MATH 171B: Numerical Optimization

Instructor: Emre Mengi

Spring Quarter 2009 Final Exam Wednesday, June 10 Duration: 3 hours

NT.		
Name		

#1	15	
#2	15	
#3	15	
#4	17	
#5	18	
#6	20	
#7	(Bonus) 10	
Total	100	

- No calculators
- Show your work.
- $\bullet\,$ Put your name in the box above.

Question 1. This question concerns the function

$$f(x) = x^2 - 5.$$

- (a) (8 points) Given $x_0 \in \mathbf{R}$ and let $\{x_k\}$ be the sequence generated by Newton's method (for root finding) applied to f(x). Write down the Newton update rule relating the iterates x_k and x_{k+1} .
- (b) (7 points) Suppose that a sequence of Newton iterates $\{x_k\}$ converges to the root $x_* = \sqrt{5}$. What is the order of convergence for the sequence $\{x_k\}$? (Note: You can refer to a result discussed in class.)

Question 2. Suppose that a local minimizer of the function

$$f(x_1, x_2) = (x_1^2 + x_2^2)e^{x_1 - x_2}$$

over \mathbf{R}^2 is sought starting with the initial guess $x^{(0)} = (x_1^{(0)}, x_2^{(0)}) = (1, 1)$.

- (a) (5 points) Apply one iteration of the method of steepest descent with the steplength $\alpha_0 = 1$.
- (b) (10 points) Apply one iteration of the BFGS method with the inverse Hessian update rule

$$H_{k+1} = H_k + \left(1 + \frac{y_k^T H_k y_k}{s_k^T y_k}\right) \frac{s_k s_k^T}{s_k^T y_k} - \frac{s_k y_k^T H_k + H_k y_k s_k^T}{s_k^T y_k}$$

where $s_k = x^{(k+1)} - x^{(k)}$ and $y_k = \nabla f(x^{(k+1)}) - \nabla f(x^{(k)})$. Use

$$H_0 = \left[\begin{array}{cc} 0.25 & 0.25 \\ 0.25 & 0.5 \end{array} \right]$$

as the initial inverse Hessian approximation and the step-length $\alpha_0 = 1$. Provide $x^{(1)}$, the new estimate for the local minimizer, and H_1 , the updated inverse Hessian approximation.

Question 3. Consider the equality constrained problem

$$\begin{array}{ll}
\text{minimize}_{x \in \mathbf{R}^n} & \frac{1}{2}x^T G x + d^T x \\
\text{subject} & Ax = b.
\end{array} \tag{1}$$

where $G \in \mathbf{R}^{n \times n}$ is symmetric, $A \in \mathbf{R}^{m \times n}$, $d \in \mathbf{R}^n$ and $b \in \mathbf{R}^m$.

- (a) (9 points) Write down the first order necessary conditions that a minimizer x_* of (1) must satisfy.
- (b) (6 points) Express the tangent cone $T^0(\bar{x})$ at any given point $\bar{x} \in \mathbf{R}^n$ for the equality constrained problem (1) in terms of the matrix A. (Hint: The constraint qualification holds at \bar{x} . Why?)

Question 4. Consider the constrained optimization problem

$$\begin{array}{ll}
\text{minimize}_{x \in \mathbf{R}^n} & x_1 x_2 \\
\text{subject} & 4x_1^2 + x_2^2 = 4.
\end{array} \tag{2}$$

- (a) (5 points) Write down the Lagrangian function for (2) and calculate its gradient.
- (b) (5 points) Find all stationary points of the Lagrangian function.
- (c) (7 points) Apply one iteration of the method of multipliers to problem (2) starting with the initial guesses $x_0 = (0, -1)$ for the local minimizer and $\lambda_0 = 1$ for the optimal Lagrange multiplier. Choose the step-length $\alpha_0 = 1$.

Question 5. Consider the inequality constrained optimization problem

- (a) (3 points) Show that $x(\alpha) = (\alpha, 1)$ is a feasible path at $\bar{x} = (0, 1)$.
- (b) (9 points) Draw the feasible region and the tangent cone at $\bar{x} = (0,1)$. Does the constraint qualification hold at \bar{x} ?
- (c) (6 points) Plot the active normal cone at $\bar{x} = (0,1)$. Does \bar{x} satisfy the first-order necessary conditions? Is \bar{x} a local minimizer of (3)?

Question 6. Consider a quadratic function of the form

$$q(x) = \frac{1}{2}x^T A x + b^T x + c$$

where $A \in \mathbf{R}^{n \times n}$ is symmetric, $b \in \mathbf{R}^n$ and c is a scalar.

- (a) (10 points) Suppose that A is not positive semidefinite, v is an eigenvector associated with a negative eigenvalue of A and $x_* \in \mathbf{R}^n$ is the stationary point of q(x). Show that v is a direction of decrease for q(x) at x_* , i.e. $q(x_* + \alpha v) q(x_*) < 0$ for all $\alpha > 0$.
- (b) (10 points) In particular for the quadratic polynomial

$$\bar{q}(x) = \frac{1}{2}x_1^2 + 5x_1x_2 + \frac{1}{2}x_2^2 - 3x_1 + 9x_2 + 5$$

the stationary point is $\bar{x} = (-2, 1)$. Find a direction of decrease for $\bar{q}(x)$ at \bar{x} . (Note: An eigenvector v of A assoc. with eigenvalue λ satisfies $(A - \lambda I)v = 0$.)

Question 7. (10 points - extra credit) Consider a twice continuously differentiable function $f: \mathbf{R}^n \to \mathbf{R}$. Suppose that there exists a direction $v \in \mathbf{R}^n$ such that $v^T \nabla^2 f(x) v < 0$ at all x. Show that no stationary point of f(x) is a local minimizer.