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Abstract— Structured eigenvalue problems feature a promi-
nent role in many algorithms for the computation of robust
measures for the stability or controllability of a linear control
system. Structures that typically arise are Hamiltonian, skew-
Hamiltonian, and symplectic. The use of eigenvalue solvers
that preserve such structures can enhance the reliability and
efficiency of algorithms for robust stability and controllabil-
ity measures. This aspect is the focus of the present work,
which summarizes and extends existing structure-preserving
eigenvalue solvers. Also, a new method for estimating the
distance to uncontrollability in a cheap manner is presented.
The structured eigenvalue algorithms described in this paper
are intented to become part of HAPACK, a software package
for solving structured eigenvalue problems and applications.

I. INTRODUCTION

Let us consider a discrete linear time-invariant system

xk+1 = Axk + Buk, (1)

with A ∈ Cn×n and B ∈ Cn×m. This work is concerned
with measures that signal (the loss of) stability and controlla-
bility of (1) in a robust manner. Existing approaches [1]–[6]
for the computation of these measures require the solution
of Hamiltonian and symplectic eigenvalue problems, which
both have special eigenvalue symmetries. In this work we
justify that preserving such symmetries in finite-precision
arithmetic is an important ingredient to make these computa-
tions more reliable. Another contribution of this paper is to
review and extend existing eigenvalue solvers that achieve
this goal. Additionally, we introduce an algorithm for a
robust controllability measure. First, let us briefly review
some of the robust stability and controllability measures that
we focus on in this work.

A. Stability

The open loop stability of (1) is determined by the spectral
radius ρ(A) = max{|λ| : λ ∈ Λ(A)}, where Λ(A) denotes
the set of all eigenvalues of A. Specifically, if ρ(A) < 1 then
regardless of the initial state the system decays exponen-
tially with asymptotic decay rate ρ(A). Nevertheless a more
desirable property that is relevant to the transient behavior
is to ensure that the norms of the states will not exceed a
prespecified amount at all times, see, e.g., [7], [8]. In order
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to gain insight into the transient behavior of (1), one has to
consider additional information besides the eigenvalues of A,
unless A is a normal matrix. (When A is normal, the transient
behavior is consistent with the asymptotic behavior.) Two
useful sets that mimic the transient behavior are the ε-
pseudospectrum and the field of values, which are formally
defined as

Λε(A) = {λ : det(A + E − λI) = 0, ‖E‖ ≤ ε}, (2)

and
F (A) = {y∗Ay : y ∈ Cn, ‖y‖ = 1}, (3)

respectively. Here and throughout the rest of this paper, ‖ · ‖
denotes the matrix 2-norm. Analogous to the spectral radius,
the radii of the smallest circles that surround these sets can
be considered, amounting to the ε-pseudospectral radius and
the numerical radius

ρε(A) = sup
λ∈Λε(A)

|λ|, and r(A) = sup
z∈F (A)

|z|, (4)

respectively.
The relevance of ρε(A) to the transient behavior of (1) is

revealed by the inequalities

sup
ε>0

ρε(A)− 1
ε

≤ sup
k
‖Ak‖ ≤ en sup

ε>0

ρε(A)− 1
ε

, (5)

which is an immediate corollary of the Kreiss matrix theorem
[8], [9]. Above, e denotes the Euler constant. On the other
hand, a tight bound on the norms of the matrix powers is
given by

‖Ak‖ ≤ 2r(A)k. (6)

The appendix contains some motivating examples for these
robust stability measures.

B. Controllability

One (numerically disastrous) way to check whether (1) is
controllable is to check whether the controllability matrix

C =
[
B AB . . . An−2B An−1B

]
has full rank. A numerically much better approach is to check
whether S(λ) = [A− λI B] is numerically of full rank for
all λ ∈ Λ(A). Alternatively, one could also compute the
controllability staircase form [10] of the matrix pair (A,B).
Although usually quite reliable, both approaches are known
to occasionally fail to detect nearby uncontrollable systems.
In principle, the only numerically reliable way of checking



the controllability of the system (1) and nearby systems is
provided by the distance to uncontrollability

τ(A,B) = inf{‖[∆A ∆B]‖ : [∆A ∆B] ∈ Cn×(n+m),
xk+1 =(A +∆A)xk + (B +∆B)uk

is not reachable},
(7)

introduced by Paige [11].

C. The role of structure-preserving eigenvalue solvers

The importance of using structure-preserving eigenvalue
solvers within algorithms for robust stability measures has
been observed quite a few times. For example, in [3] it
was shown that the distance of a matrix to instability can
be computed very accurately, up to the level of machine
precision, if strongly backward stable eigenvalue solvers
are employed. An analogous result was obtained in [6] for
the computation of the ε-pseudospectral radius. Moreover,
the use of such eigenvalue solvers avoids certain problem-
dependent thresholds for deciding, e.g., whether an eigen-
value of a Hamiltonian matrix is on the imaginary axis.

