
Instructor: Emre Mengi

Math 304 (Spring 2012)

Study Guide for Weeks 11-14
This homework concerns the following topics.

• Composite Newton-Cotes

• Gaussian quadrature

• Euler’s Method

• Trapezoidal method

• Order of a numerical method for the solution of ordinary differential equations.

– Order of Euler’s method is one.

– Order of trapezoidal method is two.

• Global convergence and error of a numerical method for the solution of ordinary differential
equations.

• Explicit Runge-Kutta methods, especially midpoint rule

• Systems of ordinary differential equations

• Higher-order differential equations

Homework 5 (due on May 30th, Wednesday by 5pm)
Pick any five questions out of the twelve questions given below. Turn in the solutions only
to these questions. Questions 3, 4 and 12 require Matlab. All other questions must be solved
by hand.

For questions 3 and 4 you will need to use the implementations of the Euler’s method
(Euler.m) and midpoint rule (midpoint.m) provided on the course webpage for the numerical
solution of the ordinary differential equation (ODE)

y′(t) = f(t, y(t)) t > a and y(a) = y0

on the interval [a, b]. Both of the m-files take five input parameters;

• fun - the name of the m-file that evaluates f(t, y) at a given t and y

• a, b - the left and right end-points of the interval on which the solution of the ODE is
sought

• h - the step size

• y0 - the initial condition.

They return two output parameters;



• yvec - the approximate solution vector at the discrete points

• tvec - vector of t values at which the approximate y values are computed.

For instance to solve the ODE

y′ = 3t2y t > 0 and y(0) = 1

on the unit interval [0, 1] using Euler’s method with the step-size h = 0.01 type

[yvec, tvec] = Euler(’fun_ODE’,0,1,0.01,1);

Make sure to download the m-file fun ODE.m that evaluates f(t, y) = 3t2y before typing the
Matlab command above. Also open and go through the m-file fun ODE.m to understand its
input and output parameters. You can plot the approximate solution by typing

plot(tvec,yvec,’b-*’);

For questions 3 and 4 attach your Matlab outputs/figures as well as the print-outs of the
m-files that you implemented.

1. Solve each of the following ordinary differential equations using

(i) Euler’s method with h = 0.5 and (ii) midpoint rule with h = 0.5.

Additionally for each of the ODEs write down the nonlinear system resulting from an ap-
plication of the trapezoidal method with h = 0.5. You must perform all calculations by
hand.

(ODE 1) y′ = y3 t > 0, y(0) = −1 on [0, 1]
(ODE 2) y′ = −2y cos(t) t > 0, y(0) = e on [0, 1]

2. Show that

(i) the order of backward Euler’s method with the update rule

yk+1 = yk + hf(tk+1, yk+1)

is one,

(ii) the order of the Runge-Kutta method with the update rule

yk+1 = yk +
h
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is two.



3. The velocity v of an object subject to the gravitational force and air resistance (propor-
tional to v) satisfies the ODE

dv

dt
= g − kv

m

where g = 9.81 m/s2 is the gravitational acceleration, k is a constant for the air-resistance
and m is the mass of the object.

(a) Suppose that the initial velocity v(0) = 100 m/s and k/m = 0.05 1/s. Find the
approximate solution on the time interval [0, 3] using Euler’s method (in particular
use the m-file Euler.m on the course webpage) with the step size h = 0.001. Plot the
approximate solution.

(b) Repeat part (a) but with the initial velocity v(0) = 0 m/s and k/m = 1.5 1/s.

4. The purpose of this question is to compare the accuracy of Euler’s method and midpoint
rule. Consider the ODE

y′ = −y sin t t > 0, and y(0) = e

with the exact solution y(t) = ecos t.

(a) Solve this ODE using Euler’s method with h = 0.1, 0.01, 0.001, 0.0001 on the interval
[0, 2].

