Math 304 (Spring 2010) - Lecture 10

Computation of Eigenvalues and Eigenvectors

Emre Mengi
Department of Mathematics
Koç University

emengi@ku.edu.tr

Outline

Eigenvalues and Eigenvectors

- Algorithms to compute an extreme eigenvalue (e.g. with largest modulus)
 - Power Iteration (Watkins 5.3, Fausett 5.1)
 - Convergence Properties of Power Iteration (Watkins - 5.3, Fausett - 5.1)
 - Extensions of Power Iteration (Watkins 5.3, Fausett 5.2)

Let $u, v \in \mathbf{C}^n$. (\mathbf{C}^n - the set of complex vectors with n components)

Let $u, v \in \mathbf{C}^n$. (\mathbf{C}^n - the set of complex vectors with n components)

ullet The standard inner (or dot) product of u and v is defined as

$$u^*v = \bar{u}^Tv = \bar{u}_1v_1 + \bar{u}_2v_2 + \dots + \bar{u}_nv_n$$

 \bar{u} : conjugate of u entrywise, u^* : complex conjugate transpose of u

Let $u, v \in \mathbf{C}^n$. (\mathbf{C}^n - the set of complex vectors with n components)

ullet The standard inner (or dot) product of u and v is defined as

$$u^*v = \bar{u}^Tv = \bar{u}_1v_1 + \bar{u}_2v_2 + \dots + \bar{u}_nv_n$$

 \bar{u} : conjugate of u entrywise, u^* : complex conjugate transpose of u

e.g. Let
$$u = \begin{bmatrix} 2+3i \\ 1-2i \end{bmatrix}$$
 , $v = \begin{bmatrix} 1+i \\ -2+i \end{bmatrix}$.

Let $u, v \in \mathbf{C}^n$. (\mathbf{C}^n - the set of complex vectors with n components)

ullet The standard inner (or dot) product of u and v is defined as

$$u^*v = \bar{u}^Tv = \bar{u}_1v_1 + \bar{u}_2v_2 + \dots + \bar{u}_nv_n$$

 \bar{u} : conjugate of u entrywise, u^* : complex conjugate transpose of u

e.g. Let
$$u = \begin{bmatrix} 2+3i \\ 1-2i \end{bmatrix}$$
, $v = \begin{bmatrix} 1+i \\ -2+i \end{bmatrix}$.
$$u^*v = \begin{bmatrix} 2-3i & 1+2i \end{bmatrix} \begin{bmatrix} 1+i \\ -2+i \end{bmatrix} = (2-3i)(1+i) + (1+2i)(-2+i) = 1-4i$$

Let $u, v \in \mathbf{C}^n$. (\mathbf{C}^n - the set of complex vectors with n components)

ullet The standard inner (or dot) product of u and v is defined as

$$u^*v = \bar{u}^Tv = \bar{u}_1v_1 + \bar{u}_2v_2 + \dots + \bar{u}_nv_n$$

 \bar{u} : conjugate of u entrywise, u^* : complex conjugate transpose of u

e.g. Let
$$u = \begin{bmatrix} 2+3i \\ 1-2i \end{bmatrix}$$
, $v = \begin{bmatrix} 1+i \\ -2+i \end{bmatrix}$.
$$u^*v = \begin{bmatrix} 2-3i & 1+2i \end{bmatrix} \begin{bmatrix} 1+i \\ -2+i \end{bmatrix} = (2-3i)(1+i) + (1+2i)(-2+i) = 1-4i$$

ullet The 2-norm (or Euclidean length) of v is defined as

$$||v||_2 = \sqrt{v^*v} = \sqrt{|v_1|^2 + \dots + |v_n|^2}.$$

Let $u, v \in \mathbf{C}^n$. (\mathbf{C}^n - the set of complex vectors with n components)

lacksquare The standard inner (or dot) product of u and v is defined as

$$u^*v = \bar{u}^Tv = \bar{u}_1v_1 + \bar{u}_2v_2 + \dots + \bar{u}_nv_n$$

 \bar{u} : conjugate of u entrywise, u^* : complex conjugate transpose of u

e.g. Let
$$u = \begin{bmatrix} 2+3i \\ 1-2i \end{bmatrix}$$
, $v = \begin{bmatrix} 1+i \\ -2+i \end{bmatrix}$.
$$u^*v = \begin{bmatrix} 2-3i & 1+2i \end{bmatrix} \begin{bmatrix} 1+i \\ -2+i \end{bmatrix} = (2-3i)(1+i) + (1+2i)(-2+i) = 1-4i$$

ullet The 2-norm (or Euclidean length) of v is defined as

$$||v||_2 = \sqrt{v^*v} = \sqrt{|v_1|^2 + \dots + |v_n|^2}.$$

ullet The vector u is said to be orthogonal to v if $u^*v=0$.

