matrix for now. Simply assume
that J in the m-file keeps the derivative.) The second input argument to Newton.m is
the name of an m-file that takes a vector x ∈ Rn as input and returns the function
value f(x) and the derivative J(x) = f ′(x) as output. For instance type

>> [xmin,fmin] = Newton(2,’fun’);

to retrieve the root of f(x) = x2 starting from the initial guess x0 = 2 after generating
the m-file fun.m in (d).

Using the Matlab routine provided compute the roots of f(x) = x3 + x and g(x) = x2

with the initial guesses x0 = 1 and x0 = 4. Include your Matlab output. Do you
observe the convergence rates that you derived in part (b)?

(f) Implement the secant method by modifying the m-file Newton.m. Run your implemen-
tation to find the roots of f(x) = x3 + x and g(x) = x2 starting from x0 = 2 and
x1 = 2.2 (recall that the secant method requires two initial guesses). How fast does
the secant method converge as compared to Newton’s method for these two functions?


