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Abstract

This work concerns the minimization of the pseudospectral abscissa of a matrix-
valued function dependent on parameters analytically. The problem is motivated
by robust stability and transient behavior considerations for a linear system that
has optimization parameters. We describe a subspace procedure to cope with
the setting when the matrix-valued function is of large size. The proposed sub-
space procedure solves a sequence of reduced problems obtained by restricting
the matrix-valued function to small subspaces, whose dimensions increase gradu-
ally. It possesses desirable features such as the global convergence of the minimal
values of the reduced problem to the minimal value of the original problem, and
a superlinear convergence exhibited by the decay in the errors of the minimizers
of the reduced problems, which we prove in theory under mild assumptions. In
mathematical terms, the problem we consider is a large-scale nonconvex mini-
max eigenvalue optimization problem such that the eigenvalue function appears
in the constraint of the inner maximization problem. What makes it peculiar as
compared to our previous works that concern the maximization of the distance to
instability, and minimization of the H∞ norm involving also nonconvex minimax
eigenvalue optimization problems is that in those works the eigenvalue functions
appear in the objective. Devising and analyzing a subspace framework for the
minimax eigenvalue optimization problem at hand with the eigenvalue function
in the constraint require special treatment that makes use of a Lagrangian and
dual variables. There are notable advantages in minimizing the pseudospectral
abscissa over maximizing the distance to instability or minimizing the H∞ norm;
the optimized pseudospectral abscissa provide quantitative information about
the worst-case transient behavior, and the initial guesses for the parameter val-
ues to optimize the pseudospectral abscissa can be arbitrary, unlike the case to
optimize the distance to instability and H∞ norm that would normally require
initial guesses yielding asymptotically stable systems.
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†Koç University, Department of Mathematics, Rumeli Feneri Yolu 34450, Sarıyer, Istanbul, Turkey,
E-Mail: emengi@ku.edu.tr.

1

ar
X

iv
:2

20
8.

07
54

0v
1 

 [
m

at
h.

N
A

] 
 1

6 
A

ug
 2

02
2



Keywords. pseudospectral abscissa, large scale, subspace framework, Hermite in-
terpolation, Lagrangian, robust stability, eigenvalue optimization, nonconvex opti-
mization

AMS Subject Classifications. 65F15, 93C05, 93D09, 90C26, 90C47

1 Introduction

The minimization of the spectral abscissa of a linear control system has drawn in-
terest in the last couple of decades [8, 3]. A classical problem that can be tackled
using the spectral abscissa minimization is the stabilization by static output feedback
(SOF) problem; given matrices A ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n, find a controller
K ∈ Cm×p such that the system x′(t) = (A + BKC)x(t) is asymptotically stable,
equivalently A+BKC has all of its eigenvalues on the open left-half of the complex
plane. SOF is known to be a notoriously difficult problem [4]. Indeed, it has been
shown that SOF when the entries of K are subject to box constraints is NP-hard
[5, 23]. Mathematically, the spectral abscissa minimization is a nonconvex eigenvalue
optimization problem that involves the minimization of the real part of the rightmost
eigenvalue. Nonsmoothness at a locally optimal point minimizing the spectral ab-
scissa can occur due to possible nonsimplicity of the rightmost eigenvalue at the local
optimizer [6, 7]. Numerically speaking a bigger challenge is the non-Lipschitz nature
of the rightmost eigenvalue at a local optimizer; when the rightmost eigenvalue is not
simple at a local optimizer, it can change rapidly near the optimizer. In more formal
terms, the spectral abscissa does not have to be Lipschitz continuous, not even locally,
at a local optimizer, and this causes numerical difficulties to numerical algorithms,
which are at least prone to rounding errors. A second difficulty with minimizing the
spectral abscissa is that, even if a negative spectral abscissa guarantees an asymptotic
decay, the system can still exhibit significant transient behavior before the eventual
decay.

As a remedy to these problems with the spectral abscissa minimization, the
pseudospectral abscissa minimization has been considered in the last two decades
[9, 2]. Recall that the spectral abscissa of a matrix A ∈ Cn×n is given by α(A) :=
max{Re(z) | z ∈ Λ(A)}, where Λ(·) denotes the spectrum, i.e., the set of all eigenval-
ues, of its matrix argument. On the other hand, for a given real number ε > 0, the
ε-pseudospectrum of A consists of eigenvalues of all matrices within an ε-neighborhood
of A, formally defined as

Λε(A) =
{
z ∈ C | z ∈ Λ(A+ ∆) ∃∆ ∈ Cn×n s.t. ‖∆‖2 ≤ ε

}
,

and the ε-pseudospectral abscissa of A is defined as αε(A) := max {Re(z) | z ∈ Λε(A)},
that is as the real part of the rightmost point in Λε(A) [24, 25].
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Unlike the spectral abscissa, the pseudospectral map A 7→ αε(A) is locally Lips-
chitz continuous [20, Corollary 7.2], [14, Corollary 3.4]. Even if nonsmoothness and
nonconvexity are still present in the map A 7→ αε(A), changes as rapid as in the
spectral abscissa map are not possible. A second virtue in using the pseudospectral
abscissa rather than the spectral abscissa is that, if it is sufficiently small, not only
the asymptotic decay but also a nice transient behavior is guaranteed, thanks to the
Kreiss-matrix theorem [25, 16]. Formally,

sup
ε>0

αε(A)

ε
≤ sup

t
‖eAt‖2 ≤ en sup

ε>0

αε(A)

ε
,

which implies the following for the system x′(t) = Ax(t): we have supε>0 αε(A)/ε ≤
‖x(t)‖2 ≤ en supε>0 αε(A)/ε at all times t ≥ 0. Equivalent and computationally
plausible characterizations for Λε(A) and αε(A) are given by [25]

Λε(A) = {z ∈ C | σmin(A− zI) ≤ ε} ,
αε(A) = max {Re(z) | σmin(A− zI) ≤ ε} ,

(1.1)

where σmin(·) denotes the smallest singular value of its matrix argument.
The computation of the ε-pseudospectral abscissa and its derivatives require more

work compared to that for the spectral abscissa. Whereas the spectral abscissa and
derivatives can be obtained from eigenvalue computations merely, and even for large
sparse matrices there is powerful software to retrieve rightmost eigenvalues and deriva-
tives such as ARPACK [18], the computation of the pseudospectral abscissa involves
an optimization problem. Yet, there are very good algorithms to compute the ε-
pseudospectral abscissa. The criss-cross algorithm developed by Burke, Lewis and
Overton is globally convergent at a quadratic rate, hence computes the pseudospec-
tral abscissa very reliably and efficiently for small- to medium-size matrices [11, 10].
For the pseudospectral abscissa of larger-size matrices, there is a fixed-point iteration
developed by Guglielmi et al. [13], which can further be accelerated with the subspace
framework in [17].

