
Math 304 (Spring 2010) - Lecture 2

Emre Mengi
Department of Mathematics

Koç University

emengi@ku.edu.tr

Lecture 2 - Floating Point Operation Count – p.1/10



Floating Point Operation Count

Efficiency of an algorithm is determined by the total # of ⊕,⊗,⊖,⊘

required.

Lecture 2 - Floating Point Operation Count – p.2/10



Floating Point Operation Count

Efficiency of an algorithm is determined by the total # of ⊕,⊗,⊖,⊘

required.

Crudeness in floating point operation (flop) count

Lecture 2 - Floating Point Operation Count – p.2/10



Floating Point Operation Count

Efficiency of an algorithm is determined by the total # of ⊕,⊗,⊖,⊘

required.

Crudeness in floating point operation (flop) count

Time required for data transfers is ignored.

Lecture 2 - Floating Point Operation Count – p.2/10



Floating Point Operation Count

Efficiency of an algorithm is determined by the total # of ⊕,⊗,⊖,⊘

required.

Crudeness in floating point operation (flop) count

Time required for data transfers is ignored.

All of the operations ⊕,⊗,⊖,⊘ are considered of same
computational difficulty. In reality ⊗,⊘ are more expensive.

Lecture 2 - Floating Point Operation Count – p.2/10



Floating Point Operation Count

Inner (or dot) product : Let f : Rn
→ R be defined as

f(x) = a1x1 + a2x2 + . . . anxn = aT x

where a =
[

a1 . . . an

]T

∈ Rn and x =
[

x1 . . . xn

]T

∈ Rn.

Lecture 2 - Floating Point Operation Count – p.3/10



Floating Point Operation Count

Inner (or dot) product : Let f : Rn
→ R be defined as

f(x) = a1x1 + a2x2 + . . . anxn = aT x

where a =
[

a1 . . . an

]T

∈ Rn and x =
[

x1 . . . xn

]T

∈ Rn.

Pseudocode to compute f(x)

f ← 0

for j = 1, n do
f ← f + ajxj
︸ ︷︷ ︸

2 flops

end for
Return f

Lecture 2 - Floating Point Operation Count – p.3/10



Floating Point Operation Count

Inner (or dot) product : Let f : Rn
→ R be defined as

f(x) = a1x1 + a2x2 + . . . anxn = aT x

where a =
[

a1 . . . an

]T

∈ Rn and x =
[

x1 . . . xn

]T

∈ Rn.

Pseudocode to compute f(x)

f ← 0

for j = 1, n do
f ← f + ajxj
︸ ︷︷ ︸

2 flops

end for
Return f

Total flop count : 2 flops per iteration for j = 1, . . . , n

Total # of flops =
∑n

j=1
2 = 2n

Lecture 2 - Floating Point Operation Count – p.3/10



Floating Point Operation Count

Matrix-vector product : Let g : Rn
→ Rm be defined as

g(x) = Ax = x1A1 + x2A2 + · · ·+ xnAn

where A =
[

A1 . . . An

]T

is an m× n real matrix with

A1, . . . , An ∈ Rm and x =
[

x1 . . . xn

]T

∈ Rn.

Lecture 2 - Floating Point Operation Count – p.4/10



Floating Point Operation Count

Matrix-vector product : Let g : Rn
→ Rm be defined as

g(x) = Ax = x1A1 + x2A2 + · · ·+ xnAn

where A =
[

A1 . . . An

]T

is an m× n real matrix with

A1, . . . , An ∈ Rm and x =
[

x1 . . . xn

]T

∈ Rn.

e.g.







2 1 −2

1 0 −1

3 −1 2













2

−2

1







= 2







2

1

3






−2







1

0

−1






+1







−2

−1

2







=







0

1

10







Lecture 2 - Floating Point Operation Count – p.4/10



Floating Point Operation Count

Pseudocode to compute g(x) = Ax

Given an m× n real matrix A and x ∈ Rn.
g ← 0 (where g ∈ Rn)
for j = 1, n do

g ← g + xjAj
︸ ︷︷ ︸

2m flops

end for
Return g

Lecture 2 - Floating Point Operation Count – p.5/10



Floating Point Operation Count

Pseudocode to compute g(x) = Ax

Given an m× n real matrix A and x ∈ Rn.
g ← 0 (where g ∈ Rn)
for j = 1, n do

g ← g + xjAj
︸ ︷︷ ︸

2m flops

end for
Return g

Above g + xjAj requires m addition and m multiplication for each j.

