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Floating Point Operation Count

Efficiency of an algorithm is determined by the total # of ⊕,⊗,⊖,⊘

required.

Lecture 2 - Floating Point Operation Count – p.2/10



Floating Point Operation Count

Efficiency of an algorithm is determined by the total # of ⊕,⊗,⊖,⊘

required.

Crudeness in floating point operation (flop) count
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Floating Point Operation Count

Efficiency of an algorithm is determined by the total # of ⊕,⊗,⊖,⊘

required.

Crudeness in floating point operation (flop) count

Time required for data transfers is ignored.
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Floating Point Operation Count

Efficiency of an algorithm is determined by the total # of ⊕,⊗,⊖,⊘

required.

Crudeness in floating point operation (flop) count

Time required for data transfers is ignored.

All of the operations ⊕,⊗,⊖,⊘ are considered of same
computational difficulty. In reality ⊗,⊘ are more expensive.
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Floating Point Operation Count

Inner (or dot) product : Let f : Rn
→ R be defined as

f(x) = a1x1 + a2x2 + . . . anxn = aT x

where a =
[

a1 . . . an

]T

∈ Rn and x =
[

x1 . . . xn

]T

∈ Rn.
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Floating Point Operation Count

Inner (or dot) product : Let f : Rn
→ R be defined as

f(x) = a1x1 + a2x2 + . . . anxn = aT x

where a =
[

a1 . . . an

]T

∈ Rn and x =
[

x1 . . . xn

]T

∈ Rn.

Pseudocode to compute f(x)

f ← 0

for j = 1, n do
f ← f + ajxj
︸ ︷︷ ︸

2 flops

end for
Return f
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Floating Point Operation Count

Inner (or dot) product : Let f : Rn
→ R be defined as

f(x) = a1x1 + a2x2 + . . . anxn = aT x

where a =
[

a1 . . . an

]T

∈ Rn and x =
[

x1 . . . xn

]T

∈ Rn.

Pseudocode to compute f(x)

f ← 0

for j = 1, n do
f ← f + ajxj
︸ ︷︷ ︸

2 flops

end for
Return f

Total flop count : 2 flops per iteration for j = 1, . . . , n

Total # of flops =
∑n

j=1
2 = 2n

Lecture 2 - Floating Point Operation Count – p.3/10



Floating Point Operation Count

Matrix-vector product : Let g : Rn
→ Rm be defined as

g(x) = Ax = x1A1 + x2A2 + · · ·+ xnAn

where A =
[

A1 . . . An

]T

is an m× n real matrix with

A1, . . . , An ∈ Rm and x =
[

x1 . . . xn

]T

∈ Rn.
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Floating Point Operation Count

Matrix-vector product : Let g : Rn
→ Rm be defined as

g(x) = Ax = x1A1 + x2A2 + · · ·+ xnAn

where A =
[

A1 . . . An

]T

is an m× n real matrix with

A1, . . . , An ∈ Rm and x =
[

x1 . . . xn

]T

∈ Rn.
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Floating Point Operation Count

Pseudocode to compute g(x) = Ax

Given an m× n real matrix A and x ∈ Rn.
g ← 0 (where g ∈ Rn)
for j = 1, n do

g ← g + xjAj
︸ ︷︷ ︸

2m flops

end for
Return g
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Floating Point Operation Count

Pseudocode to compute g(x) = Ax

Given an m× n real matrix A and x ∈ Rn.
g ← 0 (where g ∈ Rn)
for j = 1, n do

g ← g + xjAj
︸ ︷︷ ︸

2m flops

end for
Return g

Above g + xjAj requires m addition and m multiplication for each j.
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Floating Point Operation Count

Pseudocode to compute g(x) = Ax

Given an m× n real matrix A and x ∈ Rn.
g ← 0 (where g ∈ Rn)
for j = 1, n do

g ← g + xjAj
︸ ︷︷ ︸

2m flops

end for
Return g

Above g + xjAj requires m addition and m multiplication for each j.

