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Eigenvalues associated with
a Jordan block are very
sensitive to perturbations.
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Absolute condition number of an eigenvalue A

| IA(BA) — A
k(\) = lim sup L2
)=, ||5AH26 [6A]
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Absolute condition number of an eigenvalue A

. AGA) — A 1
k(\) = lim su =
W)=, U TGAT T yx

where

y,x € C": unit left and right eigenvectors associated with \.
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Absolute condition number of an eigenvalue A

. AGA) — A 1
k(\) = lim su =
W)=, U TGAT T yx

where

y,x € C": unit left and right eigenvectors associated with \.

@ Jordan blocks: y*x =0
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Absolute condition number of an eigenvalue A

. AGA) — A 1
k(\) = lim su =
W)=, U TGAT T yx

where

y,x € C": unit left and right eigenvectors associated with \.

@ Jordan blocks: y*x =0
@ Best conditioned - Normal matrices: y = x <= y*x =1
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J.H. Wilkinson, The Algebraic Eigenvalue Problem

The eigenvalues corresponding to non-linear elementary divi-
sors must, in general, be regarded as ill-conditioned ... How-
ever, we must not be misled into thinking that this is the main
form of ill-conditioning. Even if the eigenvalues are distinct and
well separated they may still be very ill-conditioned.
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[ 20 20
19 20 @ Condition numbers for W/(0),
18 20 _ 20" _
W(e) = . . K(A) = {orgr for A =10, 11
2 20 @ W(e) has A = 10.5 as a multiple
¢ 1 eigenvalue for e ~ 8 x 1074,
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Definition (Wilkinson Distance)
The distance in 2-norm from A € C"*" to the nearest matrix
with a multiple eigenvalue

W(A) = inf{||6A||2 : 3X (A+ JA) has X as a multiple eigenvalue}

is called the Wilkinson distance of A.
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Definition (Wilkinson Distance)

The distance in 2-norm from A € C™" to the nearest matrix
with a multiple eigenvalue

W(A) = inf{||6A||2 : 3X (A+ JA) has X as a multiple eigenvalue}

is called the Wilkinson distance of A.

Wilkinson’s bound

W(A) < [|All2/+/E(A)? =1
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Singular Value Characterization

Define also

W(A, A) = inf{||0A]||2 : (A+ JA) has X as a multiple eigenvalue}.
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Singular Value Characterization

Define also

W(A, A) = inf{||0A]||2 : (A+ JA) has X as a multiple eigenvalue}.
Theorem (Malyshev, 1999)

(i) Thenforall X € C

A— )l /
W(A’ )\) = Sup'yGR+ 02n—1 <|: 0 A Z A :|> °
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Singular Value Characterization

Define also

W(A, A) = inf{||0A]||2 : (A+ JA) has X as a multiple eigenvalue}.
Theorem (Malyshev, 1999)

(i) Thenforall X € C

A— )l /
W(A’ )\) = Sup'yGR+ 02n—1 <|: 0 A Z A :|> °

(if) Consequently

: A— )l /
W(A) = infrxec SUP, er+ 02n—1 <[ 0 AZ N D .
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Singular Value Characterization

For a matrix pencil L(x) := A+ uB with A, B € C"™"

W(L, ) := inf{||0A||2 : (A+JA)+uB has X as a multiple eigenvalue}.
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Singular Value Characterization

For a matrix pencil L(x) := A+ uB with A, B € C"™"

W(L, ) := inf{||0A||2 : (A+JA)+uB has X as a multiple eigenvalue}.

Theorem (Kressner, M, Nakic, Truhar 2011)
(i) Forall\ € C

A+ \B B
W(L,\) = SUp, cgr+ 02n—1 ([ 0 A:{y—)\B ]> .
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Singular Value Characterization

For a matrix pencil L(x) := A+ uB with A, B € C"™"

W(L, ) := inf{||0A||2 : (A+JA)+uB has X as a multiple eigenvalue}.

Theorem (Kressner, M, Nakic, Truhar 2011)
(i) Forall\ € C

A+ \B B
W(L,\) = SUp, cgr+ 02n—1 ([ 0 A:{y—)\B ]> .

(ii) Consequently

_ A+ )\B B
W(L) = infxec SUP,cr+ 0201 <[ 0 A —T— \B ]) .
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Singular Value Characterization

For a matrix polynomial P(p) := Zfzo 1/ A; with A; € C™1

k
W(P, \) = inf{|[0A]|2 : Z ,ujAj+(5A has A\ as a multiple eigenvalue}.
j=0
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Singular Value Characterization

For a matrix polynomial P(p) := Ef:o 1/ A; with A; € C™1

K
W(P, \) = inf{|[0A]|2 : Z ,ujAj+(5A has A\ as a multiple eigenvalue}.
j=0
Theorem (Karow, M, Pelen 2012)
(i) Forall\ e C

W(P, \) = SUP,cg+ 02n—1 <[ PE))\) Vlf(lg\;\) D
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Singular Value Characterization