D. Outline

In the next section we first recall existing algorithms [6]
for computing the numerical radius and the pseudospectral
radius, then we describe a new trisection algorithm for the
distance to uncontrollability well-suited for low precision
approximation. These algorithms depend on the extraction
of the imaginary eigenvalues of Hamiltonian matrices or the
unit eigenvalues (eigenvalue with unit modulo) of symplectic
pencils. Section III is devoted to the structure-preserving
solution of Hamiltonian and symplectic eigenvalue problems.
Finally, we reemphasize and substantiate the importance
of employing structure-preserving eigenvalue solvers within
numerical radius, pseudospectral radius and distance to un-
controllability computations in Section IV.

II. ALGORITHMS FOR ROBUST STABILITY AND
CONTROLLABILITY MEASURES

The remarkable similarity in the computation of the nu-
merical radius, the pseudospectral radius and the distance to
uncontrollability is that these quantities can be expressed as
global optima of optimization problems involving eigenval-
ues or singular values. These problems are nonsmooth, due
to ties in the eigenvalues or singular values, and nonconvex
usually with more than one local minimum. Nonsmoothness
is mainly of theoretical concern, since generically the prob-
lems are smooth around the global optima. The algorithms
described in the following are devised to avoid stagnation at
local minima and converge to global minima.

A. Numerical Radius

In [6], the Boyd-Balakrishnan algorithm [12], [13] for
the H∞-norm is modified for the numerical radius. The
algorithm exploits the equivalent eigenvalue maximization
characterization over the unit circle

r(A) = sup
θ∈[0,2π)

λmax(H(Aeiθ))

where H(A) = (A + A∗)/2 is the Hermitian part of A and
λmax denotes the largest eigenvalue. In [6, Theorem 3.1]
it has been proved that µ is an eigenvalue of the matrix
H(Aeiθ) if and only if eiθ is contained in the spectrum of
the pencil

R(µ)− λS =
[

2µI −A∗

I 0

]
− λ

[
A 0
0 I

]
. (8)

Therefore for a fixed µ we are capable of finding the
intersection points of the horizontal line y = µ and the
function f(θ) = λmax(H(Aeiθ)) by means of the two step
procedure:

1) extract all unit eigenvalues of R(µ)− λS;
2) for each unit eigenvalue eiθ, check whether the equality

λmax(H(Aeiθ)) = µ holds.

Given an estimate µ for the numerical radius, using the
procedure above the intervals (of values of θ) in which µ >
f(θ) can be determined. The estimate µ for the numerical
radius is refined to the maximum value attained by f at the
midpoints of the intervals. The convergence of the algorithm
follows from the fact that the length of the largest interval
in which µ > f(θ) is at least halved at each iteration and
therefore approaches zero in the limit. In practice, quadratic
convergence is observed.

B. Pseudospectral Radius

In [6], an iterative algorithm for computing the ε-
pseudospectral radius with generically quadratic convergence
rate is described. The algorithm benefits from the singular
value characterization

Λε(A) = {λ ∈ C : σmin(A− λI) ≤ ε} (9)

of the ε-pseudospectrum with σmin denoting the nth largest
singular value of a n×m matrix assuming n ≤ m throughout
this work. See for instance [8] for a proof of equivalence of
(2) and (9). Therefore the ε-pseudospectral radius amounts to
an optimization problem with the singular values appearing
in the constraints.

The intersection points of a circle of radius r centered at
the origin with the boundary of the ε-pseudospectrum can be
retrieved efficiently by solving the eigenvalue problem

P (r, ε)−λQ(r, ε) =
[
−εI A
rI 0

]
−λ

[
0 rI

A∗ −εI

]
. (10)

Each unit eigenvalue corresponds to a θ satisfying ε ∈ σ(A−
reiθI) [3, Theorem 4], where σ(·) denotes the singular values
of a matrix. This gives the circular search with radius r:

1) extract all unit eigenvalues of P (r, ε)− λQ(r, ε) and
2) for each unit eigenvalue eiθ check whether σmin(A−

reiθI) = ε holds.