1.1 Problem and Contributions

In this work, we assume that the matrix A depends on parameters in a smooth way,
and, for a given ε > 0, deal with the minimization of the ε-pseudospectral abscissa
of A over the parametsr. Our focus is on the case when A is large; we describe a
subspace procedure that reduces the size of A considerably but without altering the
optimal parameter values. We prove in theory that the subspace procedure possesses
desirable convergence properties such as global convergence and a superlinear rate
of convergence. As a result, it enables us to solve the ε-pseudospectral abscissa
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minimization problems involving parameter dependent matrices with sizes on the
order of thousands.

Formally, we assume we are given a matrix-valued function A : Ω→ Cn×n of the
form

A(x) = f1(x)A1 + · · ·+ fκ(x)Aκ, (1.2)

where A1, . . . , Aκ ∈ Cn×n, the size of the matrices n is very large, and f1, . . . , fκ :
Ω → R are real-analytic on Ω, an open subset of Rd representing the permissible
values for the parameters. The ε-pseudospectral abscissa minimization problem, for
a prescribed ε > 0, is the minimax problem

min
x∈Ω

αε(A(x)) = min
x∈Ω

max {Re(z) | z ∈ Λε(A(x))}

= min
x∈Ω

max {Re(z) | σmin(A(x)− zI) ≤ ε}
(1.3)

where Ω is a compact subset of Ω.
The stabilization by static output feedback problem for given A ∈ Cn×n B ∈

Cn×m, C ∈ Cp×n can be treated by minimizing αε(A + BKC) over K ∈ Cm×p with
entries constrained to lie in prescribed intervals. When n is large, such a stabilization
problem falls into the setting of (1.3) as A+BKC can represented in the form (1.2).

The problem at hand is a nonconvex large-scale minimax eigenvalue optimization
problem. What makes it peculiar compared to our previous works [21, 1] is that
the eigenvalue function appears in the constraint of the inner maximization problem.
This is in contrast to [21] and [1] that introduce subspace frameworks for large-
scale minimax eigenvalue optimization problems - specifically for the maximization
of the distance to instability and minimization of the H∞-norm, respectively - where
the eigenvalue functions appear in the objective. Designing a subspace framework
for a minimax problem with the eigenvalue function in the objective, and especially
analyzing its convergence require a special treatment. For instance, when establishing
the global convergence of the proposed framework and its superlinear convergence, we
work on the Lagrangian as well as the dual variable as much as the primal variables.

Minimizing the pseudospectral abscissa and maximizing the distance to instability
(more generally minimizing the H∞-norm) are motivated by similar issues, most re-
markably by the maximization of the robust stability and optimization of the transient
behavior. However, there are advantages in optimizing the pseudospectral abscissa.
First, by minimizing the pseudospectral abscissa we simultaneously minimize a lower
bound on the worst transient behavior. Secondly, when maximizing the distance to
instability or minimizing the H∞ norm, the system at the initial guess for the pa-
rameter values should ideally be asymptotically stable, and finding such a guess may
be a challenge. There is no such asymptotic stability concerns when minimizing the
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pseudospectral abscissa; it does not harm in any way to start with parameter values
that yield systems that are not asymptotically stable.

1.2 Outline

We introduce the subspace framework in the next section, then investigate its proper-
ties such as the derivatives of the original and reduced problems, and, consequently,
deduce Hermite interpolation properties between the original and reduced problems.
The proposed framework produces a sequence of reduced problems with sizes in-
creasing gradually. In Section 3, we formally show that if, in finite dimension, the
minimizers of the reduced problems stagnate, then the point of stagnation is actually
a global minimizer of the original problem, and, in infinite dimension, the globally
minimal values of the reduced problems in the limit converge to a globally minimal
value of the original problem. Section 4 is devoted to a rate-of-convergence analy-
sis of the proposed framework. In this section, under mild assumptions, we prove
a superlinear convergence result for the errors of the reduced problems. A Matlab
implementation of the proposed framework is made publicly available. In Section
5, we perform numerical experiments with this implementation on synthetic as well
as benchmark examples from the COMP leib collection [19], and observe that the
deduced theoretical global convergence and superlinear convergence results hold in
practice. The numerical results illustrate the efficiency and accuracy of the subspace
framework in practice on large-scale pseudospectral abscissa minimization problems.

2 Subspace Framework

In this section, we present a subspace framework for the minimization of the pseu-
dospectral abscissa of a large-scale parameter dependent matrix A(x) of the form
(1.2). The subspace idea introduced here is inspired by [15, 21]. However, the prob-
lem considered in [15] concerns the minimization or maximization of the jth largest
eigenvalue of the given matrix-valued function for a prescribed j, whereas the prob-
lem in [21] concerns a minimax problem with an eigenvalue function in the objective.
The problem here is also a minimax problem, but the eigenvalue (or the singular
value) function appears in the constraint of the inner maximization problem, and, as
a result, the problem at hand requires a special treatment.

We resort to one-sided projections to deal with the large size of A(x). Specifically,
given a subspace V ⊆ Cn of dimension k � n, and a matrix V ∈ Cn×k whose columns
form an orthonormal basis for V, we minimize the pseudospectral abscissa of the
reduced matrix-valued function

AV (x) := A(x)V = f1(x)A1V + · · ·+ fκ(x)AκV
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instead of minimizing the pseudospectral abscissa of A(x). Formally, defining the
ε-pseudospectrum of the reduced matrix-valued function by

Λε(A
V (x)) :=

{
z ∈ C | σmin(AV (x)− zV ) ≤ ε

}
and the corresponding ε-pseudospectral abscissa by

αε(A
V (x)) := max

{
Re(z) | z ∈ Λε(A

V (x))
}

= max
{

Re(z) | z ∈ C s.t. σmin(AV (x)− zV ) ≤ ε
}
,

(2.1)

we solve

min
x∈Ω

αε(A
V (x)) = min

x∈Ω
max

{
Re(z) | z ∈ C s.t. σmin(AV (x)− zV ) ≤ ε

}
. (2.2)

rather than (1.3). Employing two-sided projections for the reduction of A(x) may
appear as a plausible strategy since A(x) is a non-Hermitian matrix-valued function.
However, two-sided projections cause convergence problems, such as the loss of a
monotonicity property, which will be crucial in the convergence analysis discussed in
Section 3.