For a matrix polynomial P(p) := Ef:o 1/ A; with A; € C™1

K
W(P, \) = inf{|[0A]|2 : Z ,ujAj+(5A has A\ as a multiple eigenvalue}.
j=0
Theorem (Karow, M, Pelen 2012)
(i) Forall\ e C

W(P, \) = SUP,cg+ 02n—1 <[ PE))\) Vlf(lg\;\) D

(if) Consequently

W(P) = infrec SUP, g+ 0201 <[ PE))\) VIIDD(/E\/;) D .
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Numerical Computation

[ Inner maximization (Secant or Ouasi—Newton)}
Any stationary point v, € R* of the inner function

f(X, ) = o2n—1 ({ ABM Aj/)\, D

is a global maximizer.

1.4 T T
plot of f(A,y) with respect to y
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Numerical Computation

[ Outer minimization (Lipschitzness and Analyticity)]

f(X,~) is Lipschitz continuous w.r.t. A and ~ (from the Weyl’s theorem).
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Numerical Computation

[ Outer minimization (Lipschitzness and Analyticity)]

f(X,~) is Lipschitz continuous w.r.t. A and ~ (from the Weyl’s theorem).

Theorem (Weyl)

Let A and E be Hermitian n x n matrices and \;(-) denote the jth largest eigenvalue of
its matrix argument. Then |\;(A) — X\j(A+ E)| < || E|l2.
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Numerical Computation

[ Outer minimization (Lipschitzness and Analyticity)]

f(X,~) is Lipschitz continuous w.r.t. A and ~ (from the Weyl’s theorem).

Theorem (Weyl)

Let A and E be Hermitian n x n matrices and \;(-) denote the jth largest eigenvalue of
its matrix argument. Then |\;(A) — X\j(A+ E)| < || E|l2.

@ W(A, \) = sup,, f(),~) is Lipschitz continuous w.r.t. A.
Lipschitzness solely yields slow-converging algorithms.
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Numerical Computation

[ Outer minimization (Lipschitzness and Analyticity)]

f(X,~) is Lipschitz continuous w.r.t. A and ~ (from the Weyl’s theorem).

Theorem (Weyl)

Let A and E be Hermitian n x n matrices and \;(-) denote the jth largest eigenvalue of
its matrix argument. Then |\;(A) — X\j(A+ E)| < || E|l2.

@ W(A, \) = sup,, f(),~) is Lipschitz continuous w.r.t. A.
Lipschitzness solely yields slow-converging algorithms.

@ W(A, \) = sup, f(}, ) is also piece-wise analytic w.rt. A.
Analyticity may yield faster algorithms.
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e Numerical Optimization of Eigenvalues of Matrix Functions
@ Perturbation Results
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Analyticity Result

Theorem (Rellich)

Let A(w) : R — C™" be a Hermitian matrix function that
depends on w analytically.
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Analyticity Result

Theorem (Rellich)
Let A(w) : R — C™" be a Hermitian matrix function that
depends on w analytically.

(1) The n roots of the characteristic polynomial of A(w) can be
arranged so that each root \j(w) forj=1,...,nis an
analytic function of w.
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Analyticity Result

Theorem (Rellich)

Let A(w) : R — C™" be a Hermitian matrix function that
depends on w analytically.

(1) The n roots of the characteristic polynomial of A(w) can be
arranged so that each root \j(w) forj=1,...,nis an
analytic function of w.

(ii) There exists an eigenvector vj(w) associated with X,-(w) for
j=1,...,n satisfying

) (X,-(w)/ - A(w)) Vi(w) =0 Yw € R,
@) [[vi(w)ll2=1 Yw R,

(3) v/ (w)vk(w) =0 Vw € R for k # j, and
(4) vj(w) is an analytic function of w.
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Analyticity Result

The eigenvalues A\{(w), ..., Ap(w) ordered from largest to
smallest of A(w) are continuous and piece-wise analytic.
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Analyticity Result

The eigenvalues A\{(w), ..., Ap(w) ordered from largest to
smallest of A(w) are continuous and piece-wise analytic.

e.g.
Let A(w) = [ O ]
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Analyticity Result

The eigenvalues A\{(w), ..., Ap(w) ordered from largest to
smallest of A(w) are continuous and piece-wise analytic.

e.g.
Let A(w) = [ 2 LS ] with analytic eigenvalues

AM(w) =w and dp(w) = —w
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Analyticity Result

The eigenvalues A\{(w), ..., Ap(w) ordered from largest to
smallest of A(w) are continuous and piece-wise analytic.

e.g.
Let A(w) = [ 2 LS ] with analytic eigenvalues

AM(w) =w and dp(w) = —w

Sorted continuous and piece-wise analytic eigenvalues

M(w) = |w| and Ap(w) = —|w|

Emre Mengi Optimization of Eigenvalues of Hermitian Matrix Functions



Perturbation Results
One Dimensional Algorithm
Multi-dimensional Algorithm

Numerical Optimization of Eigenvalues of Matrix Functions

Analyticity Result

The analyticity result does not extend to non-Hermitian
functions.
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Analyticity Result