Additionally, there is an even more efficient way to com-
pute the largest modulus intersection point of the line passing
through the origin with slope θ and the ε-pseudospectrum. In
[6, Theorem 2.6] it was proved that this quantity corresponds



to the imaginary part of the largest modulus imaginary
eigenvalue of the matrix

K(θ) =
[

ieiθA∗ εI
−εI ie−iθA

]
. (11)

This procedure is called the radial search in the direction θ.
Given an estimate η of the ε-pseudospectral radius, at

each iteration the algorithm for the ε-pseudospectral radius
performs a circular search with radius η. From the set of
intersection points the set of arcs on the circle of radius
η lying inside the ε-pseudospectrum are inferred. For each
such arc a radial search with slope equal to the angle of the
midpoint of the arc yields a better estimate than the current
estimate. The estimate η is refined to the maximum of the
values returned by the radial searches. The initial estimate
for the algorithm is generated by the radial search with slope
equal to the angle of an eigenvalue with modulus ρ.

C. Distance to uncontrollability

Eising [14], [15] has shown that the distance to uncontrol-
lability defined in (7) is equivalent to

τ(A,B) = inf
λ∈C

σmin([A− λI B]). (12)

The need to search over the whole complex plane makes this
optimization harder than the optimization problems above,
which are defined over lines or curves.

In the following, we present a trisection algorithm that
works on the δ-level set of the function g(λ) = σmin([A −
λI B]) for successive values of δ that are estimates of the
distance to uncontrollability. Let τ(A,B) = g(α∗+β∗i). We
assume the a priori knowledge of a positive real ν satisfying
ν > |α∗|. A well known bound is ν = 2(‖A‖+ ‖B‖), but it
may be possible to come up with tighter bounds for special
cases. We define the vertical cross section at α of the δ-level
sets of g(λ) as

Sδ(α) = {β ∈ R : g(α + βi) = δ}. (13)

The next theorem states that for all α ∈ [α∗ − (δ −
τ(A,B)), α∗ + (δ − τ(A,B))] the set Sδ(α) is nonempty.

Theorem 1: Let τ(A,B) = g(α∗ + β∗i) and assume δ >
τ(A,B) is given. For any α ∈ [α∗ − (δ − τ(A,B)), α∗ +
(δ − τ(A,B))] there exists a real number βα ∈ Sδ(α).

Proof: The function σmin([A − (α′ + β∗i)I B])
approaches ∞ as α′ → ∞. By the continuity of σmin as
a function of α′, there exists µ′ > 0 so that

σmin([A− (α∗ + µ′ + β∗i)I B]) = δ.

Let µ1 be the smallest such µ′. Similarly, let µ2 be the small-
est positive µ′ satisfying σmin([A−(α∗−µ′+β∗i)I B]) = δ.
Note that for all α′ ∈ [α∗ − µ2, α∗ + µ1], the inequality

σmin([A− (α′ + β∗i)I B]) ≤ δ (14)

holds. Furthermore from Weyl’s theorem [16, Theorem
4.3.1], the singular values are globally Lipschitz with Lip-
schitz constant one. Therefore we can deduce µ1 ≥ δ −
τ(A,B) and µ2 ≥ δ − τ(A,B).

Now choose any α such that α∗ − (δ − τ(A,B)) ≤ α ≤
α∗+(δ−τ(A,B)). Since α lies in the interval [α∗−µ2, α∗+
µ1], it follows from (14) that

σmin([A− (α + β∗i)I B]) ≤ δ. (15)

As limβ→∞ σmin([A− (α + βi)I B]) =∞, the continuity
of the minimum singular value as a function of β together
with (15) imply that for some βα ≥ β∗, σmin([A − (α +
βαi)I B]) = δ, as desired.

Whether the set Sδ(α) is non-empty can be verified by
checking whether

D(α, δ) =
[
−(A∗ − αI) δI

BB∗

δ − δI A− αI

]
. (16)

has an imaginary eigenvalue [17]. We call this verification
the vertical search at α.

The algorithm maintains an interval [L,U ] containing the
distance to uncontrollability. Putting together all the tools
presented results in a technique that refines either the lower
bound or the upper bound reducing the length of the interval
by two-third at each iteration. Let δ1 = L + 2(U − L)/3,
δ2 = L + (U − L)/3, δ = δ1 and η = 2(δ1 − δ2). We apply
the vertical search at −ν,−ν + η, . . . ,−ν + d 2ν

η eη. (Recall
that ν is an upper bound on α∗ in absolute value.) If any of
the vertical searches returns an intersection point, then using
definition (12) we can deduce the upper bound

δ1 = δ ≥ τ(A,B).

If none of the vertical searches returns an intersection point,
then suppose that the closest vertical line among α = −ν +
jη, j = 0, . . . , d 2ν

η e to α∗ is α = α′. Clearly

|α′ − α∗| > δ − τ(A,B) and |α′ − α∗| ≤ η/2.