We remark that Λε(A
V (x)) and αε(A

V (x)) are independent of the choice of the
orthonormal basis used for V, that is Λε(A

V1(x)) = Λε(A
V2(x)) and αε(A

V1(x)) =
αε(A

V2(x)) for two different matrices V1, V2 whose columns form orthonormal bases
for V, as σmin(AV1(x) − zV1) = σmin(AV2(x) − zV2) for any z ∈ C for such V1, V2.
Accordingly, letting V := Col(V ), and hiding the dependence of the pseudospectra
and pseudospectral abscissa on A(x), we use the shorthand notations

Λε(x) := Λε(A(x)), ΛVε (x) := Λε(A
V (x)) ,

αε(x) := αε(A(x)), αVε (x) := αε(A
V (x))

throughout the rest of this text.
The basic subspace framework for the minimization of αε(x) is described in Algo-

rithm 1. At each subspace iteration in Algorithm 1 in lines 6–10, first a small-scale
reduced problem is solved in line 6, in particular, a global minimizer x̃ is found for a
reduced problem. Then a rightmost point z̃ of Λε(x̃) is determined in line 7. Finally,
the subspace is expanded with the inclusion of a right singular vector corresponding
to σmin(A(x̃)− z̃I) in line 10.

Determining the rightmost point of Λε(x̃) involves the large-scale matrix-valued
function A(x), and is usually the most expensive step computationally in a subspace
iteration. For this task, we usually benefit in practice from the approach in [17], an
approach that combines the globally-convergent criss-cross algorithm [10] for comput-
ing the pseudospectral abscissa with a subspace framework. On the other hand, the
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Algorithm 1 The subspace framework to minimize αε(x) over Ω

Input: The matrix valued function A(x) and the feasible region Ω
Output: An estimate x̂ for arg minx∈Ω αε(x), and ẑ ∈ C that is an estimate for a

globally rightmost point in Λε(x̂)

1: x
(1)
1 , . . . x

(1)
η ← initially chosen points in Ω.

2: z
(1)
j ← arg max

{
Re(z) | σmin(A(x

(1)
j )− zI) ≤ ε

}
for j = 1, . . . , η.

3: v
(1)
j ← a right singular vector corr. to σmin(A(x

(1)
j )− z(1)

j I) for j = 1, . . . , η.

4: V1 ← span
{
v

(1)
1 , . . . v

(1)
η

}
and V1 ← an orthonormal basis for V1.

5: for k = 2, 3, . . . do

6: x(k) ← arg minx∈Ω α
Vk−1
ε (x).

7: z(k) ← arg max
{

Re(z) | σmin(A(x(k))− zI) ≤ ε
}

.

8: Return x̂← x(k), ẑ ← z(k) if convergence occurred.
9: v(k) ← a unit right singular vector corresponding to σmin(A(x(k))− z(k)I).

10: Vk ← orth
(
[Vk−1 v(k)]

)
and Vk ← Col(Vk).

11: end for

small-scale reduced pseudspectral abscissa minimization problem is usually cheap to
solve. For this task, we employ “eigopt”, the globally convergent algorithm in [22],
if there is only one parameter, or otherwise, if the matrix-valued function depends
on multiple parameters, we use “GRANSO” [12]. Last but not the least, let us also
note that the right singular vector of the large-scale matrix in line 9 should normally
be calculated iteratively, for instance by means of “ARPACK”. Further implementa-
tion details of the subspace framework, including the condition to check convergence
employed in practice in line 8, are described in Section 5.1.

2.1 Basic Results Regarding the Subspace Framework

Next, we present two basic results concerning the subspace framework that will be
crucial in the convergence analysis.

The first result is the monotonicity property with respect to the subspace V. We
refer to Lemma 3.1 and succeeding arguments in [17] for a proof.

Lemma 2.1 (Monotonicity). Let V,W be two subspaces of Cn such that V ⊆ W,
and V,W be matrices whose columns form orthonormal bases for V,W. Then the
following assertions hold:

(i) σmin(A(x)−zI) ≤ σmin(AW (x)−zW ) ≤ σmin(AV (x)−zV ) ∀z ∈ C, ∀x ∈ Ω.

(ii) ΛVε (x) ⊆ ΛWε (x) ⊆ Λε(x) ∀x ∈ Ω.
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(iii) αVε (x) ≤ αWε (x) ≤ αε(x) ∀x ∈ Ω.

The next result concerns the interpolation properties between the full and reduced
problems, and is borrowed from [17, Lemma 3.2], where a proof is also provided.

Lemma 2.2. For a given x̃ ∈ Ω, and given subspace V, the following are equivalent:

(i) αVε (x̃) = αε(x̃).

(ii) The subspace V contains a right singular vector corresponding to σmin(A(x̃)−z̃I)
for some z̃ ∈ Λε(x̃) with Re(z̃) = αε(x̃).

Global convergence of the proposed subspace framework as well as its rapid con-
vergence can be attributed to the interpolation properties between the full and the
reduced problems. In a subsequent subsection, we establish interpolation properties
between αε(·) and αVkε (·) as well as between their first derivatives for the subspaces Vk
generated by Algorithm 1. Before stating the result formally, we first derive formulas
for the derivatives of αε(·) and αVε (·) for a given subspace V in the next subsection.

2.2 Derivatives of the Pseudospectral Abscissa

We consider the pseudospectral abscissa as a constrained optimization problem, and,
based on optimality conditions for constrained optimization problems, we derive an-
alytical formulas for the derivatives of the pseudospectral abscissa functions.

Letting A(x, z) := A(x)−(z1 +iz2)I and σ(x, z) := σmin(A(x, z)) for z = (z1, z2) ∈
R2, the ε-pseudospectral abscissa αε(x) can be expressed as the constrained optimiza-
tion problem

αε(x) = max{z1 | z = (z1, z2) ∈ R2, σ(x, z)− ε ≤ 0}. (2.3)

We consider the Langrangian function

L(x, z, µ) := z1 − µ(σ(x, z)− ε) (2.4)

associated with (2.3), where µ ≥ 0 is the Lagrange multiplier corresponding to the
constraint σ(x, z)− ε ≤ 0.

For a given x, we denote the optimal z = (z1, z2) and the corresponding µ for
the optimization problem in (2.3) with z(x) = (z1(x), z2(x)) and µ(x), respectively.
Moreover, we make use of the notations y = (z, µ) and y(x) = (z(x), µ(x)). To ensure
σ(x, z(x)) is differentiable, let us assume it is a simple singular value of A(x, z(x)).
By the optimality conditions, ∂L(x, z(x), µ(x))/∂z1 = 1 − µ(x)∂σ(x, z(x))/∂z1 = 0
implying µ(x) 6= 0, which in turn leads to

σ(x, z(x)) = ε (2.5)
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by the complementarity conditions. It follows from (2.3) and (2.4) that

αε(x) = z1(x) = L(x, z(x), µ(x)) . (2.6)

To guarantee the differentiability of αε(x), we assume the satisfaction of the fol-
lowing conditions.

Assumption 2.3. For a given x ∈ Ω, we have that

(i) the optimizer z(x) of (2.3) is unique,

(ii) the singular value σ(x, z(x)) of A(x, z(x)) is simple, and

(iii) ∇yyL(x, y(x)) is non-singular, where ∇yyL(·) denotes the Hessian of L(·) with
respect to y.

