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Eigenvalues and Eigenvectors

® Algorithms to compute an extreme eigenvalue
(e.g. with largest modulus)

» Power lteration (Watkins - 5.3, Fausett - 5.1)

» Convergence Properties of Power Iteration
(Watkins - 5.3, Fausett - 5.1)

» Extensions of Power Iteration (Watkins - 5.3, Fausett 5.2)
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Complex Vectors

L N

etu,v € C". (C" - the set of complex vectors with n components)
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Complex Vectors

L

® The standard inner (or dot) product of « and v is defined as

-

etu,v € C". (C" - the set of complex vectors with n components)

* T

UV =U UV =1UV1 +ugva + -+ unpv,

u . conjugate of v entrywise, u* : complex conjugate transpose of u
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o

etu,v € C". (C" - the set of complex vectors with n components)

Complex Vectors

-

The standard inner (or dot) product of » and v is defined as

* T

UV =U UV =1UV1 +ugva + -+ unpv,

u . conjugate of v entrywise, u* : complex conjugate transpose of u

2+ 31 141
e.g. Letu = ,U = :
[127;] [2+z’]

|
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Complex Vectors

L N

® The standard inner (or dot) product of « and v is defined as

etu,v € C". (C" - the set of complex vectors with n components)

* T

UV =U UV =1UV1 +ugva + -+ unpv,

u . conjugate of v entrywise, u* : complex conjugate transpose of u
2+ 3i 1+
e.g. Letu = ,U = :
[ 1 — 2 ] [ —2+1 ]
1+

Wty = [ 2-3i 1+2i ] [ o = (2-3)(1+i)+ (1 +2)(—2+4) =1 —4i

o |
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Complex Vectors

L N

® The standard inner (or dot) product of « and v is defined as

etu,v € C". (C" - the set of complex vectors with n components)

* T

UV =U UV =1UV1 +ugva + -+ unpv,

u . conjugate of v entrywise, u* : complex conjugate transpose of u

2+ 31 141
e.g. Letu = ,U = :

1— 22 —2+1
141

. ] =(2-3)(1+i)+ (1+2i)(—2+1i) =1—4i
—2 41

utv = [ 2—-31 14+ 27 ] [

® The 2-norm (or Euclidean length) of v is defined as

[vll2 = Vvro = V]oi | + - + Jon]?.
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Complex Vectors

L N

® The standard inner (or dot) product of « and v is defined as

etu,v € C". (C" - the set of complex vectors with n components)

* T

UV =U UV =1UV1 +ugva + -+ unpv,

u . conjugate of v entrywise, u* : complex conjugate transpose of u

2+ 31 141
e.g. Letu = ,U = :

1— 22 —2+1
141

. ] =(2-3)(1+i)+ (1+2i)(—2+1i) =1—4i
—2 41

utv = [ 2—-31 14+ 27 ] [

® The 2-norm (or Euclidean length) of v is defined as
lvllz = Vorv = /|2 + -+ [on 2.

\_ ® The vector u Is said to be orthogonal to v if u*v = 0. J

Lecture 10 — p.3/17



Power |teration

- -

® Given a matrix A € and an initial vector go € C". The power
iteration generates the sequence of vectors {q; } satisfying
Aqr—1

qr = : k=1,2,...
Mgl )

o |
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Power |teration

- -

® Given a matrix A € and an initial vector go € C". The power
iteration generates the sequence of vectors {q; } satisfying

Aqr—1
i - — , (k:1,2,...)
| Agr—1]]
® An explicit formula for the iterate g
. Aqo
q1 = ——
C1
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Power |teration

- -

® Given a matrix A € and an initial vector go € C". The power
iteration generates the sequence of vectors {q; } satisfying

Aqr—1
i - — , (k:1,2,...)
| Agr—1]]
® An explicit formula for the iterate g
. Aqo . Aq
q = —, 2 = ——
C1 C2
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Power |teration

B N

® Given a matrix A € and an initial vector go € C". The power
iteration generates the sequence of vectors {q; } satisfying
Aqr—1

qr = : k=1,2,...
Mgl )

® An explicit formula for the iterate g

_ Ago A A((Ago)/c1)

qdi y (2 = =
C1 C2 C2
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Power |teration

-

® Given a matrix A €¢ R"*™ and an initial vector gy € C". The power
iteration generates the sequence of vectors {q; } satisfying
Aqr—1

qr = : k=1,2,...
Mgl )

® An explicit formula for the iterate g
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Power |teration

-

® Given a matrix A €¢ R"*™ and an initial vector gy € C". The power
iteration generates the sequence of vectors {q; } satisfying

