Math 304 (Spring 2010) - Lecture 15Least Squares - Problem Definition

Emre Mengi Department of Mathematics**Koç University**

emengi@ku.edu.tr

Find the line $\ell(t)=x_1t+x_0$ that best fits the points $p_1,p_2,p_3.$ (The unknowns are $x_0, x_1.$)

• Find the line
$$
\ell(t) = x_1 t + x_0
$$
 so that

$$
\sqrt{\sum_{i=1}^{3} (\ell(t_i) - y_i)^2} = \sqrt{(-2x_1 + x_0 - (-1))^2 + (3x_1 + x_0 - 1)^2 + (4x_1 + x_0 - 3)^2}
$$

is as small as possible.

Find the line
$$
\ell(t) = x_1 t + x_0
$$
 so that

$$
\sqrt{\sum_{i=1}^{3} (\ell(t_i) - y_i)^2} = \sqrt{(-2x_1 + x_0 - (-1))^2 + (3x_1 + x_0 - 1)^2 + (4x_1 + x_0 - 3)^2}
$$

is as small as possible.

$$
r = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} = \begin{bmatrix} \ell(t_1) - y_1 \\ \ell(t_2) - y_2 \\ \ell(t_3) - y_3 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & -2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_0 \\ x_1 \\ x \end{bmatrix}}_{x} - \underbrace{\begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix}}_{b}
$$

Find the line
$$
\ell(t) = x_1 t + x_0
$$
 so that

$$
\sqrt{\sum_{i=1}^{3} (\ell(t_i) - y_i)^2} = \sqrt{(-2x_1 + x_0 - (-1))^2 + (3x_1 + x_0 - 1)^2 + (4x_1 + x_0 - 3)^2}
$$

is as small as possible.

Define $r\,$ = $\sqrt{2}$ $\overline{}$ $r\,$ $\frac{r_1}{r_1}$ $r\,$ $\frac{1}{2}$ $r_3\,$ = $\sqrt{2}$ $\begin{array}{c} \hline \end{array}$ ℓ $\ell($ t ι_1 $\left(\begin{array}{c} 1 \end{array} \right)$ \mathcal{Y} 1 ℓ $\ell($ t ι_2 $\left(\frac{1}{2}\right)$ \mathcal{Y} 2 $\ell(t_3)$ $-y_3$ = $\sqrt{2}$ $\overline{}$ 1−2¹ ³ ¹ ⁴ | $\overline{}$ } $\bm A$ $\sqrt{2}$ $\overline{}$ $\mathcal{X}% =\mathbb{R}^{2}\times\mathbb{R}^{2}$ 0 $\mathcal{X}% =\mathbb{R}^{2}\times\mathbb{R}^{2}$ 1<u>تے ت</u> $\mathcal {x}$ − $\sqrt{2}$ $\begin{array}{c} \hline \end{array}$ −113| $\overline{}$ b

The problem can be posed as

find
$$
x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}
$$
 such that $||r|| = ||Ax - b||$ is as small as possible.

}

More generally given m points in R^2 \bullet

$$
p_i=(t_i,y_i),\quad i=1,\ldots,m
$$

More generally given m points in R^2

$$
p_i=(t_i,y_i),\quad i=1,\ldots,m
$$

Suppose you want to find the polynomial of degree $n -1$ $(n < m)$ in the form

$$
P(t) = x_{n-1}t^{n-1} + x_{n-2}t^{n-2} + \dots + x_1t + x_0
$$

More generally given m points in R^2

$$
p_i=(t_i,y_i),\quad i=1,\ldots,m
$$

Suppose you want to find the polynomial of degree $n -1$ $(n < m)$ in the form

$$
P(t) = x_{n-1}t^{n-1} + x_{n-2}t^{n-2} + \dots + x_1t + x_0
$$

minimizing

$$
\sqrt{\sum_{i=1}^{m} (P(t_i) - y_i)^2}.
$$

<u>Remark:</u> The matrix A above is called the *Vandermonde* matrix.

<u>Remark:</u> The matrix A above is called the *Vandermonde* matrix.

\n- We want to find
$$
x = \begin{bmatrix} x_0 & x_1 & \cdots & x_{n-1} \end{bmatrix}^T
$$
 minimizing $||r|| = ||Ax - b||$.
\n

<u>Definition:</u> An $m \times n$ system $Ax = b$ is called overdetermined if $m > n$.

<u>Definition:</u> An $m \times n$ system $Ax = b$ is called overdetermined if $m > n$.

Overdetermined systems are usually inconsistent. (e.g. It is unlikelythat three lines in R^2 intersect each other at a common point.)

<u>Definition:</u> An $m \times n$ system $Ax = b$ is called overdetermined if $m > n$.

Overdetermined systems are usually inconsistent. (e.g. It is unlikelythat three lines in R^2 intersect each other at a common point.) Example:

$$
[A | b] = \begin{bmatrix} 4 & 1 & 3 \\ 3 & 1 & 1 \\ -2 & 1 & -1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 4 & 1 & 3 \\ 0 & 1/4 & -5/4 \\ 0 & 0 & 8 \end{bmatrix}
$$

inconsistent

Justification:

 $\mathrm{Col}(A)=\mathrm{span}\{a_1,a_2,\ldots,a_n\}$ is at most an n -dimen subspace in \mathbf{R}^m

Justification:

 $\mathrm{Col}(A)=\mathrm{span}\{a_1,a_2,\ldots,a_n\}$ is at most an n -dimen subspace in \mathbf{R}^m

=⇒

Most $b \in \mathbf{R}^m$ are not in $\mathrm{Col}(A)$

Justification:

 $\mathrm{Col}(A)=\mathrm{span}\{a_1,a_2,\ldots,a_n\}$ is at most an n -dimen subspace in \mathbf{R}^m =⇒Most $b \in \mathbf{R}^m$ are not in $\mathrm{Col}(A)$ =⇒ $Ax=b$ is inconsistent for most $b\in\mathbf{R}^m$

Justification:

 $\mathrm{Col}(A)=\mathrm{span}\{a_1,a_2,\ldots,a_n\}$ is at most an n -dimen subspace in \mathbf{R}^m =⇒Most $b \in \mathbf{R}^m$ are not in $\mathrm{Col}(A)$ =⇒ $Ax=b$ is inconsistent for most $b\in\mathbf{R}^m$

Least Squares Problem: Given an overdetermined system $Ax = b$.

Find $x\in\textbf{R}^n$ such that $\|Ax$ $- \left. b \right\|$ is as small as possible.

Least Squares Problem: Given an overdetermined system $Ax = b$.

Find $x\in\textbf{R}^n$ such that $\|Ax$ $- \left. b \right\|$ is as small as possible.

Geometric interpretation: Find the point on the hyperplane $\operatorname{Col}(A)$ that is closest to $b.$

Next Lecture

- Solution of the least squares problem by exploiting the QR \bullet factorization
- Interpolation (Fausett, Chapter 8) \bullet