Condition (ii) of Assumption 2.3 implies that L(x, y) is differentiable with respect to
y at y = y(x) so that we can put first order optimality conditions in use. As argued in
the previous paragraph, the first order optimality conditions already ensure µ(x) 6= 0.
To derive an expression for µ(x), we now exploit the first order optimality conditions

∇yL(x, y(x)) = 0. (2.7)

for (2.3) in more detail. Using the analytical formulas for the derivatives of the
singular value function (see, e.g., [22, Section 3.3]) in the last equation, we deduce

0 = 1− µ(x) Re

(
u∗
∂A(x, z(x))

∂z1
v

)
= 1 + µ(x) Re(u∗v)

and

0 = −µ(x) Re

(
u∗
∂A(x, z(x))

∂z2
v

)
= −µ(x) Im(u∗v),

where u, v consist of a pair of consistent unit left and right singular vectors corre-
sponding to σ(x, z(x)). The first equation implies Re(u∗v) 6= 0. Furthermore, as
µ(x) 6= 0, the second equation gives rise to Im(u∗v) = 0, that is u∗v is real and so
u∗v = Re(u∗v). It follows from the first equation that

µ(x) = − 1

u∗v
.

Next we derive an analytical formula for ∇αε(x). Taking the gradient of both
sides of (2.6), in particular using the chain rule, we get

∇αε(x) = ∇xL(x, y(x)) + [y′(x)]T · ∇yL(x, y(x)) ,
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where y′(x) denotes the 3×d Jacobian matrix of y with respect to x. But∇yL(x, y(x)) =
0, so we have

∇αε(x) = ∇xL(x, y(x)). (2.8)

More specifically, denoting the jth component of x with xj , we have

∂αε(x)

∂xj
= −µ(x)

∂σ(x, z(x))

∂xj
.

Again, using the analytical formula for the singular value function, and µ(x) =
−1/(u∗v), which is real and nonzero, we obtain

∂αε(x)

∂xj
= Re

u∗ ∂A(x)
∂xj

v

u∗v

 (2.9)

for j = 1, . . . , d.
For the second derivatives of αε(x), we differentiate (2.8) by applying the chain

rule to obtain

∇2αε(x) = ∇2
xxL(x, y(x)) +∇2

xyL(x, y(x)) · y′(x) , (2.10)

where ∇2
xyL(·) is the d × 3 Hessian matrix of L(·) for which the partial derivatives

are first taken with respect to x and then with respect to y, whereas ∇2
xxL(·) is the

standard d × d Hessian matrix of L(·) with respect to x. Differentiating (2.7) with
respect to x yields

∇2
yxL(x, y(x)) +∇2

yyL(x, y(x)) · y′(x) = 0

which in turn gives rise to

y′(x) = −[∇2
yyL(x, y(x))]−1∇2

yxL(x, y(x))

= −[∇2
yyL(x, y(x))]−1[∇2

xyL(x, y(x))]T .
(2.11)

Substituting (2.11) into (2.10), we obtain

∇2αε(x) = ∇2
xxL(x, y(x))−∇2

xyL(x, y(x))·[∇2
yyL(x, y(x))]−1[∇2

xyL(x, y(x))]T (2.12)

where

[∇2
xxL(x, y(x))]j` = −µ(x)

∂2σ(x, z(x))

∂xj∂x`
j, ` = 1, 2, · · · , d,

[∇2
xyL(x, y(x))]j` = −µ(x)

∂2σ(x, z(x))

∂xj∂y`
j = 1, 2, · · · d, ` = 1, 2, 3,

[∇2
yyL(x, y(x))]j` = −∂

2{µ(x)σ(x, z(x))}
∂yj∂y`

j, ` = 1, 2, 3,
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and (y1, y2, y3) = (z1, z2, µ). Expressions for the third partial derivatives of αε(·) can
be derived in a similar way by differentiating (2.10) further.

If we repeat the arguments above for the reduced pseudospectral abscissa function
αVε (·) for a given subspace V, analogous formulas for the derivatives of αVε (·) can be
obtained in terms of a matrix V whose columns form an orthonormal basis for V.
Specifically, the Lagrangian for the optimization problem associated with αVε (·) takes
the form

LV(x, z, µ) := z1 − µ(σV(x, z)− ε),

where σV(x, z) := σmin(AV (x, z)) and AV (x, z) := AV (x)−zV . Denoting the optimal
z and the corresponding Lagrange multiplier µ now by zV(x) and µV(x) at a given x,
the Lagrangian satisfies αVε (x) = LV(x, zV(x), µV(x)). Applying steps analogous to
the ones above, one can obtain

∇αVε (x) = ∇xLV(x, yV(x)),

where yV(x) = (zV(x), µV(x)). In particular,

∂αVε (x)

∂xj
= Re

 [uV ]∗ ∂A
V (x)
∂xj

vV

[uV ]∗ V vV

 (2.13)

for j = 1, . . . , d, where uV , vV form a pair of consistent unit left and unit right singular
vectors corresponding to σV(x, zV(x)).

The second derivatives of αVε (x) are given by

∇2αVε (x) = ∇2
xxLV(x, yV(x)) −
∇2
xyLV(x, yV(x))[∇2

yyLV(x, yV(x))]−1[∇2
xyLV(x, yV(x))]T ,

(2.14)

where

[∇2
xxLV(x, yV(x))]j` = −µV(x)

∂2σV(x, zV(x))

∂xj∂x`
j, ` = 1, 2, · · · d,

[∇2
xyLV(x, yV(x))]j` = −µV(x)

∂2σ(x, zV(x))

∂xj∂y`
j = 1, 2, · · · d, ` = 1, 2, 3,

[∇2
yyLV(x, yV(x))]j` = −∂

2{µV(x)σ(x, zV(x))}
∂yj∂y`

j, ` = 1, 2, 3.

2.3 Hermite Interpolation of the Pseudospectral Abscissa

The next result concerns the Hermite interpolation properties between the full pseu-
dospectral abscissa function αε(·) and its reduced counterpart αVkε (·) for a subspace
Vk generated by Algorithm 1.
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Lemma 2.4 (Hermite Interpolation). The following assertions hold regarding the
subspace Vk for every integer k ≥ 2 and the points x(`) for ` = 2, . . . , k generated by
Algorithm 1:

(i) αε(x
(`)) = αVkε (x(`)).

(ii) If the conditions in Assumption 2.3 hold for x = x(`), then αε(x) and αVkε (x)
are differentiable at x = x(`), and

∇αε(x(`)) = ∇αVkε (x(`)).

Proof. (i) From lines 9, 10 of Algorithm 1, we have v(`) ∈ Vk, a right singular vector
corresponding to σmin(A(x(`)) − z(`)I) for the rightmost point z(`) in Λε(x

(`)),
for ` = 2, . . . k. As a result, the assertion follows from Lemma 2.2.