• Given a matrix $A \in \mathbb{R}^{n \times n}$ and an initial vector $q_0 \in \mathbb{C}^n$. The power iteration generates the sequence of vectors $\{q_k\}$ satisfying

$$q_k := \frac{Aq_{k-1}}{\|Aq_{k-1}\|}, \quad (k = 1, 2, \dots)$$

• Given a matrix $A \in \mathbb{R}^{n \times n}$ and an initial vector $q_0 \in \mathbb{C}^n$. The power iteration generates the sequence of vectors $\{q_k\}$ satisfying

$$q_k := \frac{Aq_{k-1}}{\|Aq_{k-1}\|}, \quad (k = 1, 2, \dots)$$

lacksquare An explicit formula for the iterate q_k

$$q_1 = \frac{Aq_0}{c_1}$$

Given a matrix $A \in \mathbb{R}^{n \times n}$ and an initial vector $q_0 \in \mathbb{C}^n$. The power iteration generates the sequence of vectors $\{q_k\}$ satisfying

$$q_k := \frac{Aq_{k-1}}{\|Aq_{k-1}\|}, \quad (k = 1, 2, \dots)$$

$$q_1 = \frac{Aq_0}{c_1}, \quad q_2 = \frac{Aq_1}{c_2}$$

• Given a matrix $A \in \mathbb{R}^{n \times n}$ and an initial vector $q_0 \in \mathbb{C}^n$. The power iteration generates the sequence of vectors $\{q_k\}$ satisfying

$$q_k := \frac{Aq_{k-1}}{\|Aq_{k-1}\|}, \quad (k = 1, 2, \dots)$$

$$q_1 = \frac{Aq_0}{c_1}, \quad q_2 = \frac{Aq_1}{c_2} = \frac{A((Aq_0)/c_1)}{c_2}$$

• Given a matrix $A \in \mathbb{R}^{n \times n}$ and an initial vector $q_0 \in \mathbb{C}^n$. The power iteration generates the sequence of vectors $\{q_k\}$ satisfying

$$q_k := \frac{Aq_{k-1}}{\|Aq_{k-1}\|}, \quad (k = 1, 2, \dots)$$

$$q_1 = \frac{Aq_0}{c_1}, \quad q_2 = \frac{Aq_1}{c_2} = \frac{A((Aq_0)/c_1)}{c_2} = \frac{A^2q_0}{c_1c_2},$$

• Given a matrix $A \in \mathbb{R}^{n \times n}$ and an initial vector $q_0 \in \mathbb{C}^n$. The power iteration generates the sequence of vectors $\{q_k\}$ satisfying

$$q_k := \frac{Aq_{k-1}}{\|Aq_{k-1}\|}, \quad (k = 1, 2, \dots)$$

$$q_1 = \frac{Aq_0}{c_1}, \quad q_2 = \frac{Aq_1}{c_2} = \frac{A((Aq_0)/c_1)}{c_2} = \frac{A^2q_0}{c_1c_2}, \quad \dots, \quad q_k = \frac{A^kq_0}{c_1c_2\dots c_k}$$

• Given a matrix $A \in \mathbb{R}^{n \times n}$ and an initial vector $q_0 \in \mathbb{C}^n$. The power iteration generates the sequence of vectors $\{q_k\}$ satisfying

$$q_k := \frac{Aq_{k-1}}{\|Aq_{k-1}\|}, \quad (k = 1, 2, \dots)$$

ullet An explicit formula for the iterate q_k

$$q_1 = \frac{Aq_0}{c_1}, \quad q_2 = \frac{Aq_1}{c_2} = \frac{A((Aq_0)/c_1)}{c_2} = \frac{A^2q_0}{c_1c_2}, \quad \dots, \quad q_k = \frac{A^kq_0}{c_1c_2\dots c_k}$$

Since $||q_k|| = 1$, it follows that $(c_1 c_2 \dots c_k) = ||A^k q_0||$ and we have

$$q_k = \frac{A^k q_0}{\|A^k q_0\|}$$

- ullet Suppose A has n linearly independent vectors
 - the eigenvalues $\lambda_1, \ldots, \lambda_n$ (s.t. $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|$)
 - and the associated eigenvectors v_1, v_2, \ldots, v_n .