The analyticity result does not extend to non-Hermitian
functions.

e.g.
the roots of the characteristic polynomial of

wo-[2]

are given by +./w and not analytic.
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Derivatives of Eigenvalues

Let A(w) be one of the analytic eigenvalues with the assoc. unit
eigenvector v(w) (which also varies analytically w.r.t w).
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Derivatives of Eigenvalues

Let A(w) be one of the analytic eigenvalues with the assoc. unit
eigenvector v(w) (which also varies analytically w.r.t w).

First Derivative dAw)
WA ok w
N(w) = vi(w) =g 2 v(w)
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Derivatives of Eigenvalues

Let A(w) be one of the analytic eigenvalues with the assoc. unit
eigenvector v(w) (which also varies analytically w.r.t w).

First Derivative JAw)
WA ok w
N(w) = vi(w) =g 2 v(w)

Second Derivative

AP A(w) 1 v, ydA(w)
R PSS (o0 B o)

N (w) = v (w)
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Derivatives of Eigenvalues

Some observations helpful algorithmically
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Derivatives of Eigenvalues

Some observations helpful algorithmically

@ Analyticity implies the boundedness of derivatives. In
particular we will exploit the existence of a v such that

’X"(w)‘ <7v Vw.
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Derivatives of Eigenvalues

Some observations helpful algorithmically

@ Analyticity implies the boundedness of derivatives. In
particular we will exploit the existence of a v such that

’X"(w)‘ <7v Vw.

@ Once \(w) is computed, X (w) is available for free.
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Derivatives of Eigenvalues

The plot of the second derivative of
£(8) := M (M) whose
maximum over 6 gives numerical
radius.
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@ One Dimensional Algorithm
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Quadratic Models

The algorithm is based on quadratic models.
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Quadratic Models

The algorithm is based on quadratic models.

@ Let f: R — R be a piece-wise analytic and continuous
function in terms of analytic functions f;,...,f, : R — R.
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Quadratic Models

The algorithm is based on quadratic models.

@ Let f: R — R be a piece-wise analytic and continuous
function in terms of analytic functions f;,...,f, : R — R.

@ The quadratic model gk (x) about xx € R satisfies

ak(xk) = f(xk) and  qi(xk) = F'(xk) := minj=1 p £ (Xk).
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Quadratic Models

The algorithm is based on quadratic models.

@ Let f: R — R be a piece-wise analytic and continuous
function in terms of analytic functions f;,...,f, : R — R.

@ The quadratic model gk (x) about xx € R satisfies
ak(xk) = f(xk) and  qi(xk) = F'(xk) := minj=1 p £ (Xk).
@ Furthermore for all x € R the quadratic model satisfies
f(x) > gk(x)
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Quadratic Models

Let v be an upper bound on second derivatives (in abs value) of
fiand Xk 1,. .., Xk,m be points in (xk, X) where f is not analytic
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Quadratic Models

Let v be an upper bound on second derivatives (in abs value) of
fiand Xk 1, ..., Xk,m be points in (xk, X) where f is not analytic

0 = 1+ [ e

=0 " Xkt

Note: Xk 0 = Xk and Xx m+1 = X
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Quadratic Models

Let v be an upper bound on second derivatives (in abs value) of
fiand Xk 1,. .., Xk,m be points in (xk, x) where f is not analytic

f(x) = f(x) +Z/

Xk, 041 ,
> f(Xk) + Z/ I(Xk) — 7(1‘ — Xk)dt
0=0 Xk,

Note: /(1) > f'(xk) —v(t—xk) YVt € (X, X)\ {Xk.1,- -, Xk,m}
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Quadratic Models

Let v be an upper bound on second derivatives (in abs value) of
fiand Xk 1, ..., Xk,m be points in (xk, x) where f is not analytic

f(x) = f(xk)+z / bt

—0 Y Xkt

> f(Xk) / f'(xk) — v(t — xx)at
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Quadratic Models

Let v be an upper bound on second derivatives (in abs value) of
fiand Xk 1, ..., Xk,m be points in (xk, X) where f is not analytic

M Xko41

fx) = f(x)+ > / f'(t)dlt

=0 "Xk,
X
> f(x) + / () — (t - xi)ot
Xk

= f(xk) + /(X)) (x — Xk) — %(X — xx)?
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Quadratic Models

Quadratic Model about xx

Gh(x) 1= Fx) + £'() (X = xi) = F(x = Xe)?

satisfies f(x) > gk(x) for all x € R.
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The Algorithm

Task : locate a global minimizer of f on a given interval [a, b).
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Numerical Optimization of Eigenvalues of Matrix Functions

The Algorithm

Task : locate a global minimizer of f on a given interval [a, b).