(ii) Differentiability of αε(x) at x = x(`) is immediate, as Assumption 2.3 is satisfied
at x = x(`). Let us show that αVkε (x) is also differentiable at x = x(`). As
v(`) ∈ Vk, there exists a vector a such that v(`) = Vka, and so

ε ≥ σmin(A(x(`))− z(`)) = ‖(A(x(`))− z(`))Vka‖2 ≥ σmin(A(x(`))Vk − z(`)Vk).

This shows that z(`) ∈ ΛVkε (x(`)), and so αε(x
(`)) = Re(z(`)) ≤ αVkε (x(`)). But

the reverse inequality αε(x
(`)) ≥ αVkε (x(`)) also holds due to Lemma 2.1 implying

Re(z(`)) = αVkε (x(`)), i.e., z(`) is a rightmost point in ΛVkε (x(`)).

We claim that z(`) is the unique rightmost point in ΛVkε (x(`)). Suppose otherwise
for the sake of contradiction, that is there exists z̃ 6= z(`) such that z̃ ∈ ΛVkε (x(`))
and αVkε (x(`)) = Re(z(`)) = Re(z̃). But then, by Lemma 2.1, we have ε ≥
σmin(AVk(x(`)) − z̃ Vk) ≥ σmin(A(x(`)) − z̃I), so z̃ ∈ Λε(A(x`)). Consequently,
z̃ and z(`) are rightmost points in Λε(x

(`)), contradicting the assumption that
Λε(x

(`)) has a unique rightmost point (i.e., contradicting Assumption 2.3 with
x = x(`)).

Furthermore, if σmin(AVk(x(`))− z(`)Vk) is not simple, then there exist two unit
orthonormal vectors a, ã that satisfy

σmin(A(x(`))− z(`)I) = σmin(AVk(x(`))− z(`)Vk)

=
∥∥∥(AVk(x(`))− z(`)Vk)a

∥∥∥
2

=
∥∥∥(AVk(x(`))− z(`)Vk)ã

∥∥∥
2
.

But then ω = Vka and w̃ = Vkã are orthonormal vectors satisfying

σmin(A(x(`))− z(`)I) =
∥∥∥(A(x(`))− z(`))ω

∥∥∥
2

=
∥∥∥(A(x(`))− z(`))ω̃

∥∥∥
2
,

12



which contradicts with the simplicity of σmin(A(x(`))− z(`)I).

The arguments above show that z(`) is the unique rightmost point in ΛVkε (x(`)),
and that σmin(AVk(x(`)) − z(`)Vk) is simple. Consequently, αVkε (x) is differen-
tiable at x = x(`).

Finally, we show that the gradients of αε(x) and αVkε (x) are equal at x = x(`).
Let u, v be a pair of unit left and unit right singular vectors corresponding to
σ := σmin(A(x(`))− z(`)I) satisfying

(A(x(`))− z(`)I)v = σu and u∗(A(x(`))− z(`)I) = σv∗.

Since v ∈ Vk, there exists a unit vector a such that v = Vka. Then the equations
above can be rewritten in terms of a as follows:

(AVk(x(`))− z(`)Vk)a = σu and u∗(AVk(x(`))− z(`)Vk) = σa∗.

This means that u, a are a pair of unit left and unit right singular vectors
corresponding to σmin(AVk(x(`))− z(`)Vk).

Using the analytical formulas derived in the previous subsection for the deriva-
tives of αε(·) and αVkε (), specifically using (2.9) and (2.13), we obtain

∂αε(x
(`))

∂xj
= Re

u∗ ∂ A(x(`))
∂xj

v

u∗v


= Re

u∗ ∂ AVk (x(`))
∂xj

a

u∗Vka

 =
∂αVkε (x(`))

∂xj
.

for j = 1, . . . , d.

3 Global Convergence

We now relate the sequence x(2), x(3), x(4), . . . generated by Algorithm 1 and the
global minimizer of αε(x) over all x ∈ Ω. The first result below asserts that if any
two iterates are equal, then global convergence is achieved.

Theorem 3.1. If two points x(`), x(k) with 2 ≤ ` < k generated by Algorithm 1 are
equal, then x(`) is a global minimizer of αε(x) over all x ∈ Ω.
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Proof. It follows from the monotonicity property (i.e., Lemma 2.1) that

αV`ε (x(k)) ≤ α
Vk−1
ε (x(k)) = min

x∈Ω
α
Vk−1
ε (x) ≤ min

x∈Ω
αε(x).

Moreover, an implication of the interpolation property (i.e., Lemma 2.2) is that

min
x∈Ω

αε(x) ≤ αε(x
(`)) = αV`ε (x(`)) = αV`ε (x(k)),

where the last equality is due to x(`) = x(k). Combining the inequalities above,
minx∈Ω αε(x) = αV`ε (x(k)) = αε(x

(`)) as desired.

Remark. The subspace V` is a subspace of Cn and contains V`−1 for every ` > 2.
As a result, we must have V` = V`−1 (so that x(`+1) = x(`)) for some ` > 2. Theorem
3.1 implies x(`) for such an ` is a global minimizer of αε(x) over x ∈ Ω.

The global convergence of the subspace framework can remarkably be extended
even to the infinite dimensional setting when A(x) is in essence an infinite dimensional
matrix so that the subspaces can grow arbitrarily as we show next. Formally, following
the practices in [15, 21], throughout the rest of this section we assume A1, . . . Aκ
are linear bounded operators on `2(N), which denotes the inner product space of
square summable complex infinite sequences equipped with the inner product 〈v, w〉 =∑∞

j=0 vjwj and the norm ‖v‖2 =
√∑∞

j=0 |vj |2. We additionally assume that A(x) for

all x ∈ Ω has countably many singular values. The monotonicity result (i.e., Lemma
2.1) holds in the infinite dimensional setting as well. Moreover, an application of
Algorithm 1 in this infinite dimensional setting still produces sequences satisfying
Hermite interpolation, i.e., Lemma 2.4 and its proof still hold.

As shown in the proof of Lemma 2.4, if u(k) and v(k) denote a consistent pair
of unit left and right singular vectors corresponding to σmin(A(x(k)) − z(k)I), then
u(k) and a(k) satisfying vk = Vka

(k) form a consistent pair of left and right singular
vectors corresponding to σmin(AVk(x(k))− z(k)Vk). As argued in Section 2.2 assuming
σmin(AVk(x(k))−z(k)Vk) is simple, by exploiting the fact that z(k) is the rightmost point
in Λε(x

(k)), and employing the associated first order optimality conditions, [u(k)]∗v(k)

is real and nonzero, indeed [u(k)]∗v(k) < 0. In terms of the reduced problem, this
amounts to

0 > [u(k)]∗v(k) = [u(k)]∗Vka
(k) = −∂σmin(AVk(x(k))− z(k)Vk)

∂z1
.