- ullet Suppose A has n linearly independent vectors
 - the eigenvalues $\lambda_1, \ldots, \lambda_n$ (s.t. $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|$)
 - and the associated eigenvectors v_1, v_2, \ldots, v_n .
- Since $\{v_1, v_2, \dots, v_n\}$ is linearly independent, it is a basis for \mathbf{C}^n and

$$q_0 = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$$
 for some $c_1, \dots, c_n \in \mathbf{C}$

- ullet Suppose A has n linearly independent vectors
 - the eigenvalues $\lambda_1, \ldots, \lambda_n$ (s.t. $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|$)
 - and the associated eigenvectors v_1, v_2, \ldots, v_n .
- Since $\{v_1, v_2, \dots, v_n\}$ is linearly independent, it is a basis for \mathbf{C}^n and

$$q_0 = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$$
 for some $c_1, \dots, c_n \in \mathbf{C}$

lacktriangle Reconsider the explicit formula for q_k in terms of eigenvectors

$$q_k = \frac{A^k q_0}{\|A^k q_0\|} = \frac{A^k (c_1 v_1 + c_2 v_2 + \dots + c_n v_n)}{\|A^k (c_1 v_1 + c_2 v_2 + \dots + c_n v_n)\|}$$

- ullet Suppose A has n linearly independent vectors
 - the eigenvalues $\lambda_1, \ldots, \lambda_n$ (s.t. $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|$)
 - and the associated eigenvectors v_1, v_2, \ldots, v_n .
- Since $\{v_1, v_2, \dots, v_n\}$ is linearly independent, it is a basis for \mathbf{C}^n and

$$q_0 = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$$
 for some $c_1, \dots, c_n \in \mathbf{C}$

lacktriangle Reconsider the explicit formula for q_k in terms of eigenvectors

$$q_k = \frac{A^k q_0}{\|A^k q_0\|} = \frac{A^k (c_1 v_1 + c_2 v_2 + \dots + c_n v_n)}{\|A^k (c_1 v_1 + c_2 v_2 + \dots + c_n v_n)\|}$$

• Notice that $A^k v_j = \lambda_j^k v_j$ for all j, e.g.

$$A^{2}v_{j} = A(Av_{j}) = A(\lambda_{j}v_{j}) = \lambda_{j}^{2}v_{j}$$

Therefore the explicit formula simplifies as

$$q_k = \frac{c_1 \lambda_1^k v_1 + c_2 \lambda_2^k v_2 + \dots + c_n \lambda_n^k v_n}{\|c_1 \lambda_1^k v_1 + c_2 \lambda_2^k v_2 + \dots + c_n \lambda_n^k v_n\|}$$

Therefore the explicit formula simplifies as

$$q_{k} = \frac{c_{1}\lambda_{1}^{k}v_{1} + c_{2}\lambda_{2}^{k}v_{2} + \dots c_{n}\lambda_{n}^{k}v_{n}}{\|c_{1}\lambda_{1}^{k}v_{1} + c_{2}\lambda_{2}^{k}v_{2} + \dots c_{n}\lambda_{n}^{k}v_{n}\|}$$

$$= \frac{\lambda_{1}^{k}}{|\lambda_{1}^{k}|} \frac{c_{1}v_{1} + c_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k}v_{2} + \dots + c_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k}v_{n}}{\|c_{1}v_{1} + c_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k}v_{2} + \dots + c_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k}v_{n}\|}$$

Therefore the explicit formula simplifies as

$$q_{k} = \frac{c_{1}\lambda_{1}^{k}v_{1} + c_{2}\lambda_{2}^{k}v_{2} + \dots c_{n}\lambda_{n}^{k}v_{n}}{\|c_{1}\lambda_{1}^{k}v_{1} + c_{2}\lambda_{2}^{k}v_{2} + \dots c_{n}\lambda_{n}^{k}v_{n}\|}$$

$$= \frac{\lambda_{1}^{k}}{|\lambda_{1}^{k}|} \frac{c_{1}v_{1} + c_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k}v_{2} + \dots + c_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k}v_{n}}{\|c_{1}v_{1} + c_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k}v_{2} + \dots + c_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k}v_{n}\|}$$