The first inequality holds, because otherwise according to
Theorem 1 the set Sδ(α′) would not be empty as verified.
Meanwhile, since α′ is the closest vertical line to α∗, we have
the second inequality. Combining these inequalities yields

δ − τ(A,B) < η/2⇐⇒ δ2 < τ(A,B).

Each iteration of the algorithm is of complexity O(ν
η n3),

since we perform the vertical search at d 2ν
η e + 1 different

positions.

III. STRUCTURE-EXPLOITING ALGORITHMS

The algorithms presented in the previous section require
the extraction of imaginary or unit eigenvalues from par-
ticularly structured eigenvalue problems. In the presence
of roundoff error, an eigenvalue solver that does not take
special care of the eigenvalue symmetries would introduce
real parts for the imaginary eigenvalues and perturb the
unit eigenvalues off the unit circle. In contrast, structure-
preserving algorithms are capable of returning exact imag-
inary or unit eigenvalues. Therefore, the need for deciding
whether a nearby eigenvalue is actually on the imaginary axis
or the unit circle largely disappears, making the algorithms
described in the previous section more reliable.



A. Hamiltonian eigenvalue problems

The matrix K(θ) in (11) belongs to the class of Hamilto-
nian matrices which take the form

H =
[

A G
Q −A∗

]
, G = G∗, Q = Q∗

where A,G,Q ∈ Cn×n. Eigenvalues of such matrices are
always symmetric with respect to the imaginary axis, i.e., if λ
is an eigenvalue of H then −λ̄ is also an eigenvalue. Hence,
if λ is a simple purely imaginary eigenvalue it will stay on
the imaginary axis when computed by structure-preserving
algorithms; otherwise the eigenvalue symmetry would be
broken. MATLAB functions providing such algorithms are
readily available in HAPACK [18].

B. Symplectic eigenvalue problems

Considering the matrix pencil P (r, ε) − λQ(r, ε) in (10)
upon which we must decide whether it has eigenvalues on
the unit circle, we can see that its conjugate transpose, the
pencil

λES −AS = λ

[
0 A
rI −εI

]
−

[
−εI rI
A∗ 0

]
satisfies ESJE∗

S = ASJA∗S with the matrix J =
[

0
−I

I
0

]
.

This relationship makes λES − AS a symplectic matrix
pencil. The same property holds for the pencil R(µ) − λS
in (8). Eigenvalues of such matrix pencils come in pairs
{λ, 1/λ̄} (a zero eigenvalue pairs with an infinite eigenvalue).
Similarly as for the Hamiltonian case, eigenvalue solvers
that are capable to preserve these eigenvalue pairings in
finite-precision arithmetic can be expected to produce more
reliable results for eigenvalues on or close to the unit circle.
A number of existing methods are based on symplectic but
non-orthogonal transformations, see [19] for an overview.
Patel’s algorithm [20], which covers real symplectic pen-
cils having a particular block structure, employs orthogonal
transformations after a so called S + S−1 transform. In this
section, we focus on a method based on the generalized
Cayley transform [21] and propose a new extension to the
complex case.

The generalized Cayley transform transforms a matrix
pencil λES −AS into

λEH −AH := λ(ES −AS)− (ES + AS).

The generalized Cayley transform preserves the eigenvalues
in the sense that λ is an eigenvalue of λEH−AH if and only
if (λ + 1)/(λ− 1) is an eigenvalue of λES −AS . The fact
that λES−AS is symplectic implies EHJA∗H = −AHJE∗

H ,
i.e., λEH −AH is a Hamiltonian matrix pencil.

1) The real case: Given a real pencil λEH−AH , we can
apply the numerically backward stable, structured algorithm
for Hamiltonian matrix pencils described in [21] to compute
the eigenvalues of λEH −AH .

This algorithm proceeds as follows. First, orthogonal sym-
plectic matrices U1, U2 (an orthogonal symplectic matrix U

satisfies UT U = I and UT JU = J), and an orthogonal
matrix U2 are computed such that

UT
3 EHU1 =

[
E11 E12

0 ET
22

]
=

 @

@

 ,

UT
3 AHU2 =

[
A11 A12

0 AT
22

]
=

 @

@@

 ,

i.e., A11, E11, E22 are upper triangular while A22 is upper
Hessenberg. Since

(λEH −AH)J(λET
H −AT

H) = λ2EHJET
H −AHJAT

H ,

and

UT
3 EHJET

HU3J =
[
−E11E22 ∗

0 −ET
22E

T
11

]
,

UT
3 AHJAT

HU3J =
[

A11A22 ∗
0 AT

22A
T
11

]
,

it follows that the eigenvalues of λEH−AH can be obtained
as the square roots of the eigenvalues of the matrix pencil
λE11E22 + A11A22. The periodic QZ algorithm [22], [23]
can be used to compute the eigenvalues of the latter pencil
in a numerically backward stable manner.