We remind that z(k) above is also the rightmost point in ΛVkε (x(k)).
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Indeed, letting uVk(x), aVk(x) be unit consistent left, right singular vectors corre-
sponding to σmin(AVk(x)− zVk(x)Vk) with zVk(x) representing the rightmost point in
ΛVkε (x), the property

0 > uVk(x)∗Vka
Vk(x) (3.1)

holds uniformly for all x ∈ Ω where αVkε (x) is differentiable as we argue next. By
applying the first-order optimality conditions to the Lagrangian LVk(x, z, µ) := z1−
µ(σVk(x, z)− ε), we deduce

0 = 1−µVk(x) Re

(
uVk(x)∗

∂AVk(x, zVk(x))

∂z1
aVk(x)

)
= 1+µVk(x) Re(uVk(x)∗Vka

Vk(x))

and

0 = −µVk(x) Re

(
uVk(x)∗

∂AVk(x, zVk(x))

∂z2
aVk(x)

)
= −µVk(x) Im(uVk(x)∗Vka

Vk(x)).

From the first equation, µVk(x) 6= 0, so, from the second equation, Im(uVk(x)∗Vka
Vk(x))

= 0, which shows uVk(x)∗Vka
Vk(x) is real. Additionally, uVk(x)∗Vka

Vk(x) 6= 0 due to
the first equation. Moreover, as zVk(x) is the rightmost point in ΛVkε (x(k)), we have

0 ≤ ∂σmin(AVk(x)− zVk(x)Vk)

∂z1
= −uVk(x)∗Vka

Vk(x).

Combining this with uVk(x)∗Vka
Vk(x) 6= 0 yields (3.1).

The uniform negativity feature in (3.1) is essential for the global convergence of
the subspace framework. We indeed assume slightly more, namely a uniform negative
local upper bound on the terms uVk(x)∗Vka

Vk(x) near x(k) as stated formally below.
Throughout the rest of this section and next section, B(c, r) for a given c ∈ Rq and
r ∈ R denotes the closed ball

B(c, r) := { c̃ ∈ Rq | ‖c̃− c‖2 ≤ r },

which reduces to the closed interval [c− r, c+ r] in case q = 1.

Assumption 3.2. There exist ϕ > 0 and β < 0 such that for all k ≥ 2 the following
inequality holds:

β > sup
x∈Ω(k) ∩B(x(k),ϕ)

uVk(x)∗Vka
Vk(x),

where Ω(k) denotes the subset of Ω over which αVkε (x) is differentiable.

The following uniform local Lipschitz continuity result for x 7→ αVkε (x) plays a
prominent role when establishing the global convergence of the subspace framework.
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Lemma 3.3 (Uniform Local Lipschitz Continuity). Suppose Assumption 3.2 is sat-
isfied. There exist real scalars ζ > 0 and ϕ > 0 such that for all k ≥ 2 we have∥∥∇αVkε (x)

∥∥ ≤ ζ for all x ∈ Ω ∩ B(x(k), ϕ) where αVkε (x) is differentiable.

Consequently, αVkε (x) is uniformly locally Lipschitz, that is there exist ζ > 0 and
ϕ > 0 such that for all k ≥ 2 the following assertion holds:∣∣αVkε (x)− αVkε (x̃)

∣∣ ≤ ζ‖x− x̃‖2 ∀x, x̃ ∈ Ω ∩ B(x(k), ϕ).

Proof. Let ϕ > 0 and β < 0 be as in Assumption 3.2, and x̃ ∈ Ω ∩ B(x(k), ϕ) be such
that αVkε (x̃) is differentiable. The partial derivatives of αVkε (x) at x = x̃ are given by

∂αVkε (x̃)

∂xj
= Re

uVk(x̃)∗ ∂ AVk (x̃)
∂xj

aVk(x̃)

uVk(x̃)∗VkaVk(x̃)


= Re

(
κ∑
`=1

∂f`(x̃)

∂xj

uVk(x̃)∗A`Vka
Vk(x̃)

uVk(x̃)∗VkaVk(x̃)

)

for j = 1, . . . , d, which yields∣∣∣∣∂αVkε (x̃)

∂xj

∣∣∣∣ ≤ κ∑
`=1

∣∣∣∣∂f`(x̃)

∂xj

∣∣∣∣ ∣∣∣∣uVk(x̃)∗A`Vka
Vk(x̃)

uVk(x̃)∗VkaVk(x̃)

∣∣∣∣
≤

κ∑
`=1

∣∣∣∣∂f`(x̃)

∂xj

∣∣∣∣ ‖A`‖2|β|
,

where the last summation is independent of Vk. This shows the existence of a γ such
that for all k ≥ 2 the bound

∥∥∇αVkε (x)
∥∥ ≤ ζ holds for all x ∈ Ω ∩ B(x(k), ϕ) where

αVkε (x) is differentiable.
Due to the boundedness of the gradients, the uniform Lipschitz continuity follows

from the continuity of αVkε (x), and a simple application of the mean value theorem.

Now we are ready for the global convergence result. Its proof follows the footsteps
of [15, Theorem 3.1], yet we present it below for completeness.

Theorem 3.4 (Global Convergence). Suppose Assumption 3.2 is satisfied. Then the
following hold for Algorithm 1 in the infinite dimensional setting:

(i) The limit of every convergent subsequence of
{
x(k)

}
is a global minimizer of

αε(x) over all x ∈ Ω.

(ii) lim
k→∞

αVkε (x(k+1)) = lim
k→∞

min
x∈Ω

αVkε (x) = min
x∈Ω

αε(x).
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Proof. Let
{
x(`k)

}
be a convergent subsequence of

{
x(k)

}
. By the monotonicity prop-

erty (i.e., Lemma 2.1, part (iii)), we have

min
x∈Ω

αε(x) ≥ min
x∈Ω

α
V`k+1

−1
ε (x) = α

V`k+1
−1

ε (x(`k+1)) ≥ α
V`k
ε (x(`k+1)). (3.2)

Additionally, due to interpolation property (i.e., Lemma 2.4, part (i)),

min
x∈Ω

αε(x) ≤ αε(x
(`k)) = α

V`k
ε (x(`k)). (3.3)

By combining (3.2) and (3.3), we obtain

α
V`k
ε (x(`k+1)) ≤ min

x∈Ω
αε(x) ≤ α

V`k
ε (x(`k)).

