
Math 106: Calculus

Final - Fall 2009
Duration : 180 minutes

Name

Student ID

Signature

#1 10

#2 10

#3 15

#4 10

#5 10

#6 10

#7 15

#8 10

#9 10

Σ 100

• Put your name, student ID and signature in the boxes above.

• No calculators or any other electronic devices are allowed.

• This is a closed-book and closed-notes exam.

• Show all of your work; full credit will not be given for unsupported answers.

• Write your solutions clearly; no credit will be given for unreadable solutions.

• Mark your section below.

Section 1 (Sultan Erdoğan Demir, MW 11:30-13:20)

Section 2 (Sultan Erdoğan Demir, MW 14:30-16:20)

Section 3 (Emre Mengı, MW 9:30-11:20)

Section 4 (Emre Mengı, MW 14:30-16:20)

Section 5 (Kazım Büyükboduk, TuTh 11:30-13:20)

Section 6 (Kazım Büyükboduk, TuTh 14:30-16:20)
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Question 1. Determine whether each of the following series is convergent or diver-
gent. Explain your answer fully.

(a)
∞∑

n=2

(−1)n
3
√

n

lnn

(b)
∞∑

n=1

cos
√

n

n3

(c)
∞∑

n=1

sin
( π

n3

)
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Question 2. In (a) and (b) below, find the indicated area or volume by first ex-
pressing it as a definite integral, and then evaluating the definite integral.

(a) The area of the region between x = y2 − 6y and x = 4y − y2.
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(b) The volume obtained by rotating the equilateral triangle shown in the figure
below about the y-axis.
(Remark: The equilateral triangle lies above the x-axis except its base which
lies on the x-axis. Each side of the equilateral triangle is of length 1. The
left-most corner of the equilateral triangle has coordinates (4, 0).)

1 x

y

(4,0)

1 1
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Question 3.

(a) Evaluate the limit lim
x→0

x ·
∫ x

0
tan(t2) dt

sin(x2)
.

(b) Find the function defined by

F (t) =
∫ t

√
t

d

dx

(
ex2x

)
dx

for all t ≥ 0. Your answer should not involve an integral nor a derivative.
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(c) Find the function defined by

G(t) =
d

dt

(∫ t

√
t

ex2x
dx

)
for all t > 0. Your answer should not involve an integral or a derivative.
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Question 4. Prove that the polynomial P (x) = x3 + 2x + 3 has exactly one root
in (−∞,∞).
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Question 5.

(a) Estimate the integral ∫ 4

0
3
√

x dx

using a right-sum (i.e., the heights of the rectangles are given by the values of
the function at the right end-points) with n = 4 rectangles of width ∆x = 1. Is
your estimate an upper bound or a lower bound for the exact integral? Explain.

(b) Evaluate the limit

lim
n→∞

n∑
i=1

(
1 + i

n

)
ln

(
1 + i

n

)
n

by interpreting it as a definite integral and then calculating the value of the
integral.
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Question 6. Compute the following integrals. Show all your reasoning clearly.

(a)
∫ π/2

0
sin4(x) cos3(x) dx

(b)
∫

1
x2
√

36− x2
dx
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Question 7.

(a) Find the Taylor series T (x) for cos x centered at π/3.

(b) Show that the Taylor series T (x) that you determined in part (a) satisfies
cos x = T (x) for all x ∈ (−∞,∞).
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Question 8.

(a) Find the radius and the interval of convergence of the power series

∞∑
n=0

(x + 3)n

2n(n + 1)
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(b) Newton discovered that

1√
1− x2

=
∞∑

n=0

(2n)!
4n(n!)2

xn

for −1 < x < 1.

(i) Using this formula, find a power series expansion for arcsinx.

(ii) Use your power series from part (i) with x = 1/
√

2 to find a power series
whose sum is π.
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Question 9. Determine whether the following improper integrals are convergent or
divergent. Evaluate them when they are convergent. Show all your reasoning.

(a)
∫ ∞

1

1
(x + 2)(x + 3)(x + 4)

dx

(b)
∫ 1

−1

1
x4/3

dx


