
Instructor: Emre Mengi

Math 409/509 (Spring 2011)

Study Guide for Homework 4
This homework concerns the nonlinear optimization problems with equality constraints, more
specifically the topics listed below. Please don’t hesitate to ask for help if any of these topics
is unclear. Sections 4.1, 4.2 and 4.4 in Gill&Wright are relevant.

• Feasible path and tangent cone

• Constraint qualification

• First order necessary conditions

• Lagrangian function

• Method of multipliers

Homework 4 (due on May 4th, Wednesday by 14:00)
Question 3 and 7 requires computations in Matlab. Attach the print-outs of the m-files that you
implemented and Matlab outputs.

1. Consider the nonlinearly constrained problem

minimizex∈R2 3x2 + x2
1 + x2

2

subject x2
1 + (x2 + 1)2 − 1 = 0.

(1)

(a) Show that x(α) = (sin α, cos α−1)T is a feasible path for the nonlinear constraint x2
1 +(x2 +

1)2 − 1 = 0 of problem (1).

(b) Compute the tangent cone and the null space of the Jacobian at x̄ = (0,0)T . Is the constraint
qualification satisfied at x̄.

(c) If f(x) denotes the objective function of problem (1), find an expression for f (x(α)) and
compute f (x(0)).

(d) Define the Lagrangian function L(x, λ) and constraint Jacobian J(x) for problem (1). Derive
∇L(x, λ), the gradient of the Lagrangian, and ∇2L(x, λ), the Hessian of the Lagrangian.

(e) Determine whether or not problem (1) has a constrained minimizer.

2. Let f(x) and c(x) be twice-continuously differentiable functions such that f : Rn → R and
c : Rn → Rm. Consider the nonlinearly constrained problem

minimizex∈Rn f(x)

subject c(x) = 0.

(a) What are the first-order necessary conditions for x∗ to be a local solution of this problem?



(b) Consider the specific problem

minimizex∈R2 (x1 − 1)2 + x2
2

subject −x1 + x2
2 = 0.

(2)

(i) Define the Lagrangian function L(x, λ) and constraint Jacobian J(x) for problem (2).
Derive ∇L(x, λ), the gradient of the Lagrangian, and ∇2L(x, λ), the Hessian of the
Lagrangian.

(ii) Find the points satisfying the first order optimality conditions.

3. Write a Matlab function that will compute c(x) and J(x) for the constraint function

c(x) = x1 + x2 − x1x2 −
3
2
.

Use your function to compute c(x) and J(x) at x = (.1, −.5)T , x = (.5, −1)T and x = (1.18249728,
−1.73976692)T .

At each of these points, discuss the optimality of the constrained minimization problem

minimizex∈R2 ex1(4x2
1 + 2x2

2 + 4x1x2 + 2x2 + 1)

subject x1 + x2 − x1x2 − 3
2 = 0.

based on the first-order optimality conditions.

4. Consider the equality constrained problem

minimizex∈Rn
1
2xT Gx + dT x

subject Ax = b.
(3)

where G ∈ Rn×n is symmetric, A ∈ Rm×n, d ∈ Rn and b ∈ Rm.

(a) Write down the first order necessary conditions that a minimizer x∗ of (3) must satisfy.

(b) Express the tangent cone T 0(x̄) at any given point x̄ ∈ Rn for the equality constrained prob-
lem (3) in terms of the matrix A.

5. Consider the constrained optimization problem

minimizex∈Rn xT x
subject xT Hx− 1 = 0,

(4)

where H is a symmetric n × n matrix. This problem can geometrically be interpreted as finding
the point on an ellipsoid closest to the origin.

(a) Write down the Lagrangian function for (5) and calculate its gradient.

(b) Suppose µ 6= 0 is an eigenvalue of H and v is an associated eigenvector of unit length. Show
that ( v√

µ , 1
µ) is a stationary point of the Lagrangian function.



(c) The method of multipliers is the Newton’s method applied to the Lagrangian function. Given
xk ∈ Rn, an estimate for the minimizer, and λk, an estimate for the optimal Lagrange
multiplier. Derive the linear system that needs to be solved to generate the search direction
for the method of multipliers at (xk, λk) for problem (5). The coefficient matrix and right-
hand side vector of the linear system must depend on xk, λk and H only.

6. Consider the constrained optimization problem

minimizex∈Rn xT Hx
subject xT x− 1 = 0,

(5)

where H is a symmetric n× n matrix.

(a) Prove that if v is a eigenvector of H with unit norm, and µ is its corresponding eigenvalue,
then (v, µ) is a stationary point of the Lagrangian function L(x, λ) for the problem (5).

(b) Derive an expression for the (n+1)-vector∇L(x, λ). If F (x, λ) denotes the function∇L(x, λ),
derive F ′(x, λ).

(c) Given an estimate (x, λ) of the solution and Lagrange multiplier, derive the specific form
of the Newton equations associated with the method of multipliers (i.e., write down these
equations in terms of x, H, etc.). Hence define an iterative method for finding an eigenvalue
and eigenvector of a symmetric matrix H.

7. A completed m-file Newton backtrack.m has been posted on the course webpage. Copy the
file into your working directory. This question asks you to apply the method of multipliers to the
equality-constrained problem in parts (a) and (c) below.

(a) For the constrained minimization problem

minimizex∈R2 ex1(4x2
1 + 2x2

2 + 4x1x2 + 2x2 + 1)

subject x1 + x2 − x1x2 − 3
2 = 0,

calculate the gradient and Hessian of the Lagrangian function.

(b) Recall that if a point x∗ is a local minimizer of a nonlinear equality constrained program
(NEP), then there exists a λ∗ such that (x∗, λ∗) is a stationary point of the Lagrangian
function. The method of multipliers for (NEP) is Newton’s method applied to the gradient
of the Lagrangian function to locate a stationary point of the Lagrangian function. Use
Newton backtrack.m to solve the constrained minimization problem of part (a) starting at
x0 = (2, 1

2)T , λ0 = 0. Do not alter the function Newton backtrack.m in any way.

(c) Repeat part (b), but change the constraint to 4x1 − x2 − 6 = 0.

(d) Repeat part (c), but start at x0 = (1, −2)T ,