@ Initially xg = a, x; = band s = 1. Evaluate f(xp), f(x),
f/(Xo), and f/(X1).
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Numerical Optimization of Eigenvalues of Matrix Functions

The Algorithm

Task : locate a global minimizer of f on a given interval [a, b).

@ Initially xg = a, x; = band s = 1. Evaluate f(xp), f(x),
f/(Xo), and f/(X1).
@ Find the global minimizer x, of g(x) on [a, b] where

q(x) = maxg—g s gk(X).
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Numerical Optimization of Eigenvalues of Matrix Functions

The Algorithm

Task : locate a global minimizer of f on a given interval [a, b).
@ Initially xg = a, x; = band s = 1. Evaluate f(xp), f(x),
f/(Xo), and f/(X1).
@ Find the global minimizer x. of q(x) on [a, b] where
q(x) = mMaxx=o,s Gk (X).
© Set x5, 1 = x., evaluate f(Xg1), F'(Xs11)-
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Numerical Optimization of Eigenvalues of Matrix Functions

The Algorithm

Task : locate a global minimizer of f on a given interval [a, b).
@ Initially xg = a, x; = band s = 1. Evaluate f(xp), f(x),
f/(Xo), and f/(X1).
@ Find the global minimizer x, of g(x) on [a, b] where
q(x) = mMaxx=o,s Gk (X).
© Set x5, 1 = x., evaluate f(Xg1), F'(Xs11)-
Q Let ¢ = q(x.) and u = maxx_g s+1f(xk).
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Numerical Optimization of Eigenvalues of Matrix Functions

The Algorithm

Task : locate a global minimizer of f on a given interval [a, b).
@ Initially xg = a, x; = band s = 1. Evaluate f(xp), f(x),
f/(Xo), and f/(X1).

@ Find the global minimizer x, of g(x) on [a, b] where
q(x) = mMaxx=o,s Gk (X).

© Set x5, 1 = x., evaluate f(Xg1), F'(Xs11)-

Q Let ¢ = q(x.) and u = maxx_g s+1f(xk).

@ While u — | > ¢, increment s and repeat steps 2-4.
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The Algorithm

lllustration of the algorithm on o,(A — wil) where o, denotes the
smallest singular value.

0.338 I
- -

0.336 — |

0.334— 1

0.332— |

0.328 — |

I I I I I
2.04 2.06 2.08 21 212 214
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The Algorithm

lllustration of the algorithm on o,(A — wil) where o, denotes the
smallest singular value.

0.338 — A

0.336 — 1

0.334— -

0.332— -

0.328— -

I I I I I
2.04 2.06 2.08 21 212 2.14
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The Algorithm

lllustration of the algorithm on o,(A — wil) where o, denotes the
smallest singular value.

0.338

0.336

0.334

0.332

0.328 -

Emre Mengi Optimi



Perturbation Results
One Dimensional Algorithm
Multi-dimensional Algorithm

Numerical Optimization of Eigenvalues of Matrix Functions

The Algorithm

lllustration of the algorithm on o,(A — wil) where o, denotes the
smallest singular value.

0.338 —

0.336—

0.334 -

0.332—

0.328 — |

1 1 1 1 1
2.04 2.06 2.08 241 212 214
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The Algorithm

lllustration of the algorithm on o,(A — wil) where o, denotes the
smallest singular value.
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Generic Analyticity

Many eigenvalue functions of interest are generically analytic on a dense
subset.

e.g. f(w) ==\ (M) is generically analytic at all 6.

1751

170f — N\
1657f\4//'\ / -~

160

The largest four eigenvalues of
(Aef9+A*e*i9
2

155

150

1451 N\

140 L L L L L L ,
0
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Case St

Modulus of the outermost point in the field of values
F(A) ={z"Az|ze€C" st ||z]2=1}
is called the numerical radius.

Numerical Radius

I'(A) = maX[()’QW) M (M)
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Case St

Modulus of the outermost point in the field of values
F(A) ={z"Az|ze€C" st ||z]2=1}
is called the numerical radius.

Numerical Radius

I'(A) = maX[()’QW) M (M)

@ Field of values is a convex set.
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Case Study

Modulus of the outermost point in the field of values
F(A) ={z"Az|ze€C" st ||z]2=1}
is called the numerical radius.

Numerical Radius

I'(A) ‘= MaXp,2r) A1 (M)

@ Field of values is a convex set.
@ Contains the eigenvalues.
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Case Study

Modulus of the outermost point in the field of values
F(A) ={z"Az|ze€C" st ||z]2=1}
is called the numerical radius.

Numerical Radius

I'(A) ‘= MaXp,2r) A1 (M)

@ Field of values is a convex set.
@ Contains the eigenvalues.