• As $k \to \infty$ the terms $\left(\frac{\lambda_2}{\lambda_1}\right)^k, \ldots, \left(\frac{\lambda_n}{\lambda_1}\right)^k$ approach zero implying

Therefore the explicit formula simplifies as

$$q_{k} = \frac{c_{1}\lambda_{1}^{k}v_{1} + c_{2}\lambda_{2}^{k}v_{2} + \dots c_{n}\lambda_{n}^{k}v_{n}}{\|c_{1}\lambda_{1}^{k}v_{1} + c_{2}\lambda_{2}^{k}v_{2} + \dots c_{n}\lambda_{n}^{k}v_{n}\|}$$

$$= \frac{\lambda_{1}^{k}}{|\lambda_{1}^{k}|} \frac{c_{1}v_{1} + c_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k}v_{2} + \dots + c_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k}v_{n}}{\|c_{1}v_{1} + c_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k}v_{2} + \dots + c_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k}v_{n}\|}$$

• As $k \to \infty$ the terms $\left(\frac{\lambda_2}{\lambda_1}\right)^k, \ldots, \left(\frac{\lambda_n}{\lambda_1}\right)^k$ approach zero implying

$$\hat{v} := \lim_{k \to \infty} q_k = d \frac{c_1 v_1}{\|c_1 v_1\|}$$
 where $d = \lim_{k \to \infty} \frac{\lambda_1^k}{|\lambda_1^k|} (|d| = 1)$

Therefore the explicit formula simplifies as

$$q_{k} = \frac{c_{1}\lambda_{1}^{k}v_{1} + c_{2}\lambda_{2}^{k}v_{2} + \dots c_{n}\lambda_{n}^{k}v_{n}}{\|c_{1}\lambda_{1}^{k}v_{1} + c_{2}\lambda_{2}^{k}v_{2} + \dots c_{n}\lambda_{n}^{k}v_{n}\|}$$

$$= \frac{\lambda_{1}^{k}}{|\lambda_{1}^{k}|} \frac{c_{1}v_{1} + c_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k}v_{2} + \dots + c_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k}v_{n}}{\|c_{1}v_{1} + c_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k}v_{2} + \dots + c_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k}v_{n}\|}$$

• As $k \to \infty$ the terms $\left(\frac{\lambda_2}{\lambda_1}\right)^k, \ldots, \left(\frac{\lambda_n}{\lambda_1}\right)^k$ approach zero implying

$$\hat{v} := \lim_{k \to \infty} q_k = d \frac{c_1 v_1}{\|c_1 v_1\|}$$
 where $d = \lim_{k \to \infty} \frac{\lambda_1^k}{|\lambda_1^k|} (|d| = 1)$

• Assuming $c_1 \neq 0$ as $k \to \infty$ the sequence $\{q_k\}$ approaches an eigenvector associated with the eigenvalue with largest modulus.

Summary

Summary

Convergence to dominant eigenvector:

The sequence $\{q_k\}$ generated by the power iteration approaches a unit eigenvector \hat{v} associated with the eigenvalue λ_1 with largest modulus (under reasonable assumptions).

Summary

Convergence to dominant eigenvector:

The sequence $\{q_k\}$ generated by the power iteration approaches a unit eigenvector \hat{v} associated with the eigenvalue λ_1 with largest modulus (under reasonable assumptions).

Retrieval of dominant eigenvalue:

Notice that
$$\hat{v}^*A\hat{v} = \hat{v}^*\lambda_1\hat{v} = \lambda_1\|\hat{v}\|^2 = \lambda_1$$
.

<u>Pseudocode</u>

Given $A \in \mathbf{C}^{n \times n}$ and $q_0 \in \mathbf{C}^n$ s.t. $||q_0|| = 1$. $\quad \text{for } k=1,m \text{ do}$ $q_k \leftarrow Aq_{k-1}$ $q_k \leftarrow q_k / \|q_k\|$

end for

 $v \leftarrow q_m$ $\lambda \leftarrow q_m^* A q_m$

Return (λ, v)

Rate of Convergence : Suppose $\lim_{k\to\infty}v_k=\hat{v}$.

Rate of Convergence : Suppose $\lim_{k\to\infty}v_k=\hat{v}$.

lacksquare Linear convergence : for some positive constant c < 1

$$\lim_{k \to \infty} \frac{\|v_{k+1} - \hat{v}\|}{\|v_k - \hat{v}\|} = c$$

Rate of Convergence : Suppose $\lim_{k\to\infty}v_k=\hat{v}$.