2) The complex case: In this section, we will present
a structure-preserving algorithm for addressing a complex
Hamiltonian matrix pencil λEH −AH , by combining ideas
from [21] and [24]. It will be necessary to assume that EH

is not (close to) a singular matrix. This can be guaranteed
by applying structured staircase algorithms [25] beforehand.
Let us define an embedded real 4n× 4n pencil λEW −AW

by

λ


E11,R −E11,I E12,R −E12,I

−E11,I −E11,R −E12,I −E12,R

E21,R −E21,I E22,R −E22,I

−E21,I −E21,R −E22,I −E22,R

−


A11,I A11,R A12,I A12,R

A11,R −A11,I A12,R −A12,I

A21,I A21,R A22,I A22,R

A21,R −A21,I A22,R −A22,I

 ,

where EH =
[

E11,R

E21,R

E12,R

E22,R

]
+ ı

[
E11,I

E21,I

E12,I

E22,I

]
and AH =[

A11,R

A21,R

A12,R

A22,R

]
+ ı

[
A11,I

A21,I

A12,I

A22,I

]
with all submatrices Eij,∗,

Aij,∗ being real and n×n. It can be shown that EHJA∗H =
−AHJE∗

H implies EW JAT
W = AW JET

W , which tempts
us to call λEW − AW a skew-Hamiltonian matrix pencil.
Moreover, λ is an eigenvalue of λEH − AH if and only if
{−ıλ, ıλ̄} is an eigenvalue pair of λEW −AW .

It remains to develop a structure-preserving algorithm for
skew-Hamiltonian pencils. First, an orthogonal matrix U1

and an orthogonal symplectic matrix U2 are computed such
that

UT
1 EW U2 =

[
E11 E12

0 ET
22

]
=

 @

@

 , (17)



UT
1 AW U2 =

[
A11 A12

A21 AT
22

]
=

 @@

@

 , (18)

i.e., A12, E11, E22 are upper triangular while A11 is upper
Hessenberg. A modification of the standard Hessenberg-
triangular reduction algorithm [26] which achieves the
form (17) and (18) is described in the appendix. An important
observation, which makes the form (17) and (18) useful for
eigenvalue computations, is that the relationship EW JAT

W =
AW JET

W is preserved under the reduction to the form (17)
and (18). This implies A21E22 = 0 (which, together with
the nonsingularity of E22, yields A21 = 0) and E11A22 =
A11E22. Hence, the eigenvalues of λE11 − A11, which can
be computed by the QZ algorithm [26], are the eigenvalues
of λEW − AW with halved multiplicities. Since E11 and
A11 are real, these eigenvalues come in pairs {µ, µ̄}, each
of which corresponds to an eigenvalue pair {ıµ, ıµ̄} of the
Hamiltonian pencil λEH −AH .

IV. ADVANTAGES FROM PRESERVING STRUCTURE

In the presence of rounding errors algorithms that respect
the symmetry of eigenvalues such as the ones in the previous
section move simple imaginary eigenvalues of a Hamiltonian
matrix only along the imaginary axis and simple unit eigen-
values of a symplectic pencil only along the unit circle. This
property for the eigenvalue solvers used inside the algorithms
in Section II is essential to compute the robust stability and
controllability measures in a reliable fashion. In Figure 1.a)1

we see that for ε = 0.1 the circle of radius 2 intersects the
boundary of the ε-pseudospectrum of the twisted Toeplitz
matrix available in EigTool’s demo menu [27] at 8 distinct
points. The twisted Toeplitz is a tridiagonal matrix with
fixed subdiagonal and superdiagonal entries and the main
diagonal allowed to vary smoothly. For this example our
implementation of the symplectic eigenvalue solver returns
8 eigenvalues (each with algebraic multiplicity 2) with unit
moduli. These values multiplied by r = 2 correspond to
the intersection points as displayed by asterisks in Figure
1.a). The moduli of the eigenvalues corresponding to the
intersection points computed by eig differ from one by
about 4×10−15 . To compute the distance to uncontrollability
for A chosen to be the 5 × 5 matrix that can be obtained
in MATLAB by typing gallery(5), B a 5 × 1 matrix
with entries selected from a normal distribution with zero
mean and variance one, we need the imaginary eigenvalues
of the Hamiltonian matrix D(α, δ) for various α and δ. For
δ = 10−0.8421 and α = 0.963980, the MATLAB routine
eig introduces significant real parts of order 10−7 for the
imaginary eigenvalues due to rounding. The vertical line
at α intersects the δ-level set of σmin([A − λI B]) at
four distinct points. The real Hamiltonian eigensolver in
HAPACK [18] returns the pairs ±0.47623i and ±0.47621i.
The intersection points are marked by asterisks in Figure
1.b). When a general-purpose eigenvalue solver is used, a
problem-dependent tolerance is needed to decide whether the