@ Numerical radius is used to analyze the convergence of the classical
iterative algorithms for linear systems.
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Case Study

IR A t. Y Dotted-lines represent the
! . o Y boundary of the field of
Al ¢ e, * . v values, red circle marks
[ o o, ° | the outermost point in the
\ . . . oo ! .
\ . 1 field of values
\‘ * . [ ,’
-5 \\ . S e . : II 1
N . . . 4
S i ’
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Case Study

Computation of numerical radius for matrices resulting from Poisson equation

# of function evaluations
nle[ 1071101081010 ™
100 45 54 64 73 81
400 44 54 65 74 83
900 67 77 88 99 119
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Case Study

Computation of numerical radius for matrices resulting from Poisson equation

cpu-times
nie] 1077105710 8710°™ [ 10"
100 | 1.0 1.2 1.4 1.6 1.9
400 | 9.0 | 109 | 129 | 146 | 175
900 | 156 | 177 | 201 225 267
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Case Study
The transfer function for the linear system
X' (t) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t)
is given by H(s) = C(sl — A)~'B + D.

sup o (C(wil ~A) B+ D)

weR
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Case Study

The transfer function for the linear system
X' (t) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t)
is given by H(s) = C(sl — A)~'B+D.

supaa(C@ﬂL—Ay4B4—D)

weR

Matrices result from a discretization of the heat equation

# of function evaluations
nlie 10710510810 ™
100 23 32 39 47
200 22 29 36 44
400 18 24 29 34
800 16 19 22 27
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Case Study

The transfer function for the linear system
X' (t) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t)
is given by H(s) = C(sl — A)"'B+D.

wpm(cwﬂ—m43+o)

weR

Matrices result from a discretization of the heat equation

cpu-times
nlie[10°* 110 %[ 10810 ™
100 0.3 0.5 0.5 0.6
200 1.5 1.9 2.3 2.8
400 8.3 10.8 | 129 17.6
800 53 63 73 92
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Outline

e Numerical Optimization of Eigenvalues of Matrix Functions

@ Multi-dimensional Algorithm
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Non-analyticity Result

@ For a multivariate Hermitian function A(w) : R” — C"™*"
that depends on w the eigenvalues A;(w) are not analytic in
general no matter how they are ordered.

Emre Mengi Optimization of Eigenvalues of Hermitian Matrix Functions



. - . . Perturbation Results
Numerical Optimization of Eigenvalues of Matrix Functions . ’
One Dimensional Algorithm

Multi-dimensional Algorithm

Non-analyticity Result

@ For a multivariate Hermitian function A(w) : R” — C"™*"
that depends on w the eigenvalues A;(w) are not analytic in
general no matter how they are ordered.

e.g. The roots of the characteristic polynomial of

w1

w1 +wo
a=a 7L

w2

are given by wq + wp & V24 /w? + w2 and not analytic.
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Non-analyticity Result

@ For a multivariate Hermitian function A(w) : R” — C"™*"
that depends on w the eigenvalues A;(w) are not analytic in
general no matter how they are ordered.

e.g. The roots of the characteristic polynomial of

w1

A = | g

w1 +wo
2
w2

are given by wq + wp & V24 /w? + w2 and not analytic.

@ But there is an ordering such that Xj(w) forj=1,...,nis
analytic over any line in R” (Rellich’s result).
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Model Functions

@ Let f: R" — R be analytic over any line in R”, and
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Model Functions

@ Let f: R" — R be analytic over any line in R”, and

@ The quadratic model gk (x) about x;, € R" satisfies
Qk(xk) = f(xx) and  Vau(Xk) = VF(Xk).
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Model Functions

@ Let f: R" — R be analytic over any line in R”, and

@ The quadratic model gk (x) about x;, € R" satisfies
Qk(xk) = f(xx) and  Vau(Xk) = VF(Xk).

@ Furthermore for all x € R” the quadratic model satisfies
f(x) > qk(x).
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Quadratic Models

Let ¢(«) := f(xx + ap) where p := (x — x«)/||x — X«|| and ~ be an upper
bound on the second derivative (on any line in R") of ¢. Denote also points in
the interval [0, || x — xk||] where ¢(«) is not differentiable by a("), ..., a(™.
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Quadratic Models

Let ¢(«a) := f(xk + ap) where p := (x — x)/||x — X«|| and ~ be an upper
bound on the second derivative (on any line in R") of ¢. Denote also points in

the interval [0, || x — xk||] where ¢(«) is not differentiable by a("), ..., (™.
Q+1)
f(x) = f(xk)+ / '(t)dt
0 > [, 40
Note: o® := 0 and a(™") := || x — xk||.
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Quadratic Models

Let ¢() := f(xk + ap) where p := (x — xk)/||x — X«|| and ~ be an upper
bound on the second derivative (on any line in R") of ¢. Denote also points in

the interval [0, || x — xk||] where ¢(«) is not differentiable by a("), ..., a(™.
m o gl
0 = )+ [ oo
—0 alt)
m ale+1)
> )+ ) ¢'(0) —~t dt
=0 /ol