Aqr—1
i - — , (k:1,2,...)
| Ag—1
® An explicit formula for the iterate g
o Aqo B Aq B A((AQO)/Cl) B A2Qo B Aon
qr — ——, (42 = — — y ey (k=
C1 () C9 C1Co C1C2 ...Ck
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Power |teration

Given a matrix A € R"*" and an initial vector ¢, € C". The power
iteration generates the sequence of vectors {q; } satisfying

Aqr—1
i - — , (k:1,2,...)
| Ag—1
An explicit formula for the iterate g
o Aqo B Aq B A((AQO)/Cl) B A2Qo B Aon
qr — ——, (42 = — — y ey (k=
C1 () C9 C1Co C1C2 ...Ck

Since ||qx|| = 1, it follows that (cics ... ci) = ||A*qo|| and we have

_ Aon
| A*qo|

qk

|
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Power |teration
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® Suppose A has n linearly independent vectors
o theeigenvalues Aq,..., A\, (St [Aq] > | A2 > [A3| > - > | An))
o and the associated eigenvectors vy, va, ..., vy,.
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Power |teration
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® Suppose A has n linearly independent vectors
o theeigenvalues Aq,..., A\, (St [Aq] > | A2 > [A3| > - > | An))
o and the associated eigenvectors vy, va, ..., vy,.

® Since {vy,v9,...,v,} is linearly independent, it is a basis for C" and

o = C1U1 + CoU2 + - - - + cpUp for some ¢1,...,¢c, € C
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Power |teration
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® Suppose A has n linearly independent vectors
o theeigenvalues Aq,..., A\, (St [Aq] > | A2 > [A3| > - > | An))
o and the associated eigenvectors vy, va, ..., vy,.

® Since {vy,v9,...,v,} is linearly independent, it is a basis for C" and

o = C1U1 + CoU2 + - - - + cpUp for some ¢1,...,¢c, € C

® Reconsider the explicit formula for ¢, in terms of eigenvectors

. A*qo AR (civy + covo + -+ cpvp)
k p— p—
[Akqol] || AR (c1v1 + cova + - - 4 cpvy)||
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Power |teration

-

Suppose A has n linearly independent vectors
o theeigenvalues Aq,..., A\, (St [Aq] > | A2 > [A3| > - > | An))
o and the associated eigenvectors vy, va, ..., vy,.

Since {v1,v9,...,v,} is linearly independent, it is a basis for C" and

o = C1U1 + CoU2 + - - - + cpUp for some ¢1,...,¢c, € C

Reconsider the explicit formula for ¢, In terms of eigenvectors

. A*qo AR (civy + covo + -+ cpvp)
k p— p—
[Akqol] || AR (c1v1 + cova + - - 4 cpvy)||

Notice that A*v; = X¥v; for all 4, e.g.
A2’Uj = A(A’Uj) = A()\j’l}j) = )\?’Uj J
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Power |teration

-

® Therefore the explicit formula simplifies as

o Cl>\1{:U1+C2>\§U2+"'+C7’L>\fLU7’L
% = Jerxkvitearbvattenrbv,]]
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Power |teration
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® Therefore the explicit formula simplifies as

k k k
C1ATV1I+C2A5V2+...Cn A, Un

U = Yo rFvitearkvat..cnrev,]]
Ao k An &
B A]f Clvl+c2(x) ’UQ‘*’---—*—Cn(W) Un
I A2 X

C1v1+C2 (—1) kvg—i-'“—l—cn (A—") k”Un

[y
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Power |teration

Therefore the explicit formula simplifies as

k k k
C1ATV1I+C2A5V2+...Cn A, Un

Qe = ||cl)\val—l—CQ)\gvg—l—...in)\’van|| )
)Jlf 01U1+C2(i—f) vg—l—---—l—cn(i‘\—?) Un

R )\k k k
| AT Cl'Ul—i_CQ()\—?) 1)2_|_..._|_Cn(>>\\_rlb) v,

k k _ _
As k — oo the terms (ﬁ) e (—) approach zero implying

1

|
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Power |teration

-

® Therefore the explicit formula simplifies as

k k k
C1ATV1I+C2A5V2+...Cn A, Un

qk — ||C1)\]fvl—*—CQ)\gUQ—i—...in)\’fL’Un|| .
B )Jlﬂ 01U1+C2(i—f) UQ—I----—I-Cn())\\—TlL) Un
AT 01711—1-02(A—f)kw—i—-“—i-cn(i—?)kvn
k k _ _
® Ask — oo the terms (i—j) e (A—T> approach zero implying
A : C101 A
v:= lim g =d where d = lim —= (|d| =1
k— oo HCl’UlH k— o0 |)\]f‘ (| | )