• Linear convergence : for some positive constant c < 1

$$\lim_{k \to \infty} \frac{\|v_{k+1} - \hat{v}\|}{\|v_k - \hat{v}\|} = c$$

e.g. $\{10^{-k}\}=\{0.1,0.01,0.001,\dots\}$ converges to 0 linearly.

Rate of Convergence : Suppose $\lim_{k\to\infty}v_k=\hat{v}$.

ightharpoonup Linear convergence : for some positive constant c < 1

$$\lim_{k \to \infty} \frac{\|v_{k+1} - \hat{v}\|}{\|v_k - \hat{v}\|} = c$$

e.g. $\{10^{-k}\}=\{0.1,0.01,0.001,\dots\}$ converges to 0 linearly.

$$\frac{10^{-(k+1)}-0}{10^{-k}-0}=0.1$$

Rate of Convergence : Suppose $\lim_{k\to\infty}v_k=\hat{v}$.

lacksquare Linear convergence : for some positive constant c < 1

$$\lim_{k \to \infty} \frac{\|v_{k+1} - \hat{v}\|}{\|v_k - \hat{v}\|} = c$$

e.g. $\{10^{-k}\} = \{0.1, 0.01, 0.001, \dots\}$ converges to 0 linearly.

$$\frac{10^{-(k+1)}-0}{10^{-k}-0} = 0.1$$

lacksquare Quadratic convergence : for some positive constant c

$$\lim_{k \to \infty} \frac{\|v_{k+1} - \hat{v}\|}{\|v_k - \hat{v}\|^2} = c.$$

Rate of Convergence : Suppose $\lim_{k\to\infty}v_k=\hat{v}$.

lacksquare Linear convergence : for some positive constant c < 1

$$\lim_{k \to \infty} \frac{\|v_{k+1} - \hat{v}\|}{\|v_k - \hat{v}\|} = c$$

e.g. $\{10^{-k}\} = \{0.1, 0.01, 0.001, \dots\}$ converges to 0 linearly.

$$\frac{10^{-(k+1)}-0}{10^{-k}-0} = 0.1$$

lacksquare Quadratic convergence : for some positive constant c

$$\lim_{k \to \infty} \frac{\|v_{k+1} - \hat{v}\|}{\|v_k - \hat{v}\|^2} = c.$$

e.g. $\{10^{-2^k}\}=\{10^{-2},10^{-4},10^{-8},10^{-16},\dots\}$ converges to 0 quadratically.

Rate of Convergence : Suppose $\lim_{k\to\infty}v_k=\hat{v}$.

lacksquare Linear convergence : for some positive constant c < 1

$$\lim_{k \to \infty} \frac{\|v_{k+1} - \hat{v}\|}{\|v_k - \hat{v}\|} = c$$

e.g. $\{10^{-k}\} = \{0.1, 0.01, 0.001, \dots\}$ converges to 0 linearly.

$$\frac{10^{-(k+1)}-0}{10^{-k}-0} = 0.1$$

lacksquare Quadratic convergence : for some positive constant c

$$\lim_{k \to \infty} \frac{\|v_{k+1} - \hat{v}\|}{\|v_k - \hat{v}\|^2} = c.$$

e.g. $\{10^{-2^k}\}=\{10^{-2},10^{-4},10^{-8},10^{-16},\dots\}$ converges to 0 quadratically.

$$\frac{10^{-2^{k+1}} - 0}{(10^{-2^k} - 0)^2} = \frac{10^{-2^{k+1}}}{10^{-2^k} 10^{-2^k}} = \frac{10^{-2^{k+1}}}{10^{-2^{k+1}}} = 1$$

Rate of Convergence: It can be shown that for some constant c

$$\lim_{k \to \infty} \frac{\|\hat{v} - q_{k+1}\|}{\|\hat{v} - q_k\|} = c \left| \frac{\lambda_2}{\lambda_1} \right|$$

Rate of Convergence: It can be shown that for some constant c

$$\lim_{k \to \infty} \frac{\|\hat{v} - q_{k+1}\|}{\|\hat{v} - q_k\|} = c \left| \frac{\lambda_2}{\lambda_1} \right|$$

- When it is convergent, the power iteration converges only linearly.
- The closer the moduli of the eigenvalues λ_2 and λ_1 are, the slower the convergence is.