1All of the figures in this section are generated by EigTool.
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Fig. 1. The closed curves consist of the boundaries of the ε-pseudospectrum
for the twisted Toeplitz matrix (ε = 0.1) and the δ-level curve of
σmin([A − λI B]) for the Gallery5-normally distributed matrix pair
(δ = 10−0.8421), respectively. a) The circle of radius 2 intersects the ε-
pseudospectrum boundary at eight points. b) The intersection points of the
vertical line at α = 963980 and the level curve are marked with asterisks.

departure of an eigenvalue from the imaginary axis or unit
circle is solely caused by rounding errors.

An eigenvalue solver is called numerically strongly back-
ward stable if it returns the exact eigenvalues of a nearby
problem having the same structure. Although observed in
practice, it is not yet clear whether the algorithms presented
in Section III share this very desirable property.

In [6], the ε-pseudospectral radius computation was proved
to be backward stable when strongly backward stable eigen-
value solvers are used. Here we analyze the accuracy of the
presented algorithm for computing the distance to uncon-
trollability. When applied to the Hamiltonian matrix D(α, δ)
defined in (16), we assume that the eigenvalue solver returns
the eigenvalues of D̂(α, δ) = D(α, δ)+E, for some Hamil-
tonian matrix E with norm of the order of machine precision.
For the proofs of the results below see the appendix. The first
result is related to the error of the computed upper bound.
For notational convenience, we reveal the dependence of D



on B by writing DB(α, δ).
Theorem 2: Suppose iy is an imaginary eigenvalue

of D̂B(α, δ). Then iy is also an eigenvalue of
D“√

δ+ζ
δ

”
B

(α, δ + ζ) for some ζ with |ζ| ≤ ‖E‖.
An immediate implication of the theorem
above is that there exists a β such that
σmin

([
A− (α + β)i

(√
δ + ζ/

√
δ
)

B
])

= δ + ζ or
by applying Weyl’s Theorem once again, we obtain

τ(A, B) ≤ σmin([A− (α + β)i B]) ≤

δ + ζ +
|
√

δ + ζ −
√

δ|√
δ

‖B‖ = δ + O(|ζ|(1 + ‖B‖/(2δ))).

where |ζ| ≤ ‖E‖. Thus, the error in the computed upper
bound δ is O(‖E‖(1 + ‖B‖/(2δ))).

The next result concerns the case when none of the vertical
lines at α = −ν +ηj, j = 0, . . . , d 2ν

η e intersects the δ-level
sets of σmin([A− λI B]) and therefore the lower bound.

Theorem 3: Suppose that D̂B(α, δ) does not have any
imaginary eigenvalue and the matrix A does not have an
eigenvalue with real part equal to α. For all ζ such that
‖E‖ ≤ ζ ≤ δ the matrix D“√

δ−ζ
δ

”
B

(α, δ − ζ) does not

have any imaginary eigenvalue.
In particular let us apply the theorem above with ζ = ‖E‖
when for all α = −ν + ηj, j = 0, . . . , d 2ν

η e the matrix
D̂B(α, δ) does not have any imaginary eigenvalue. The
theorem implies that for A and

(√
δ − ‖E‖/

√
δ
)

B the
vertical cross sections at all α of the (δ − ‖E‖)-level sets
are empty. We can conclude from Theorem 1 that

2(δ − ‖E‖ − τ(A,

 r
δ − ‖E‖

δ

!
B)) ≤ η =⇒

δ − ‖E‖ − η/2 ≤ τ(A,

 r
δ − ‖E‖

δ

!
B))

≤ τ(A, B) +

√
δ −

p
δ − ‖E‖√
δ

‖B‖,

where the last inequality follows from Weyl’s Theorem. In
this case we update the lower bound to δ−η/2 which differs
from an exact lower bound by O(‖E‖(1 + ‖B‖/(2δ))).

V. CONCLUSIONS

We have reviewed methods for computing the pseudospec-
tral and numerical radius of a matrix. Also, a new method for
estimating the distance to uncontrollability of a matrix pair
has been introduced and analyzed. It has been shown how
existing structure-exploiting algorithms for the eigenvalue
problems arising from these methods can be extended to
cover complex symplectic pencils.
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APPENDIX

A MOTIVATING EXAMPLE FOR THE ROBUST STABILITY
ESTIMATES To illustrate the relevance of the robust stability
measures in this work with the transient behavior of a
discrete system , let us consider two matrices that have
similar spectral properties but different transient behaviors.
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Fig. 2. The norms of Ak for the scaled Grcar matrix at the top and the
scaled Airy matrix at the bottom.

