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Least Squares, Problem Definition

Given p1 = (t1, y1) = (−2,−1), p2 = (t2, y2) = (3, 1), p3 = (t3, y3) = (4, 3).
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Least Squares, Problem Definition

Given p1 = (t1, y1) = (−2,−1), p2 = (t2, y2) = (3, 1), p3 = (t3, y3) = (4, 3).

y = ℓ(t)
(t1, y1)
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(t3, y3)

(t3, ℓ(t3))

r2

r3

r1

y

t

(t1, ℓ(t1))

(t2, ℓ(t2))

Find the line ℓ(t) = x1t + x0 that best fits the points p1, p2, p3. (The
unknowns are x0, x1.)
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Least Squares, Problem Definition

Find the line ℓ(t) = x1t + x0 so that

q

P

3

i=1
(ℓ(ti) − yi)2 =

p

(−2x1 + x0 − (−1))2 + (3x1 + x0 − 1)2 + (4x1 + x0 − 3)2

is as small as possible.
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Least Squares, Problem Definition

Find the line ℓ(t) = x1t + x0 so that
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Least Squares, Problem Definition
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The problem can be posed as

find x =




x0

x1



 such that ‖r‖ = ‖Ax − b‖ is as small as possible.

Lecture 15 – p.3/9



Least Squares, Problem Definition

More generally given m points in R2

pi = (ti, yi), i = 1, . . . , m
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Least Squares, Problem Definition

More generally given m points in R2

pi = (ti, yi), i = 1, . . . , m

Suppose you want to find the polynomial of degree n − 1 (n < m) in
the form

P (t) = xn−1t
n−1 + xn−2t

n−2 + · · · + x1t + x0

Lecture 15 – p.4/9



Least Squares, Problem Definition

More generally given m points in R2

pi = (ti, yi), i = 1, . . . , m

Suppose you want to find the polynomial of degree n − 1 (n < m) in
the form

P (t) = xn−1t
n−1 + xn−2t

n−2 + · · · + x1t + x0

minimizing
√
√
√
√

m∑

i=1

(P (ti) − yi)2.
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Least Squares, Problem Definition

Define
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Remark: The matrix A above is called the Vandermonde matrix.
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Remark: The matrix A above is called the Vandermonde matrix.

We want to find x =
[

x0 x1 · · · xn−1

]T

minimizing

‖r‖ = ‖Ax − b‖.
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Least Squares, Problem Definition

Definition: An m × n system Ax = b is called overdetermined if m > n.
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Least Squares, Problem Definition

Definition: An m × n system Ax = b is called overdetermined if m > n.

Overdetermined systems are usually inconsistent. (e.g. It is unlikely
that three lines in R2 intersect each other at a common point.)
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Least Squares, Problem Definition

Definition: An m × n system Ax = b is called overdetermined if m > n.

Overdetermined systems are usually inconsistent. (e.g. It is unlikely
that three lines in R2 intersect each other at a common point.)
Example:
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Least Squares, Problem Definition

Justification:

Col(A) = span{a1, a2, . . . , an} is at most an n-dimen subspace in Rm
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Least Squares, Problem Definition

Justification:

Col(A) = span{a1, a2, . . . , an} is at most an n-dimen subspace in Rm

=⇒

Most b ∈ Rm are not in Col(A)
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Least Squares, Problem Definition

Justification:

Col(A) = span{a1, a2, . . . , an} is at most an n-dimen subspace in Rm

=⇒

Most b ∈ Rm are not in Col(A)

=⇒

Ax = b is inconsistent for most b ∈ Rm
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Least Squares, Problem Definition

Justification:

Col(A) = span{a1, a2, . . . , an} is at most an n-dimen subspace in Rm

=⇒

Most b ∈ Rm are not in Col(A)

=⇒

Ax = b is inconsistent for most b ∈ Rm
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Least Squares, Problem Definition

Least Squares Problem: Given an overdetermined system Ax = b.

Find x ∈ Rn such that ‖Ax − b‖ is as small as possible.
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Least Squares, Problem Definition

Least Squares Problem: Given an overdetermined system Ax = b.

Find x ∈ Rn such that ‖Ax − b‖ is as small as possible.

Geometric interpretation: Find the point on the hyperplane Col(A)

that is closest to b.

R
3

b

Col(A)
(2-dimensional)
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Next Lecture

Solution of the least squares problem by exploiting the QR
factorization

Interpolation (Fausett, Chapter 8)
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