Rate of Convergence: It can be shown that for some constant c

$$\lim_{k \to \infty} \frac{\|\hat{v} - q_{k+1}\|}{\|\hat{v} - q_k\|} = c \left| \frac{\lambda_2}{\lambda_1} \right|$$

- When it is convergent, the power iteration converges only linearly.
- The closer the moduli of the eigenvalues λ_2 and λ_1 are, the slower the convergence is.
- Dominant Eigenvalue:

ullet Rate of Convergence: It can be shown that for some constant c

$$\lim_{k \to \infty} \frac{\|\hat{v} - q_{k+1}\|}{\|\hat{v} - q_k\|} = c \left| \frac{\lambda_2}{\lambda_1} \right|$$

- When it is convergent, the power iteration converges only linearly.
- The closer the moduli of the eigenvalues λ_2 and λ_1 are, the slower the convergence is.
- Dominant Eigenvalue: The eigenvalue with largest modulus is given by $q(\hat{v})$ where

$$r(x) = \frac{x^* A x}{x^* x}$$

is called the *Rayleigh quotient* of $x \in \mathbb{C}^n$.

ullet Rate of Convergence: It can be shown that for some constant c

$$\lim_{k \to \infty} \frac{\|\hat{v} - q_{k+1}\|}{\|\hat{v} - q_k\|} = c \left| \frac{\lambda_2}{\lambda_1} \right|$$

- When it is convergent, the power iteration converges only linearly.
- The closer the moduli of the eigenvalues λ_2 and λ_1 are, the slower the convergence is.
- Dominant Eigenvalue: The eigenvalue with largest modulus is given by $q(\hat{v})$ where

$$r(x) = \frac{x^* A x}{x^* x}$$

is called the *Rayleigh quotient* of $x \in \mathbb{C}^n$.

• Note that
$$r(\hat{v}) = \frac{\hat{v}^* A \hat{v}}{\hat{v}^* \hat{v}} = \frac{\hat{v}^* \lambda_1 \hat{v}}{\hat{v}^* \hat{v}} = \lambda_1$$

▶ Power iteration suffers from slow convergence, when $|\lambda_1| \approx |\lambda_2|$.

- **▶** Power iteration suffers from slow convergence, when $|\lambda_1| \approx |\lambda_2|$.
- A key observation to speed-up power iteration

$$Av = \lambda v \iff Av - \mu v = \lambda v - \mu v$$

- **▶** Power iteration suffers from slow convergence, when $|\lambda_1| \approx |\lambda_2|$.
- A key observation to speed-up power iteration

$$Av = \lambda v \iff Av - \mu v = \lambda v - \mu v$$

 $\iff (A - \mu I)v = (\lambda - \mu)v$

- ▶ Power iteration suffers from slow convergence, when $|\lambda_1| \approx |\lambda_2|$.
- A key observation to speed-up power iteration

$$Av = \lambda v \iff Av - \mu v = \lambda v - \mu v$$

$$\iff (A - \mu I)v = (\lambda - \mu)v$$

$$\iff (\lambda - \mu)^{-1}v = (A - \mu I)^{-1}v$$

- **▶** Power iteration suffers from slow convergence, when $|\lambda_1| \approx |\lambda_2|$.
- A key observation to speed-up power iteration

$$Av = \lambda v \iff Av - \mu v = \lambda v - \mu v$$

$$\iff (A - \mu I)v = (\lambda - \mu)v$$

$$\iff (\lambda - \mu)^{-1}v = (A - \mu I)^{-1}v$$

- **▶** Power iteration suffers from slow convergence, when $|\lambda_1| \approx |\lambda_2|$.
- A key observation to speed-up power iteration

$$Av = \lambda v \iff Av - \mu v = \lambda v - \mu v$$

$$\iff (A - \mu I)v = (\lambda - \mu)v$$

$$\iff (\lambda - \mu)^{-1}v = (A - \mu I)^{-1}v$$

 (λ,v) is an eigenpair of $A\Longleftrightarrow ((\lambda-\mu)^{-1},v)$ is an eigenpair of $(A-\mu I)^{-1}$

• Suppose σ is a good estimate of an eigenvalue λ_l .

- **▶** Power iteration suffers from slow convergence, when $|\lambda_1| \approx |\lambda_2|$.
- A key observation to speed-up power iteration

$$Av = \lambda v \iff Av - \mu v = \lambda v - \mu v$$

$$\iff (A - \mu I)v = (\lambda - \mu)v$$

$$\iff (\lambda - \mu)^{-1}v = (A - \mu I)^{-1}v$$

- **Suppose** σ is a good estimate of an eigenvalue λ_l .
 - That is $\frac{1}{|\lambda_l \sigma|} \gg \frac{1}{|\lambda_j \sigma|}$ for all $j \neq l$.