The 100 × 100 “Grcar” matrix is a Toeplitz matrix with -1
on the subdiagonal, 1 on the diagonal, first, second and third
superdiagonals and all the other entries 0. The 50× 50 Airy
matrix is obtained by discretizing the differential operator
L(u) = d2u

dx2 + ixu. Both of the matrices are available in
EigTool, a graphical MATLAB tool to compute pseudospectra
and related measures [27]. We multiply both of the matrices
by constants so that their eigenvalues are contained inside the
unit circle with the spectral radii for the scaled Grcar matrix
and the scaled Airy matrix equal to 0.9051 and 0.9907,
respectively. This in turn means that the eventual decay for
the scaled Grcar matrix is faster than the Airy matrix. From
Figure 2, it is apparent that the norms of the powers of
the Grcar matrix reach 107 before any decay takes place,
while the powers of the Airy matrix never exceed 1.5 in
norm. The poor transient behavior of the Grcar matrix can be
estimated by the ε-pseudospectral radius of the Grcar matrix
as ρε(A) ≈ 1.0321 and the ratio ρε(A)−1

ε ≈ 3.2138 × 106

for ε = 10−8. Therefore the initial growth on the top in
Figure 2 agrees with the bounds in (5). Another indicator
of the the poor transient behavior of the Grcar matrix is its
numerical radius (≈ 1.2941), which is considerably larger
than the numerical radius of the Airy matrix (≈ 1.0025).

REDUCTION OF SKEW-HAMILTONIAN MATRIX PENCILS

A reduction of skew-Hamiltonian pencil to the form dis-
played in (17) and (18) can be achieved by Algorithm 4.
This algorithm makes use of Givens rotation matrices which
have the form

Gij(θ) =


Ii−1

cos θ sin θ
Ij−i−1

− sin θ cos θ
Im−j

 ,

for a given i, j such that 1 ≤ i < j ≤ m and for some
angle θ ∈ [−π/2, π/2). The angle can always be chosen so
that the jth component of Gij(θ)x is zero for a fixed vector
x ∈ Rn. In this case, we identify Gij(θ) ≡ Gij(x). For

i < j, we use the notation Gij(θ) ≡ Gji(x) to identify the
Givens rotation which maps the ith component of Gij(θ)T ·x
to zero. Note that the direct sum of two identical Givens
rotations, Gij(x)⊕Gij(x) as well as the 2m× 2m Givens
rotation Gi,m+i(x) are orthogonal symplectic matrices.

Algorithm 4:
Hessenberg-triangular-like reduction

Input: A matrix E ∈ R2m×2m having the block
triangular form displayed in (17), a matrix
A ∈ R2m×2m.

Output: An orthogonal symplectic matrix U1 ∈
R2m×2m and an orthogonal symplectic ma-
trix U2 ∈ R2m×2m such that UT

1 EU2 and
UT

1 AU2 have the reduced form displayed
in (17) and (18) respectively. The matrices
E and A are overwritten by the reduced
matrices.

[1.] Compute an orthogonal matrix U1 such that E ←
UT

1 E has the form displayed in (17) (can be achieved by
a slightly modified QR decomposition [21]).

[2.] U2 ← I2m

for j ← 1, 2, . . . ,m− 1 do
% Annihilate entries in jth column of (2, 1) block of
A.
for i← j, j + 1, . . . ,m− 1 do

G← Im ⊕Gi+1,i(A(m + 1 : 2m, j))
A← GA, E ← GE, U1 ← U1G

T

end for
% Propagate transformations through E while preserv-
ing its triangular shape.
for i← j, j + 1, . . . ,m− 1 do

G← Gi,i+1(E(i, m+1 : 2m))⊕Gi,i+1(E(i,m+1 :
2m))
A← AGT , E ← EGT , U2 ← U2G

T

G← Gi,i+1(E(1 : m, i))⊕ Im

A← GA, E ← GE, U1 ← U1G
T

end for
% Annihilate (2m, j) entry of A.
G← Gm,2m(A(:, j))
A← GA, E ← GE, U1 ← U1G

T

G← G2m,m(E(2m, :))
A← AGT , E ← EGT , U2 ← U2G

T

% Annihilate entries in jth column of (1, 1) block of
A.
for i← m− 1,m− 2, . . . , j + 1 do

G← Im ⊕Gi,i+1(A(1 : m, j))
A← GA, E ← GE, U1 ← U1G

T

end for
% Propagate transformations through E while preserv-
ing its triangular shape.
for i← m− 1,m− 2, . . . , j + 1 do



G ← Gi+1,i(E(i + 1, 1 : m)) ⊕ Gi+1,i(E(i + 1, 1 :
m))
A← AGT , E ← EGT , U2 ← U2G

T

G← Gi+1,i(E(1 : m, i + 1))⊕ Im

A← GA, E ← GE, U1 ← U1G
T

end for
end for

PROOFS OF THE THEOREMS FOR THE ACCURACY OF THE
ALGORITHM FOR THE DISTANCE TO UNCONTROLLABILITY
When a vertical search applied by the algorithm succeeds
in finite precision, the vertical search in exact arithmetic
succeeds for a slightly perturbed level set as shown next.