|
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Power |teration

Therefore the explicit formula simplifies as

k k k
C1ATV1I+C2A5V2+...Cn A, Un

&% = lenAfviteaAfvat..cnAfvn .
)\Ils 011)1—1—02(?—?) U2+"'+Cn(>>\\_1) Un

— \F 2 k
[AT] c1v1+02(i—f) 02+"'+Cn(>\_7f) Un

k k
As k — oo the terms (i—j) e (A—T) approach zero implying
A : C101 A
v := lim =d where d = llm —— (|d| =1
Assuming ¢; # 0 as k — oo the sequence {q;} approaches an

eigenvector associated with the eigenvalue with largest modulus.

|
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Power |teration

-

Summary




Power |teration

- N

Summary

® Convergence to dominant eigenvector:
The sequence {q;} generated by the power iteration approaches a
unit eigenvector v associated with the eigenvalue \; with largest
modulus (under reasonable assumptions).

o |
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Power |teration

- N

Summary

® Convergence to dominant eigenvector:
The sequence {q;} generated by the power iteration approaches a
unit eigenvector v associated with the eigenvalue \; with largest
modulus (under reasonable assumptions).

® Retrieval of dominant eigenvalue:
Notice that D*AD = D* N0 = M [|9]|* = M.

o |
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Power |teration

- N

Pseudocode
Given A € C"*" and ¢y € C" s.t. ||qo|| = 1.
fork=1,mdo
qr < Aqr_1

i < Qk/HQkH
end for

U< dm
A Gr Agm
Return (A, v)

o |
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Power |teration

Rate of Convergence : Suppose limy,_, o, v = .
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Power |teration

Rate of Convergence : Suppose limy,_, o, v = .

® Linear convergence : for some positive constant ¢ < 1

N

k—oo |lug — 0

C

o |
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Power |teration

Rate of Convergence : Suppose limy,_, o, v = .

® Linear convergence : for some positive constant ¢ < 1

N

k—oo |lug — 0

C

e.g. {10~%} = {0.1,0.01,0.001, ... } converges to O linearly.

o |
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Power |teration

Rate of Convergence : Suppose limy,_, o, v = .

® Linear convergence : for some positive constant ¢ < 1

N

k—oo |lug — 0

C

e.g. {10~%} = {0.1,0.01,0.001, ... } converges to O linearly.

10~ (k+1) _g
10—k—0

= 0.1

o |
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Power |teration

Rate of Convergence : Suppose limy,_, o, v = .

® Linear convergence : for some positive constant ¢ < 1

N

k—oo |lug — 0

C

e.g. {10~%} = {0.1,0.01,0.001, ... } converges to O linearly.

10—(k+1) —0

oFo Ol

® Quadratic convergence : for some positive constant ¢

vV —
[

lim
k—oo |lug — 9|2

o |
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Power |teration

Rate of Convergence : Suppose limy,_, o, v = .

® Linear convergence : for some positive constant ¢ < 1

N

k—oo |lug — 0

C

e.g. {10~%} = {0.1,0.01,0.001, ... } converges to O linearly.

10—(k+1) —0

oFo Ol

® Quadratic convergence : for some positive constant ¢

vV —
[

lim
k—oo |lug — 9|2

e.g. {10-2"} = {10-2,104,10~8,10~16, ... } converges to 0 quadratically.

o

|
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Power |teration

Rate of Convergence : Suppose limy,_, o, v = .

® Linear convergence : for some positive constant ¢ < 1

i |lve+1 — || _

k—oo |lug — 0

e.g. {10~%} = {0.1,0.01,0.001, ... } converges to O linearly.

10—(k+1) —0

oFo Ol

® Quadratic convergence : for some positive constant ¢

v —
[

lim
k—oo |lvug — 02

e.g. {10-2"} = {10-2,104,10~8,10~16, ... } converges to 0 quadratically.
10-2""! o 102" o—2°1!

_ 1 —1
(10—2% —0)2  10—2F10—2F = 1p—2kT!

|
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Power |teration
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® Rate of Convergence: It can be shown that for some constant ¢

) — A
lim HfUA i1 _ |22
k—oo |0 — qr|| A1

o |
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Power |teration
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® Rate of Convergence: It can be shown that for some constant ¢

) — A
lim HUA i1 _ |22
k—oo |0 — qr|| A1

# When it is convergent, the power iteration converges only linearly.

» The closer the moduli of the eigenvalues )\, and A\, are, the
slower the convergence is.

o |
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Power |teration

-

Rate of Convergence: It can be shown that for some constant ¢

) — A
lim HUA i1 _ |22
k—oo |0 — qr|| A1

# When it is convergent, the power iteration converges only linearly.

» The closer the moduli of the eigenvalues )\, and A\, are, the
slower the convergence is.