Note: ¢/(t) = ¢/'(0) — vt = VF(xx) " p — ~t
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Quadratic Models

Let ¢(«) := f(xk + ap) where p := (x — xk)/||x — X«|| and ~ be an upper
bound on the second derivative (on any line in R") of ¢. Denote also points in
the interval [0, || x — xk||] where ¢(«) is not differentiable by a("), ..., (™.

f(x)

I
35
_l_

INNgE
\
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S
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Quadratic Models

Let ¢(a) := f(xk + ap) where p := (x — x)/||X — X«|| and v be an upper
bound on the second derivative (on any line in R") of ¢. Denote also points in
the interval [0, || x — x«||] where ¢(«) is not differentiable by o, ..., o(™.

m Lol
0 = e+ [ ot
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Model Functions

Quadratic Model about x

() = F(x) + VI(xi) T (X — xi) — %(x — x)T(x — xe)

satisfies f(x) > qx(x) for all x € R".
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The Algorithm

Task : locate a global minimizer of f : R” — R on a given box

B:={xeR"|x, €lapby]fort=1,....,n}
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The Algorithm

Task : locate a global minimizer of f : R” — R on a given box

B:={xeR"|x, €lapby]fort=1,....,n}

@ Initially let xo be the midpoint of the box and s = 0.
Evaluate f(xp) and f'(xp).
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The Algorithm

Task : locate a global minimizer of f : R” — R on a given box

B:={xeR"|x, €lapby]fort=1,....,n}

@ Initially let xo be the midpoint of the box and s = 0.
Evaluate f(xp) and f'(xp).

@ Find the global minimizer x. of q(x) on B where
q(x) = maxk=o,s gk(X)-
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Numerical Optimization of Eigenvalues of Matrix Functions

The Algorithm

Task : locate a global minimizer of f : R” — R on a given box

B:={xeR"|x, €lapby]fort=1,....,n}

@ Initially let xo be the midpoint of the box and s = 0.
Evaluate f(xp) and f'(xp).
@ Find the global minimizer x. of q(x) on B where
q(x) = maxk=o,s gk(X)-
© Set xs.1 = X, evaluate f(Xsy1), f'(Xs11)-
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The Algorithm

Task : locate a global minimizer of f : R” — R on a given box

B:={xeR"|x, €lapby]fort=1,....,n}

@ Initially let xo be the midpoint of the box and s = 0.
Evaluate f(xp) and f'(xp).

@ Find the global minimizer x. of q(x) on B where
q(x) = Maxx=o,s Gk (X)-

© Set xs.1 = X, evaluate f(Xsy1), f'(Xs11)-

Q Let ¢ = q(x.) and u = maxx—g s+1f(xk).
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The Algorithm

Task : locate a global minimizer of f : R” — R on a given box

B:={xeR"|x, €lapby]fort=1,....,n}

@ Initially let xo be the midpoint of the box and s = 0.
Evaluate f(xp) and f'(xp).

@ Find the global minimizer x. of q(x) on B where
q(x) = Maxx=o,s Gk (X)-

© Set x5, 1 = X, evaluate f(xsi1), F'(Xsi1)-

Q Let ¢ = q(x.) and u = maxx—g s+1f(xk).

©@ While u — | > ¢, increment s and repeat steps 2-4.
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The Algorithm

The calculation of a global minimizer of

q(x) = max gx(x)

on the box B appears to be difficult computationally.
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The Algorithm

The calculation of a global minimizer of

q(x) = max g(x)
on the box B appears to be difficult computationally.

(01,’)2) (az, ba)

Q1
']

@ Split the region where a global minimizer
@ is known to lie into subregions.

@ In subregion g the quadratic function
ak(x) > gi(x) Vj# k.

q4
a5

(a1,b1) (ag,b1)
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The Algorithm

Finding a global minimizer of q(x) = maxx—o s gk(x) on B

Solve the quadratic program (QP) for k =0, ..., s.

minimizeycrn  Qk(X)

subject to ak(x) > gj(x)
]

, J#k
XgE[ag,bg =1,...,

n
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The Algorithm

Notes on the quadratic program
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The Algorithm

Notes on the quadratic program

@ The constraints gk(x) > g;(x) are linear.
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The Algorithm

Notes on the quadratic program

@ The constraints gk(x) > g;(x) are linear.

@ The fact that qx(x) is negative definite makes the QP NP-hard.
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The Algorithm

Notes on the quadratic program
@ The constraints gk(x) > g;(x) are linear.
@ The fact that qx(x) is negative definite makes the QP NP-hard.

@ The solution will be attained at a vertex. There are at most ( SJ;’ 1 )

vertices.
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The Algorithm

Notes on the quadratic program

@ The constraints gk(x) > g;(x) are linear.
@ The fact that qx(x) is negative definite makes the QP NP-hard.

@ The solution will be attained at a vertex. There are at most ( SJ;’ 1 )
vertices.