Theorem 5: Suppose iy is an imaginary eigenvalue
of D̂B(α, δ). Then iy is also an eigenvalue of
D“√

δ+ζ
δ

”
B

(α, δ + ζ) for some ζ with|ζ| ≤ ‖E‖.

Proof: Since iy is an eigenvalue of D̂B(α, δ),

0 = det(DB(α, δ)+E−iy) = det(JDB(α, δ)+JE−Jiy).

The matrices JE and JDB(α, δ) − Jiy are Hermitian.
Therefore Weyl’s Theorem [16, Theorem 4.3.1] implies that
the matrix JDB(α, δ)− Jiy has an eigenvalue less than or
equal to ‖E‖ in absolute value, i.e.

0 = det(JDB(α, δ)− Jiy − ζI)
= det(JD“√

δ+ζ
δ

”
B

(α, δ + ζ)− Jiy).

holds for some ζ such that |ζ| ≤ ‖E‖. Since J is unitary, it
follows that iy is an eigenvalue of D“√

δ+ζ
δ

”
B

(α, δ + ζ).

Similarly when a vertical search fails in finite precision,
the vertical seach in exact arithmetic fails on a nearby level
set which is proved below.

Theorem 6: Suppose D̂B(α, δ) does not have any imagi-
nary eigenvalue and the matrix A does not have an eigenvalue
with real part equal to α. For all ζ such that ‖E‖ ≤ ζ ≤ δ
the matrix D“√

δ−ζ
δ

”
B

(α, δ−ζ) does not have any imaginary

eigenvalue.
Proof: Consider the eigenvalues of JDB(α, δ) + δI −

iyJ and JD̂B(α, δ)+ δI− iyJ as functions of y ∈ R which
we denote in ascending order by εj(y), j = 1, . . . , 2n and
ε̂j(y), j = 1, . . . , 2n, respectively. Since the Hermitian
matrix JD̂B(α, δ) + δI − iyJ is obtained by perturbing
JDB(α, δ) + δI − iyJ by JE, an immediate consequence
of Weyl’s Theorem [16, Theorem 4.3.1] is that for all j and
y

|εj(y)− ε̂j(y)| ≤ ‖E‖. (19)

The fact that for all y ∈ R, the imaginary number iy is not
an eigenvalue of D̂B(α, δ) implies

0 6= det(JD̂B(α, δ)−iyJ) = det(JD̂B(α, δ)+δI−iyJ−δI)

that is for all y and j, ε̂j(y) 6= δ. Indeed as ε̂j(y) depends
on y continuously, either ∀y, ε̂j(y) > δ or ∀y, ε̂j(y) < δ.
If the first case is satisfied, from (19) we can deduce that
∀y, εj(y) > δ − ‖E‖. Otherwise, ∀y, εj(y) < δ + ‖E‖.

By assumption A does not have an eigenvalue with the
real part equal to α, so there cannot exist a y such that

0 = det
([

BB∗/δ A− (α + iy)I
A∗ − (α− iyI) 0

])
= det(JD(α, δ) + δI − iyJ)

which means εj(y) 6= 0 for all y as well. Therefore by
the continuity of ε either ∀y, εj(y) > 0 or otherwise
∀y, εj(y) < 0 holds. Regarding where the function εj(y)
lies, so far we have shown the following three possibilities
• ∀y, εj(y) > δ − ‖E‖,
• ∀y, εj(y) < 0,
• ∀y, δ + ‖E‖ > εj(y) > 0.

But we can also eliminate the third possibility, because
clearly the function εj(y) approaches ∞ as y goes to ∞.
Therefore the function εj(y) cannot take values in the range
[0, δ−‖E‖]. Let ζ be contained in [‖E‖, δ], by the definition
of εj(y) for all y we have

0 6= det(JDB(α, δ) + δI − iyJ − (δ − ζ)I)
= det(JD“√

δ−ζ
δ

”
B

(α, δ − ζ)− iyJ).

By multiplying the matrix inside the last determinent by −J
from left, we obtain the result.