Dominant Eigenvalue:

|
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Power |teration
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® Rate of Convergence: It can be shown that for some constant ¢

) — A
lim HUA i1 _ |22
k—oo |0 — qr|| A1

# When it is convergent, the power iteration converges only linearly.

» The closer the moduli of the eigenvalues )\, and A\, are, the
slower the convergence is.

® Dominant Eigenvalue: The eigenvalue with largest modulus is given
by q(v) where

r* Ax

r(z) =

is called the Rayleigh quotient of z € C".

o |
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Power |teration

- N

® Rate of Convergence: It can be shown that for some constant ¢

) — A
lim HUA i1 _ |22
k—oo |0 — qr|| A1

# When it is convergent, the power iteration converges only linearly.

» The closer the moduli of the eigenvalues )\, and A\, are, the
slower the convergence is.

® Dominant Eigenvalue: The eigenvalue with largest modulus is given
by q(v) where

r* Ax

r(z) =

is called the Rayleigh quotient of z € C".

» Note that r(0) = TA42 = 200 — )

Lecture 10 — p.10/17
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| nverse lteration

® Power iteration suffers from slow convergence, when |\1| = |As].

o |
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| nverse lteration

® Power iteration suffers from slow convergence, when |\1| = |As].

® A key observation to speed-up power iteration

Av=X v <<= Av—puv= > —puv
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| nverse lteration

® Power iteration suffers from slow convergence, when |\1| = |As].

® A key observation to speed-up power iteration

Av=X v <<  Av—pv=\v— uv
— A—-—pulv=AN—pv

o |
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| nverse lteration

® Power iteration suffers from slow convergence, when |\1| = |As].

® A key observation to speed-up power iteration

Av =X\ <= Av — v = Av — pw
= (A—pul)v=(\—p)v
— MA—p)lv=A—-pul) v

o |
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| nverse lteration

® Power iteration suffers from slow convergence, when |\1| = |As].

® A key observation to speed-up power iteration

Av =X\ <= Av — pv = v — pw
= (A—pul)v=(\—p)v
— MA—p)lv=A—-pul) v

(A, v) is an eigenpair of A < ((A—u)~ 1, v) is an eigenpair of (A—pul)~?

o |
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| nverse lteration

® Power iteration suffers from slow convergence, when |\1| = |As].

® A key observation to speed-up power iteration

Av =X\ <= Av — v = Av — pw
= (A—pul)v=(\—p)v
— MA—p)lv=A—-pul) v

(A, v) is an eigenpair of A < ((A—u)~ 1, v) is an eigenpair of (A—pul)~?

® Suppose o is a good estimate of an eigenvalue ;.

o |
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| nverse lteration

® Power iteration suffers from slow convergence, when |\1| = |As].

® A key observation to speed-up power iteration

Av =X\ <= Av — v = Av — pw
= (A—pul)v=(\—p)v
= A-p)lv=(A-pul)!

(A, v) is an eigenpair of A < ((A—u)~ 1, v) is an eigenpair of (A—pul)~?

® Supposecisa good estimate of an eigenvalue ;.

o Thatis o] > IA — forall j # [.

o |
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| nverse lteration

® Power iteration suffers from slow convergence, when |\1| = |As].

® A key observation to speed-up power iteration

Av =X\ <= Av — v = Av — pw
= (A—pul)v=(\—p)v
= A-p)lv=(A-pul)!

(A, v) is an eigenpair of A < ((A—u)~ 1, v) is an eigenpair of (A—pul)~?

® Supposecisa good estimate of an eigenvalue ;.
p forall 5 # .

» The eigenvalues of (A — oI)~ ! are

o Thatis o] > IA

1 1
)\—07 Ao—0o?) ") A\,—oO

o |
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| nverse lteration

® Power iteration suffers from slow convergence, when |\1| = |As].

® A key observation to speed-up power iteration

Av =X\ <= Av — v = Av — pw
= (A—pul)v=(\—p)v
= A-p)lv=(A-pul)!

(A, v) is an eigenpair of A < ((A—u)~ 1, v) is an eigenpair of (A—pul)~?

® Supposecisa good estimate of an eigenvalue ;.
p forall 5 # .