Total flop count : 2m flops per iteration for j = 1, . . . , n

Total # of flops =
∑n

j=1
2m = 2mn
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Floating Point Operation Count

Inner product view of the matrix-vector product g(x) = Ax.

g(x) =
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and Ā1, . . . , Ām are the rows of A and aij is the entry of A at the ith
row and jth column.
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Inner product view of the matrix-vector product g(x) = Ax.
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and Ā1, . . . , Ām are the rows of A and aij is the entry of A at the ith
row and jth column.
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Floating Point Operation Count

Pseudocode to compute g(x) = Ax exploiting the inner-product view

Given an m× n real matrix A and x ∈ Rn.
g ← 0 (where g ∈ Rn)
for i = 1, m do

for j = 1, n do
gi ← gi + aijxj
︸ ︷︷ ︸

2 flops

end for
end for
Return g
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Floating Point Operation Count

Pseudocode to compute g(x) = Ax exploiting the inner-product view

Given an m× n real matrix A and x ∈ Rn.
g ← 0 (where g ∈ Rn)
for i = 1, m do

for j = 1, n do
gi ← gi + aijxj
︸ ︷︷ ︸

2 flops

end for
end for
Return g

Total flop count : 2 flops per iteration for each j = 1, . . . , n and
i = 1, . . . , m

Total # of flops =
∑m

i=1

∑n

j=1
2 =

∑m

i=1
2n = 2mn
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Floating Point Operation Count

Matrix-matrix product : Given an n× p matrix A and a p×m matrix
X . The product B = AX is an n×m matrix and defined as

bij = ĀiXj =

p
∑

k=1

aikxkj

where Āi is the ith row of A, Xj is the jth column of X and bij , aij ,
xij denote the (i, j)-entry of B, A and X ,respectively.
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Floating Point Operation Count

Matrix-matrix product : Given an n× p matrix A and a p×m matrix
X . The product B = AX is an n×m matrix and defined as

bij = ĀiXj =

p
∑

k=1

aikxkj

where Āi is the ith row of A, Xj is the jth column of X and bij , aij ,
xij denote the (i, j)-entry of B, A and X ,respectively.
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Floating Point Operation Count

Pseudocode to compute the product B = AX

Given n× p and p×m matrices A and X .
B ← 0

for i = 1, n do
for j = 1, m do

for k = 1, p do
bij ← bij + aikxkj
︸ ︷︷ ︸

2 flops

end for
end for

end for
Return g
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Floating Point Operation Count

Pseudocode to compute the product B = AX

Given n× p and p×m matrices A and X .
B ← 0

for i = 1, n do
for j = 1, m do

for k = 1, p do
bij ← bij + aikxkj
︸ ︷︷ ︸

2 flops

end for
end for

end for
Return g

Total flop count : 2 flops per iteration for each k = 1, . . . , p,
j = 1, . . . , m and i = 1, . . . , n

Total # of flops =
Pn

i=1

Pm
j=1

Pp

k=1
2 = 2nmp
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Floating Point Operation Count

Big-O notation
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Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).
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Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).

The matrix-vector product Ax for a square matrix A (with m = n) requires
2n2 = O(n2) flops (quadratic # of flops).
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Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).

The matrix-vector product Ax for a square matrix A (with m = n) requires
2n2 = O(n2) flops (quadratic # of flops).

The matrix-matrix product AX for square n × n matrices A and X (with
m = n = p) requires 2n3 = O(n3) flops (cubic # of flops).
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Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).

The matrix-vector product Ax for a square matrix A (with m = n) requires
2n2 = O(n2) flops (quadratic # of flops).

The matrix-matrix product AX for square n × n matrices A and X (with
m = n = p) requires 2n3 = O(n3) flops (cubic # of flops).

The notation g(n) = O(f(n)) means asymptotically f(n) scaled up to
a constant grows at least as fast as g(n), i.e.

g(n) = O(f(n)) if there exists an n0 and c such that

g(n) ≤ cf(n) for all n ≥ n0
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Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).

The matrix-vector product Ax for a square matrix A (with m = n) requires
2n2 = O(n2) flops (quadratic # of flops).

The matrix-matrix product AX for square n × n matrices A and X (with
m = n = p) requires 2n3 = O(n3) flops (cubic # of flops).

The notation g(n) = O(f(n)) means asymptotically f(n) scaled up to
a constant grows at least as fast as g(n), i.e.

g(n) = O(f(n)) if there exists an n0 and c such that

g(n) ≤ cf(n) for all n ≥ n0

Examples:
2n = O(n) as well as 2n = O(n2) and 2n = O(n3)
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Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).

The matrix-vector product Ax for a square matrix A (with m = n) requires
2n2 = O(n2) flops (quadratic # of flops).

The matrix-matrix product AX for square n × n matrices A and X (with
m = n = p) requires 2n3 = O(n3) flops (cubic # of flops).

The notation g(n) = O(f(n)) means asymptotically f(n) scaled up to
a constant grows at least as fast as g(n), i.e.

g(n) = O(f(n)) if there exists an n0 and c such that

g(n) ≤ cf(n) for all n ≥ n0

Examples:
2n = O(n) as well as 2n = O(n2) and 2n = O(n3)

2n2 = O(n2) as well as 2n2 = O(n3), but 2n2 is not O(n).
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