@ In practice number of vertices is much smaller; for n = 2 typically each
QP has 5-6 vertices regardless of s.
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The Algorithm

Notes on the quadratic program

@ The constraints gk(x) > g;(x) are linear.
@ The fact that qx(x) is negative definite makes the QP NP-hard.

@ The solution will be attained at a vertex. There are at most ( SJ;’ 1 )
vertices.

@ In practice number of vertices is much smaller; for n = 2 typically each
QP has 5-6 vertices regardless of s.

@ For small n each QP can be solved efficiently.
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Convergence

Theorem (Convergence)

Let f : R” — R be an analytic function. Then every limit point of
the sequence of iterates generated by the multi-dimensional
algorithm is a global minimizer of f over the box

B:={xeR":x,€lapby] for £=1,...,n}
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Convergence

Theorem (Convergence)

Let f : R” — R be an analytic function. Then every limit point of
the sequence of iterates generated by the multi-dimensional
algorithm is a global minimizer of f over the box

B:={xeR":x,€lapby] for £=1,...,n}

In practice the rate of convergence appears linear due to the
fact that when the estimates are close to global minimizers, the
algorithm essentially becomes a steepest descent algorithm.
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Case Study

Distance to Uncontrollability

| X' (t) = (A + AA)X(t) + (B + AB)u(t)

UAB) = inf{||[ AA AB ]|,
is uncontrollable }

= minoy([A-2 BJ)

Optimization of Eigenvalues of Hermitian Matrix Functio|
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Case Study

Distance to Uncontrollability

UAB) = inf{||[ AA AB ]|, | X'(t) = (A+ AA)x(t) + (B+ AB)u(t)
is uncontrollable }

= minoy([A-2 BJ)

Matrices resulting from heat equation

# of function evaluations
nle|1072]10°*]10° %[ 1078
100 | 345 | 548 | 747 | 850
200 | 456 | 569 | 767 | 1066
400 | 615 | 734 | 849 | 1047
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Case Study

Distance to Uncontrollability

UAB) = inf{||[ AA AB ]|, | X'(t) = (A+ AA)x(t) + (B+ AB)u(t)
is uncontrollable }

= minoy([A-2 BJ)

Matrices resulting from heat equation

cpu-times
n/e[1072710°*[10 %1078
100 | 38 56 73 82
200 | 53 65 84 113
400 | 315 | 374 | 427 | 521
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Case Study

Level sets of the function g(z) = o ([ A— 2/ B |) on the complex plane.
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Case Study

Wilkinson Distance

W(A) = inf{||6A|2:3X (A+ JA) has X as a multiple eigenvalue}

. A— Al /
= inf SUpO’gn71<|: 0 Az/\/D

AeC ec
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Case Study

Wilkinson Distance

W(A) = inf{||6A|2:3X (A+ JA) has X as a multiple eigenvalue}

. A— Al /
= inf SUpO’gn71<|: 0 Az/\/D

AeC ec

Random matrices

# of function evaluations
n/fe[ 10210310 *[10°°
10 74 80 84 89
20 102 111 114 115
40 101 135 148 155
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Case Study

Wilkinson Distance

W(A) = inf{||6A|]2:3X (A+ 0A) has X as a multiple eigenvalue}

= inf su A Al
= A SdRoen 0 A-

Random matrices

cpu-times
n/fe 10210 °[10°*] 10°
10 | 490 | 6.09 | 6.99 | 9.22
20 | 245 | 30.1 | 340 | 343
40 | 32.8 | 69.7 | 90.4 | 103.6
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Outline

Q Pencils with Specified Eigenvalues
@ Definition and Motivation
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Problem Definition

@ \i,...,\ € Cbegivenscalars,and S = {\,..., A}
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Problem Definition

@ \i,...,\ € Cbegivenscalars,and S = {\,..., A}
@ r be a given positive integer
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Pencils with Specified Eigenvalues 2ipteplencietietol

Problem Definition

@ \i,...,\ € Cbegivenscalars,and S = {\,..., A}
@ r be a given positive integer
@ mj(A, B): Algebraic multip of \; as an eigenvalue of A — \B
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Problem Definition

@ \i,...,\ € Cbegivenscalars,and S = {\,..., A}
@ r be a given positive integer
@ mj(A, B): Algebraic multip of \; as an eigenvalue of A — \B

Definition (Distance to Pencils with Specified Eigenvalues)

k
(A, B,S) = inf { 16Al, - >~ mi(A+ 6A,B) > r}

=
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Shape Estimation from Moments

Estimating a polygon from moments
(Elad, Milanfar, GOIUb, 2004) Given moments

2 : X My = / / ZK dx dy
P

fork=1,...,m.

g Estimate the vertices z; € C
. forj=1,...,nof P.
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Shape Estimation from Moments

@ The vertices z; are the eigenvalues of a pencil 7o — AT;
where Ty, T{ € C™*" (with m > n) are Hankel matrices
defined in terms of M.
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Shape Estimation from Moments

@ The vertices z; are the eigenvalues of a pencil 7o — AT;
where Ty, T{ € C™*" (with m > n) are Hankel matrices
defined in terms of M.