Lecture 2 - Floating Point Operation Count – p.5/10



Floating Point Operation Count

Pseudocode to compute g(x) = Ax

Given an m× n real matrix A and x ∈ Rn.
g ← 0 (where g ∈ Rn)
for j = 1, n do

g ← g + xjAj
︸ ︷︷ ︸

2m flops

end for
Return g

Above g + xjAj requires m addition and m multiplication for each j.

Total flop count : 2m flops per iteration for j = 1, . . . , n

Total # of flops =
∑n

j=1
2m = 2mn

Lecture 2 - Floating Point Operation Count – p.5/10



Floating Point Operation Count

Inner product view of the matrix-vector product g(x) = Ax.

g(x) =

2

6

6

6

6

6

6

4

Ā1x

Ā2x

...

Āmx

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + annxn

...

am1x1 + am2x2 + · · · + amnxn

3

7

7

7

7

7

7

5

where A =

2

6

6

6

6

6

6

4

Ā1

Ā2

...

Ām

3

7

7

7

7

7

7

5

and Ā1, . . . , Ām are the rows of A and aij is the entry of A at the ith
row and jth column.

Lecture 2 - Floating Point Operation Count – p.6/10



Floating Point Operation Count

Inner product view of the matrix-vector product g(x) = Ax.

g(x) =

2

6

6

6

6

6

6

4

Ā1x

Ā2x

...

Āmx

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + annxn

...

am1x1 + am2x2 + · · · + amnxn

3

7

7

7

7

7

7

5

where A =

2

6

6

6

6

6

6

4

Ā1

Ā2

...

Ām

3

7

7

7

7

7

7

5

and Ā1, . . . , Ām are the rows of A and aij is the entry of A at the ith
row and jth column.

e.g.
2

6

6

4

2 1 −2

1 0 −1

3 −1 2

3

7

7

5

2

6

6

4

2

−2

1

3

7

7

5

=

2

6

6

4

(2)(2) + (1)(−2) + (−2)(1)

(1)(2) + (0)(−2) + (−1)(1)

(3)(2) + (−1)(−2) + (2)(1)

3

7

7

5

=

2

6

6

4

0

1

10

3

7

7

5

Lecture 2 - Floating Point Operation Count – p.6/10



Floating Point Operation Count

Pseudocode to compute g(x) = Ax exploiting the inner-product view

Given an m× n real matrix A and x ∈ Rn.
g ← 0 (where g ∈ Rn)
for i = 1, m do

for j = 1, n do
gi ← gi + aijxj
︸ ︷︷ ︸

2 flops

end for
end for
Return g

Lecture 2 - Floating Point Operation Count – p.7/10



Floating Point Operation Count

Pseudocode to compute g(x) = Ax exploiting the inner-product view

Given an m× n real matrix A and x ∈ Rn.
g ← 0 (where g ∈ Rn)
for i = 1, m do

for j = 1, n do
gi ← gi + aijxj
︸ ︷︷ ︸

2 flops

end for
end for
Return g

Total flop count : 2 flops per iteration for each j = 1, . . . , n and
i = 1, . . . , m

Total # of flops =
∑m

i=1

∑n

j=1
2 =

∑m

i=1
2n = 2mn

Lecture 2 - Floating Point Operation Count – p.7/10



Floating Point Operation Count

Matrix-matrix product : Given an n× p matrix A and a p×m matrix
X . The product B = AX is an n×m matrix and defined as

bij = ĀiXj =

p
∑

k=1

aikxkj

where Āi is the ith row of A, Xj is the jth column of X and bij , aij ,
xij denote the (i, j)-entry of B, A and X ,respectively.