It follows from the uniform local Lipschitz continuity of αVkε (x) with respect to k
(i.e., Lemma 3.3), and noting ‖x(`k+1) − x(`k)‖2 ≤ ϕ for k large enough as {x(`k)} is
convergent, that

lim
k→∞

∣∣αV`kε (x(`k+1))− αV`kε (x(`k))
∣∣ ≤ lim

k→∞
ζ
∥∥x(`k+1) − x(`k)

∥∥
2

= 0,

where ζ is the uniform Lipschitz constant in Lemma 3.3. This together with the
interpolation property (i.e., Lemma 2.4) imply that

lim
k→∞

αε(x
(`k)) = lim

k→∞
α
V`k
ε (x(`k)) = lim

k→∞
α
V`k
ε (x(`k+1)) = min

x∈Ω
αε(x). (3.4)

Using the continuity of αε(x) completes the proof of part (i).
Let α∗ := minx∈Ω αε(x). For p > k, using monotonicity, we have

α∗ ≥ min
x∈Ω

α
Vp
ε (x) = α

Vp
ε (x(p+1))

≥ αVkε (x(p+1)) ≥ αVkε (x(k+1)).

This shows that the sequence
{
αVkε (x(k+1))

}
is monotonically increasing and bounded

from above by α∗, so it is convergent. Consider the subsequence
{
α
V`k+1

−1
ε (x(`k+1))

}
of
{
αVkε (x(k+1))

}
, which satisfies

α
V`k
ε (x(`k+1)) ≤ α

V`k+1
−1

ε (x(`k+1)) ≤ α∗.

Since we have limk→∞ α
V`k
ε (x(`k+1)) = α∗ from the first part, in particular from (3.4),{

α
V`k+1

−1
ε (x(`k+1))

}
also converges to α∗. Finally, the limit of the convergent sequence{

αVkε (x(k+1))
}

must be the same as the limit α∗ of its subsequence.
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4 Rate of Convergence

In this section, we prove that the rate of convergence of Algorithm 1 when d = 1 is
superlinear under mild assumptions. It seems possible to generalize the arguments
and the result when d > 1 provided that additional singular vectors are put into the
subspace at every iteration at points close to the interpolation point employed by
Algorithm 1; this extension is similar to the extension of Algorithm 1 to Algorithm
2 in [15] in the context of minimizing the jth largest eigenvalue for a prescribed j.
However, we only focus on the case d = 1 to keep the presentation simpler.

Throughout, it is assumed that three consecutive iterates x(k−1), x(k), x(k+1) gen-
erated by Algorithm 1 for d = 1 are sufficiently close to x∗, a global minimizer of
αε(x) over x ∈ Ω. An additional assumption that is kept throughout is that x∗ is
strictly in the interior of Ω. Moreover, by z∗ we denote a point in Λ(x∗) satisfy-
ing αε(x∗) = Re(z∗). Furthermore, we assume that the following conditions hold to
ensure the differentiability of αε(x) at x∗.

Assumption 4.1 (Smoothness). The following conditions are satisfied by x∗ and z∗:

(i) z∗ is the unique point in Λε(x∗) such that Re(z∗) = αε(x∗).

(ii) σ(x∗, z∗) is simple.

The smoothness assumption above guarantees also the twice and higher order
differentiability of the Lagrangian L(x, y) with respect to y. We keep another as-
sumption throughout this section, which concerns the nondegeneracy of these second
derivatives of the Lagrangian and its reduced counterpart. This assumption stated
next ensures the existence of the second and higher order derivatives of the full and
reduced pseudospectral functions. Note that, in this assumption and in subsequent
arguments, y∗ = (z∗, µ∗) with µ∗ ∈ R represents the pair of optimal points satisfying
∇yL(x∗, y∗) = 0.

Assumption 4.2 (Nondegeneracy). For a given constant γ > 0, the following asser-
tions hold:

σmin

(
∇2
yyL(x∗, y∗)

)
≥ γ and σmin

(
∇2
yyLVk(x∗, y∗)

)
≥ γ.

We start our derivation of the rate of convergence with a lemma that asserts that
the pseudospectral abscissa functions of the full and the reduced problems attained
at a unique smooth optimizer (i.e., a unique right-most point in pseudospectra, that
is three times differentiable with respect to x) around x∗ under Assumptions 4.1 and
4.2. We omit its proof, as the proof of its part (i) is similar to [15, Proposition 2.9],
and proofs of parts (ii)-(iii) to [21, Lemma 15].
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Lemma 4.3. Suppose that Assumption 4.1 and 4.2 hold. Then, there exist νx, νz, νµ >
0 independent of k such that B(x∗, νx) ⊆ Ω that satisfy the following:

(i) The singular value functions σ(x, z) and σVk(x, z) are simple, and their first
three derivatives in absolute value are bounded above by constants uniformly for
all x ∈ B(x∗, νx) and z ∈ B(z∗, νz), where the constants are independent of k.

(ii) There exists a unique three times differentiable function x ∈ B(x∗, νx) 7→ y(x) =
(z(x), µ(x)) ∈ B(z∗, νz)× B(µ∗, νµ) such that αε(x) = Re(z(x)), as well as

∇yL(x, y(x)) = 0 and σmin(∇2
yyL(x, y(x))) ≥ γ/2 (4.1)

for all x ∈ B(x∗, νx).

(iii) There exists a unique three times differentiable function x ∈ B(x∗, νx) 7→ yVk(x)
= (zVk(x), µVk(x)) ∈ B(z∗, νz)× B(µ∗, νµ) such that αVkε (x) = Re(zVk(x)), and

∇yLVk(x, yVk(x)) = 0 and σmin(∇2
yyLVk(x, yVk(x))) ≥ γ/2 (4.2)

for all x ∈ B(x∗, νx).

For the main rate-of-convergence result, as stated formally below, we also assume
that the angle between the left and right singular vectors of σVk(x, zVk(x)) obeys a
certain bound on B(x∗, νx), the interval in Lemma 4.3. This is similar to Assumption
3.2 in the global convergence proof. To this end, letting u(x) and v(x) be a pair of
consistent unit left and right singular vectors corresponding to σ(x, z(x)), following
the arguments in Section 2.2, in particular by an application of the first order opti-
mality conditions to the constrained optimization characterization in (2.3) of αε(x),
we have u(x)∗v(x) < 0 for all x ∈ B(x∗, νx) so that

β := max
x∈B(x∗,νx)

u(x)∗v(x) < 0. (4.3)

Similarly, as argued in Section 3, we have uVk(x)∗Vkv
Vk(x) < 0 for all x ∈ B(x∗, νx),

where uVk(x) and vVk(x) denote a consistent pair of unit left and right singular vectors
corresponding to σVk(x, zVk(x)).

Assumption 4.4. For a given constant β small enough in absolute value and such
that β ≤ β < 0, the subspace Vk is such that

β ≥ max
x∈B(x∗,νx)

uVk(x)∗Vkv
Vk(x),

where B(x∗, νx) is as in Lemma 4.3.
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The next result concerns the uniform boundedness of the derivatives of αε(x) and
αVkε (x).