» The eigenvalues of (A — oI)~! are : :

)\—07 Ao—0o?) ") A\,—oO

» Power iteration applied to (A — aI) I must converge to v;
\_ (associated with the eigenvalue ) quickly. J

o Thatis o] > IA
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| nverse lteration
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#® Rate of Convergence: Let \; be the eigenvalue second closest to .

)\5—0

)\j—O'

lim

gl _[Us=o))
oo o — gl

1/(A = o)

o |
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#® Rate of Convergence: Let \; be the eigenvalue second closest to .

)\5—0

)\j—O'

lim

gl _[Us=o))
oo o — gl

1/(A = o)

® |Inverse iteration requires the product (A — oI)™ !¢, equivalently the
solution of the linear system (A — ol)x = ¢y, at each iteration.

o |
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#® Rate of Convergence: Let \; be the eigenvalue second closest to .

)\5—0

)\j—O'

lim

gl _[Us=o))
oo o — gl

1/(A = o)

® |Inverse iteration requires the product (A — oI)™ !¢, equivalently the
solution of the linear system (A — ol)x = ¢y, at each iteration.

» In practice an LU factorization of (A — o) is computed initially (at
a cost of 2n3/3).

o |
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#® Rate of Convergence: Let \; be the eigenvalue second closest to .

)\5—0

)\j—O'

= C

lim

Io-aual _,\1/0 -0
oo o — gl

1/(A = o)

® |Inverse iteration requires the product (A — oI)™ !¢, equivalently the
solution of the linear system (A — ol)x = q;, at each iteration.
» In practice an LU factorization of (A — o) is computed initially (at

a cost of 2n3/3).
# At each iteration the system

(A—ol)x = LUx = g,
is solved by forward and back substitutions (at a cost of O(n?)).

o |
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Pseudocode

Given A € C"*", qo € C" s.t. ||go]| = 1 and o € C.
Compute an LU factorization of (A — o)
fork=1,mdo

Solve Lz = q;_1 by forward substitution.

Solve Ux = z by back substitution.

qr < z/||z|
end for

U< dm
A — G Agm
Return (A, v)

o |
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Rayleigh Iteration

- N

® Rayleigh iteration is similar to the inverse iteration with the exception
that the shifts o are set to the Rayleigh quotient at every iteration, i.e.

qz_1AQk—1
QZ_1Qk—1

(A — Uk—ll)_1Qk—1
(A —or1D) " qp—1]]

g = where o1 :==1r(qx_1) =

o |
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Rayleigh Iteration

- N

® Rayleigh iteration is similar to the inverse iteration with the exception
that the shifts o are set to the Rayleigh quotient at every iteration, i.e.

qz_1AQk—1
QZ_1Qk—1

a0 = (A—op_11) tqr_
I(A = ok—11)" g1

where o1 :==1r(qx_1) =

® Upside: Rayleigh iteration usually converges to an eigenvector v,
associated with an eigenvalue \; very quickily.

o |
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Rayleigh Iteration

- N

® Rayleigh iteration is similar to the inverse iteration with the exception
that the shifts o are set to the Rayleigh quotient at every iteration, i.e.

qz_1AQk—1
QZ_1Qk—1

a0 = (A—op_11) tqr_
I(A = ok—11)" g1

where o1 :==1r(qx_1) =

® Upside: Rayleigh iteration usually converges to an eigenvector v,
associated with an eigenvalue \; very quickily.

» The quick convergence is due to the fact that (g, ) becomes an
increasingly better estimate of r(v;) = \; as qx approaches v;.

o |
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Rayleigh Iteration
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® Rate of Convergence: Suppose lim;_,», g = 0. Then

lim HUA— Qk+12\| _
k—oo || — gl

# Rate of convergence is quadratic.

o |
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Rayleigh Iteration
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® Rate of Convergence: Suppose lim;_,», g = 0. Then

lim HUA— Qk+12\| _
k—oo || — gl

# Rate of convergence is quadratic.

® Downside: At each iteration an LU factorization of (A — o) needs to
be computed from scratch to solve (A — o I)x = q; for z.

o Each iteration costs % flops.

o |
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Rayleigh Iteration
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Pseudocode

Given A € C"*" and ¢y € C" s.t. ||qo|| = 1.
fork=1,mdo
Ok—1 qj_1Aqr—1
Compute an LU factorization of (A — oy_11)
Solve Lz = q;_1 by forward substitution.
Solve Ux = z by back substitution.
G — z/ ||z
end for

U < {4m

A — G Agm
Return (A, v)

o |
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Next L ecture
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The QR Algorithm (Fausett - 5.3, Watkins - 5.6)

o |
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