Lecture 2 - Floating Point Operation Count – p.8/10



Floating Point Operation Count

Matrix-matrix product : Given an n× p matrix A and a p×m matrix
X . The product B = AX is an n×m matrix and defined as

bij = ĀiXj =

p
∑

k=1

aikxkj

where Āi is the ith row of A, Xj is the jth column of X and bij , aij ,
xij denote the (i, j)-entry of B, A and X ,respectively.

e.g.
2

4

2 1

1 0

3

5

2

4

−1 1

1 −2

3

5 =

2

4

2(−1) + 1(1) 2(1) + 1(−2)

1(−1) + 0(1) 1(1) + 0(−2)

3

5 =

2

4

−1 0

−1 1

3

5

Lecture 2 - Floating Point Operation Count – p.8/10



Floating Point Operation Count

Pseudocode to compute the product B = AX

Given n× p and p×m matrices A and X .
B ← 0

for i = 1, n do
for j = 1, m do

for k = 1, p do
bij ← bij + aikxkj
︸ ︷︷ ︸

2 flops

end for
end for

end for
Return g

Lecture 2 - Floating Point Operation Count – p.9/10



Floating Point Operation Count

Pseudocode to compute the product B = AX

Given n× p and p×m matrices A and X .
B ← 0

for i = 1, n do
for j = 1, m do

for k = 1, p do
bij ← bij + aikxkj
︸ ︷︷ ︸

2 flops

end for
end for

end for
Return g

Total flop count : 2 flops per iteration for each k = 1, . . . , p,
j = 1, . . . , m and i = 1, . . . , n

Total # of flops =
Pn

i=1

Pm
j=1

Pp

k=1
2 = 2nmp

Lecture 2 - Floating Point Operation Count – p.9/10



Floating Point Operation Count

Big-O notation

Lecture 2 - Floating Point Operation Count – p.10/10



Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).

Lecture 2 - Floating Point Operation Count – p.10/10



Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).

The matrix-vector product Ax for a square matrix A (with m = n) requires
2n2 = O(n2) flops (quadratic # of flops).

Lecture 2 - Floating Point Operation Count – p.10/10



Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).

The matrix-vector product Ax for a square matrix A (with m = n) requires
2n2 = O(n2) flops (quadratic # of flops).

The matrix-matrix product AX for square n × n matrices A and X (with
m = n = p) requires 2n3 = O(n3) flops (cubic # of flops).

Lecture 2 - Floating Point Operation Count – p.10/10



Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).

The matrix-vector product Ax for a square matrix A (with m = n) requires
2n2 = O(n2) flops (quadratic # of flops).

The matrix-matrix product AX for square n × n matrices A and X (with
m = n = p) requires 2n3 = O(n3) flops (cubic # of flops).

The notation g(n) = O(f(n)) means asymptotically f(n) scaled up to
a constant grows at least as fast as g(n), i.e.

g(n) = O(f(n)) if there exists an n0 and c such that

g(n) ≤ cf(n) for all n ≥ n0

Lecture 2 - Floating Point Operation Count – p.10/10



Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).

The matrix-vector product Ax for a square matrix A (with m = n) requires
2n2 = O(n2) flops (quadratic # of flops).

The matrix-matrix product AX for square n × n matrices A and X (with
m = n = p) requires 2n3 = O(n3) flops (cubic # of flops).

The notation g(n) = O(f(n)) means asymptotically f(n) scaled up to
a constant grows at least as fast as g(n), i.e.

g(n) = O(f(n)) if there exists an n0 and c such that

g(n) ≤ cf(n) for all n ≥ n0

Examples:
2n = O(n) as well as 2n = O(n2) and 2n = O(n3)

Lecture 2 - Floating Point Operation Count – p.10/10



Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).

The matrix-vector product Ax for a square matrix A (with m = n) requires
2n2 = O(n2) flops (quadratic # of flops).

The matrix-matrix product AX for square n × n matrices A and X (with
m = n = p) requires 2n3 = O(n3) flops (cubic # of flops).

The notation g(n) = O(f(n)) means asymptotically f(n) scaled up to
a constant grows at least as fast as g(n), i.e.

g(n) = O(f(n)) if there exists an n0 and c such that

g(n) ≤ cf(n) for all n ≥ n0

Examples:
2n = O(n) as well as 2n = O(n2) and 2n = O(n3)

2n2 = O(n2) as well as 2n2 = O(n3), but 2n2 is not O(n).

Lecture 2 - Floating Point Operation Count – p.10/10


	Floating Point Operation Count
	Floating Point Operation Count
	Floating Point Operation Count
	Floating Point Operation Count
	Floating Point Operation Count
	Floating Point Operation Count
	Floating Point Operation Count
	Floating Point Operation Count
	Floating Point Operation Count