- **▶** Power iteration suffers from slow convergence, when $|\lambda_1| \approx |\lambda_2|$.
- A key observation to speed-up power iteration

$$Av = \lambda v \iff Av - \mu v = \lambda v - \mu v$$

$$\iff (A - \mu I)v = (\lambda - \mu)v$$

$$\iff (\lambda - \mu)^{-1}v = (A - \mu I)^{-1}v$$

- **Suppose** σ is a good estimate of an eigenvalue λ_l .
 - That is $\frac{1}{|\lambda_l \sigma|} \gg \frac{1}{|\lambda_j \sigma|}$ for all $j \neq l$.
 - The eigenvalues of $(A-\sigma I)^{-1}$ are $\frac{1}{\lambda_1-\sigma}, \frac{1}{\lambda_2-\sigma}, \ldots, \frac{1}{\lambda_n-\sigma}$

- **▶** Power iteration suffers from slow convergence, when $|\lambda_1| \approx |\lambda_2|$.
- A key observation to speed-up power iteration

$$Av = \lambda v \iff Av - \mu v = \lambda v - \mu v$$

$$\iff (A - \mu I)v = (\lambda - \mu)v$$

$$\iff (\lambda - \mu)^{-1}v = (A - \mu I)^{-1}v$$

- **Suppose** σ is a good estimate of an eigenvalue λ_l .
 - That is $\frac{1}{|\lambda_l \sigma|} \gg \frac{1}{|\lambda_j \sigma|}$ for all $j \neq l$.
 - The eigenvalues of $(A-\sigma I)^{-1}$ are $\frac{1}{\lambda_1-\sigma}, \frac{1}{\lambda_2-\sigma}, \ldots, \frac{1}{\lambda_n-\sigma}$
 - Power iteration applied to $(A \sigma I)^{-1}$ must converge to v_l (associated with the eigenvalue $\frac{1}{|\lambda_l \sigma|}$) quickly.

ullet Rate of Convergence: Let λ_j be the eigenvalue second closest to σ .

$$\lim_{k \to \infty} \frac{\|\hat{v} - q_{k+1}\|}{\|\hat{v} - q_k\|} = c \left| \frac{1/(\lambda_j - \sigma)}{1/(\lambda_l - \sigma)} \right| = c \left| \frac{\lambda_l - \sigma}{\lambda_j - \sigma} \right|$$

Parish Rate of Convergence: Let λ_j be the eigenvalue second closest to σ .

$$\lim_{k \to \infty} \frac{\|\hat{v} - q_{k+1}\|}{\|\hat{v} - q_k\|} = c \left| \frac{1/(\lambda_j - \sigma)}{1/(\lambda_l - \sigma)} \right| = c \left| \frac{\lambda_l - \sigma}{\lambda_j - \sigma} \right|$$

Inverse iteration requires the product $(A - \sigma I)^{-1}q_k$, equivalently the solution of the linear system $(A - \sigma I)x = q_k$, at each iteration.

ullet Rate of Convergence: Let λ_j be the eigenvalue second closest to σ .

$$\lim_{k \to \infty} \frac{\|\hat{v} - q_{k+1}\|}{\|\hat{v} - q_k\|} = c \left| \frac{1/(\lambda_j - \sigma)}{1/(\lambda_l - \sigma)} \right| = c \left| \frac{\lambda_l - \sigma}{\lambda_j - \sigma} \right|$$

- Inverse iteration requires the product $(A \sigma I)^{-1}q_k$, equivalently the solution of the linear system $(A \sigma I)x = q_k$, at each iteration.
 - In practice an LU factorization of $(A \sigma I)$ is computed initially (at a cost of $2n^3/3$).

ullet Rate of Convergence: Let λ_j be the eigenvalue second closest to σ .

$$\lim_{k \to \infty} \frac{\|\hat{v} - q_{k+1}\|}{\|\hat{v} - q_k\|} = c \left| \frac{1/(\lambda_j - \sigma)}{1/(\lambda_l - \sigma)} \right| = c \left| \frac{\lambda_l - \sigma}{\lambda_j - \sigma} \right|$$

- Inverse iteration requires the product $(A \sigma I)^{-1}q_k$, equivalently the solution of the linear system $(A \sigma I)x = q_k$, at each iteration.
 - In practice an LU factorization of $(A \sigma I)$ is computed initially (at a cost of $2n^3/3$).
 - At each iteration the system

$$(A - \sigma I)x = LUx = q_i$$

is solved by forward and back substitutions (at a cost of $O(n^2)$).