(i) Download the routines generate fun.m and fun real trig.m from the course
webpage. Plot the actual solution y(t) = ecos t on the interval [0, 2] by typing

>> [yreal, treal] = generate_fun(’fun_real_trig’,0,2,0.001);

>> plot(yreal, treal, ’r-*’);

(ii) Plot the computed solutions for each of the h values above on the same figure.
You should type

>> figure(1)

>> hold on

to keep the previous curves plotted and superimpose

(iii) Calculate the error at time t = 2 of the computed solution for each of the h values.
Does the global error decay as expected in theory?

(b) Repeat part (a) but with the midpoint rule instead of Euler’s method.

5. A simple predator-prey relationship is described by the Lotka-Volterra model provided
below, which is written in terms of

• a fox population f(t) with birth rate bf and death rate df , and

• a geese population g(t) with birth rate bg and death rate dg



df

dt
= f(t)(bfg(t)− df )

dg

dt
= g(t)(bg − dgf(t))

Find the populations on [0, 2] using Euler’s method with step-size h = 1 for the following
parameter values and initial conditions

(a) bf = df = bg = dg = 1, f(0) = g(0) = 2.

(b) bf = bg = 1, df = dg = 0.5, f(0) = 2 and g(0) = 10.

6. Convert the second-order ODE

y′′ + 3y′ + y4 = 2t t > 0 and y(0) = 2, y′(0) = 0

into a system first order ODEs. Then solve the resulting ODE on the interval [0, 6] using
Euler’s method with the step-size h = 2.

7. Estimate the integral ∫ 1

−1
e−x

3

dx

using the composite Simpson’s rule with m = 2 subintervals and the Gaussian quadrature
with three nodes x0, x1, x2.

8. Derive the Gaussian quadrature formula for the integral∫ 3

0

f(x) dx

with three nodes x0, x1, x2.

9. Derive the Gaussian quadrature with the weight function W (x) =
√

1
1−x2 and with two

nodes x0, x1, that is derive the quadrature formula∫ 1

−1

f(x)√
1− x2

dx ≈ w0f(x0) + w1f(x1)

with the maximal degree-of-exactness.

10. Show that all of the n roots of the nth degree orthogonal polynomial qn(x) satisfying∫ b

a

qn(x)p(x) dx = 0 for all p(x) ∈ Pn−1

is contained in the interval [a, b].



11. Consider a quadrature formula∫ b

a

W (x)f(x) ≈
n∑
k=0

wkf(xk)

where x0, . . . , xn ∈ [a, b] are distinct.

Suppose that x0, . . . , xn are roots of a polynomial qn+1(x) of degree n+ 1 such that∫ b

a

W (x)qn+1(x)p(x) dx = 0

for all polynomials p(x) of degree `− 1 or smaller where ` ≤ (n+ 1). Show that the degree
of the exactness of the quadrature formula is n+ `.

12.

(a) Implement the composite Simpson’s rule to calculate the integral∫ b

a

f(x) dx

numerically to a specified accuracy.

Your routine must take five input parameters.

• a and b

• fname: The name of a matlab m-file evaluating f(x) at a given point

• tol : The computed value must not differ from the exact integral by more than
tol.

• ubound : An upper bound for the fourth derivative on [a, b] must be supplied by
the user. This is needed to estimate the error, in particular to determine how
many subintervals in [a, b] are needed to reach the specified accuracy.

It must return two output parameters.

• intval : computed value of the integral

• m: number of subintervals of [a, b] used to reach the specified accuracy.

Your routine should be called as follows.

>> [intval, m] = composite_simpson(a,b,’fname’,tol,ubound);

It must exploit the fact that when [a, b] is split into m subintervals of equal length, the
error of the Simpson’s method is given by∣∣∣∣b− a180

(H/2)4f (4)(ε)

∣∣∣∣ (1)

for some ε ∈ (a, b) where H = (b− a)/m.



(b) Consider the ellipse
x2

β2
+
y2

α2
= 1.

The surface area of the resulting ellipsoid obtained when the ellipse above is rotated
about the x-axis is given by the integral

4πα

∫ β

0

√
1−K2x2 dx

where K2 = 1
β2

√
1− α2

β2 . Calculate the surface area of the ellipsoid for

α =
√

(3− 2
√

2)/100, β = 10

within an accuracy of 10−4 and 10−6 using your routine composite simpson.