@ Because of measurement errors the perturbed pencil
To — ATq has generically no eigenvalues.
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Shape Estimation from Moments

@ The vertices z; are the eigenvalues of a pencil 7o — AT;

where Ty, T{ € C™*" (with m > n) are Hankel matrices
defined in terms of M.

@ Because of measurement errors the perturbed pencil
To — ATq has generically no eigenvalues.

@ Find a nearby pencil with the full set of eigenvalues
infsecn 7a(To, T, S).

Emre Mengi
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Rank Characterization

1 —721 ce —Yr1

O 2 e —Yr2
C(p,T) =

0 Mr
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Rank Characterization

M =21 . =R
0 2 e —Yr2
Cu,T) =
0 hr

Theorem (Sylvester Characterization)

Let A — \B be a pencil with A, B € C™" such that m > n and rank(B) = n,

S ={\1,..., \} be a set consisting of distinct complex scalars and r € Z.*.
Then the following two statements are equivalent.
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Rank Characterization

M1 =21 ... =Y
0 2 e —Yr2
Cu,T) ==
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Theorem (Sylvester Characterization)

Let A — \B be a pencil with A, B € C™" such that m > n and rank(B) = n,

S ={\1,..., \} be a set consisting of distinct complex scalars and r € Z.*.
Then the following two statements are equivalent.

Q> mAB)>r
@ There exists a . € S” such that
dim{X € C™": AX — BXC(u,[) =0} >r
forallT € G(p) := {I : C(p, ) has Jordan blocks of maximal size.}.
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Rank Characterization

Kroneckerization of the Sylvester Equation

Recall the Identity
vec(FXG) = (GT ® F)vec(X)
X1
X2

where X =[xy ... x, ] €C™ andvec(X)=| . | €C™.

Xr
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Kroneckerization of the Sylvester Equation

@ In particular
AX —BXC(u,T) =0 < (IoA)—(CT(u, N @ B))vec(X) = 0.
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Rank Characterization

Kroneckerization of the Sylvester Equation

@ In particular
AX —BXC(u,T) =0 < (IoA)—(CT(u, N @ B))vec(X) = 0.

@ Consequently
dim{X € C™" : AX — BXC(u,T) =0} >r
=
rank (((/® A) — (CT(u,T)® B))) < nr—r
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Kroneckerization of the Sylvester Equation

(e A - (CT(wN @ B))

L(u,T,AB) =
A—uB 0 0
y21B A— B 0
A—pr 4B 0
1B Yr2B ’Yr(r71)B A—urB
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Kroneckerization of the Sylvester Equation
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Theorem (Rank Characterization)

Given a pencil A— \B with A, B € C™*" such that m > n and rank(B) = n, a set
S = {\1, ..., \} consisting of distinct complex scalars and r € Z+. Then the following
two statements are equivalent.
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Rank Characterization

Kroneckerization of the Sylvester Equation

£ AB) = ((IeA)-(CT(wNeB)
A—uB 0 0
Y21B A—p2B 0

A—pr 4B 0
1B Yr2B ’Yr(r71)B A—urB

Theorem (Rank Characterization)

Given a pencil A— \B with A, B € C™*" such that m > n and rank(B) = n, a set
S = {\1, ..., \} consisting of distinct complex scalars and r € Z+. Then the following
two statements are equivalent.
k
Q T imAB) =
@ There exists a u € S” such that
rank (L(p, T, A, B)) <nr—r

forallT € G(u).
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Pencils with Specified Eigenvalues

Construction of an Optimal Perturbation

Theorem (Nearest Pencils with Specified Eigenvalues)

Let A— A\B be an m x n pencil withm > n,r € Z* and S = {\y,..., \c} be a
set of distinct complex scalars.
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Pencils with Specified Eigenvalues

Construction of an Optimal Perturbation

Theorem (Nearest Pencils with Specified Eigenvalues)

Let A— A\B be an m x n pencil withm > n,r € Z* and S = {\y,..., \c} be a
set of distinct complex scalars. Then the equality

TI(A7 B?‘S) = #igg, S'F'p Tnr—r+1 (‘C (,LL, rv Av B))

holds provided that the optimization problem on the right is attained at a
(p«, T«) where the multiplicity and linear independence qualifications hold.
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Summary

Summary

@ A generic algorithm is introduced for the optimization of symmetric
eigenvalues based on their analyticity.

@ The algorithm is globally convergent and the rate of convergence is
linear in practice.

@ Software eigopt at http://home.ku.edu.tr/~emengi/software.html

@ A singular value characterization for 7+(A, B, S)

@ Future

@ Improvements on the algorithm for the optimization of eigenvalues
in the multivariate-case

@ A singular value charac for 7,(A, B, S) when both A and B are
perturbed.
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