<u>Pseudocode</u>

Given $A \in \mathbf{C}^{n \times n}$, $q_0 \in \mathbf{C}^n$ s.t. $||q_0|| = 1$ and $\sigma \in \mathbf{C}$.

Compute an LU factorization of $(A - \sigma I)$

for
$$k=1,m$$
 do

Solve $L\hat{x} = q_{k-1}$ by forward substitution.

Solve $Ux = \hat{x}$ by back substitution.

$$q_k \leftarrow x/\|x\|$$

end for

$$v \leftarrow q_m$$

$$\lambda \leftarrow q_m^* A q_m$$

Return (λ, v)

ullet Rayleigh iteration is similar to the inverse iteration with the exception that the shifts σ are set to the Rayleigh quotient at every iteration, *i.e.*

$$q_k := \frac{(A - \sigma_{k-1}I)^{-1}q_{k-1}}{\|(A - \sigma_{k-1}I)^{-1}q_{k-1}\|} \quad \text{where } \sigma_{k-1} := r(q_{k-1}) = \frac{q_{k-1}^*Aq_{k-1}}{q_{k-1}^*q_{k-1}}$$

Payleigh iteration is similar to the inverse iteration with the exception that the shifts σ are set to the Rayleigh quotient at every iteration, *i.e.*

$$q_k := \frac{(A - \sigma_{k-1}I)^{-1}q_{k-1}}{\|(A - \sigma_{k-1}I)^{-1}q_{k-1}\|}$$
 where $\sigma_{k-1} := r(q_{k-1}) = \frac{q_{k-1}^*Aq_{k-1}}{q_{k-1}^*q_{k-1}}$

■ Upside: Rayleigh iteration usually converges to an eigenvector v_l associated with an eigenvalue λ_l very quickly.

Payleigh iteration is similar to the inverse iteration with the exception that the shifts σ are set to the Rayleigh quotient at every iteration, *i.e.*

$$q_k := \frac{(A - \sigma_{k-1}I)^{-1}q_{k-1}}{\|(A - \sigma_{k-1}I)^{-1}q_{k-1}\|}$$
 where $\sigma_{k-1} := r(q_{k-1}) = \frac{q_{k-1}^*Aq_{k-1}}{q_{k-1}^*q_{k-1}}$

- Upside: Rayleigh iteration usually converges to an eigenvector v_l associated with an eigenvalue λ_l very quickly.
 - The quick convergence is due to the fact that $r(q_k)$ becomes an increasingly better estimate of $r(v_l) = \lambda_l$ as q_k approaches v_l .

■ Rate of Convergence: Suppose $\lim_{k\to\infty} q_k = \hat{v}$. Then

$$\lim_{k \to \infty} \frac{\|\hat{v} - q_{k+1}\|}{\|\hat{v} - q_k\|^2} = c$$

Rate of convergence is quadratic.

▶ Rate of Convergence: Suppose $\lim_{k\to\infty} q_k = \hat{v}$. Then

$$\lim_{k \to \infty} \frac{\|\hat{v} - q_{k+1}\|}{\|\hat{v} - q_k\|^2} = c$$

Rate of convergence is quadratic.

- **●** <u>Downside:</u> At each iteration an LU factorization of $(A \sigma_k I)$ needs to be computed from scratch to solve $(A \sigma_k I)x = q_k$ for x.
 - Each iteration costs $\frac{2n^3}{3}$ flops.

<u>Pseudocode</u>

Given $A \in \mathbf{C}^{n \times n}$ and $q_0 \in \mathbf{C}^n$ s.t. $||q_0|| = 1$.

for k=1,m do

$$\sigma_{k-1} \leftarrow q_{k-1}^* A q_{k-1}$$

Compute an LU factorization of $(A - \sigma_{k-1}I)$

Solve $L\hat{x} = q_{k-1}$ by forward substitution.

Solve $Ux = \hat{x}$ by back substitution.

$$q_k \leftarrow x/\|x\|$$

end for

$$v \leftarrow q_m$$

$$\lambda \leftarrow q_m^* A q_m$$

Return (λ, v)

Next Lecture

The QR Algorithm (Fausett - 5.3, Watkins - 5.6)