Lemma 4.5. Suppose that the conditions of Assumptions 4.1, 4.2 and 4.4 hold. There
exists νx independent of k such that B(x∗, νx) ⊆ Ω, and the following assertions hold:

(i) The pseudospectral functions αε(x) and αVkε (x) are three-times differentiable for
all x ∈ B(x∗, νx).

(ii) The first three derivatives of αε(x) and αVkε (x) in absolute value are bounded
above by constants uniformly for all x ∈ B(x∗, νx), where the constants are
independent of k.

Proof. The three times differentiability of αε(x) and αVkε (x) uniformly in an interval
B(x∗, νx) for some νx that is independent of k is immediate from Lemma 4.3.

The proof of boundedness of the first derivative of αε(x) is similar to that in
Lemma 3.3 for αVkε (x). In particular, noting u(x)∗v(x) ≤ β < 0 for x ∈ B(x∗, νx) due
to (4.3), for any x̃ ∈ B(x∗, νx), we have

α′ε(x̃) = Re

(
κ∑
`=1

df`(x̃)

dx

u(x̃)∗A`v(x̃)

u(x̃)∗v(x̃)

)
=⇒

∣∣α′ε(x̃)
∣∣ ≤ κ∑

`=1

∣∣∣∣df`(x̃)

dx

∣∣∣∣ ‖A`‖2|β|

implying the boundedness of |α′ε(x)| on B(x∗, νx), as f` is real analytic for ` = 1, . . . , κ.
As for the second derivatives of αε(x), first observe

µ(x) = − 1

u(x)∗v(x)
≤ 1

−β
(4.4)

for all x ∈ B(x∗, νx). Moreover, from the continuity of the singular values and As-
sumption 4.2, we have

σmin(∇2
yyL(x, y(x))) ≥ γ/2 (4.5)

for all x ∈ B(x∗, νx), where γ is as in Assumption 4.2, by choosing νx smaller if
necessary. From formula (2.12) for the second derivative of αε(x), we have∣∣α′′ε (x)

∣∣ ≤ |Lxx(x, y(x))|+
∥∥∇2

xyL(x, y(x))
∥∥2

2
‖[∇2

yyL(x, y(x))]−1‖2, (4.6)

where Lxx(x, y) is the second derivative of L(x, y) with respect to x. Now, since the
derivatives Lxx(x, y(x)) and ∇2

xyL(x, y(x)) can be expressed fully in terms of µ(x)
and the partial derivatives of σ(x, y(x)), the result follows from (4.4), (4.5) and part
(i) of Lemma 4.3.

The uniform boundedness of the third derivatives of αε(x), and the boundedness
of the derivatives of the reduced pseduospectral abscissa function can be shown in a
similar way.
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Interpolation properties between αε(x) and αVkε (x) and their first derivatives hold
at x(k). Even if these interpolation properties do not extend to the second derivatives,
the second derivatives must be close at x(k) as shown next.

Lemma 4.6 (Proximity of the Second Derivatives). Suppose that Assumptions 4.1,
4.2 and 4.4 are satisfied. There exists a constant C > 0 independent of k such that∣∣α′′ε (x(k))− [αVkε ]′′(x(k))

∣∣ ≤ C
∣∣x(k) − x(k−1)

∣∣ . (4.7)

Proof. We assume without loss of generality that x(k−1), x(k) are strictly inside
B(x∗, νx) (i.e., the interval in Lemma 4.5), where αε(x) and αVkε (x) are differentiable
with uniform bounds on their first three derivatives independent of k.

Setting h := x(k−1) − x(k) , let us introduce the functions

l(t) := αε(x
(k) + th) and lk(t) := αVkε (x(k) + th) (4.8)

for t ∈ [0, 1]. By applying the Taylor’s theorem with third order remainder to l(t)
and lk(t) on the interval (0, 1), we obtain

l(1) = l(0) + l′(0) + l′′(0)/2 + l′′′(η)/6,

lk(1) = lk(0) + l′k(0) + l′′k(0)/2 + l′′′k (ηk)/6

for some constants η, ηk ∈ (0, 1). Notice that l(1) = lk(1), l(0) = lk(0), and l′(0) =
l′k(0) due to Lemma 2.4. Consequently,

α′′ε (x
(k))h2 − [αVk ]′′(x(k))h2

2
=

l′′(0)− l′′k(0)

2

=
l′′′k (ηk)− l′′′(η)

6

=
[αVk ]′′′(x(k) + ηkh)h3 − α′′′ε (x(k) + ηh)h3

6

(4.9)

As x(k) + ηkh, x
(k) + ηh ∈ B(x∗, νx), the third derivatives [αVk ]′′′(x(k) + ηkh) and

α′′′ε (x(k) + ηh) on the righthand side of (4.9) in absolute value are bounded from
above by a uniform constant U . Hence, we deduce from (4.9) that∣∣α′′ε (x(k))− [αVkε ]′′(x(k))

∣∣ ≤ 2U

3
h =

2U

3

∣∣x(k) − x(k−1)
∣∣

as desired.

Now we are ready to state and prove the main result of this section, that is the
superlinear convergence result regarding the iterates of Algorithm 1.
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Theorem 4.7 (Superlinear Convergence). Suppose that Assumptions 4.1, 4.2 and
4.4 hold. Additionally, assume that α′′ε (x∗) 6= 0. Then, there exists a constant Υ > 0
independent of k such that ∣∣x(k+1) − x∗

∣∣∣∣x(k) − x∗
∣∣max{

∣∣x(k) − x∗
∣∣, ∣∣x(k−1) − x∗

∣∣} ≤ Υ. (4.10)

Proof. Let νx be as in Lemma 4.5 so that αε(x) and αVkε (x) are differentiable, indeed
α′′ε (x) and [αVkε ]′′(x) are Lipschitz continuous, inside B(x∗, νx). Moreover, without
loss of generality, assume x(k−1), x(k), x(k+1) ∈ B(x∗, νx).

By assumption α′′ε (x∗) 6= 0, so, by employing Lemma 4.6, we can assume x(k−1),
x(k) are close enough so that [αVkε ]′′(x∗) 6= 0. Indeed, if necessary by choosing νx even
smaller, we can assume α′′ε (x) 6= 0, [αVkε ]′′(x) 6= 0 for all x ∈ B(x∗, νx).

Now, by the Taylor’s theorem with integral remainder

0 = α′ε(x∗) = α′ε(x
(k)) +

∫ 1

0
α′′ε (x

(k) + ω(x∗ − x(k)))(x∗ − x(k)) dω.

Exploiting the interpolation property α′ε(x
(k)) = [αVkε ]′(x(k)), and left-multiplying

both sides of the last equation by [α′′ε (x
(k))]−1, we deduce

0 = [α′′ε (x
(k))]−1 · [αVkε ]′(x(k)) + (x∗ − x(k)) +

[α′′ε (x
(k))]−1

∫ 1

0

[
α′′ε (x

(k) + ω(x∗ − x(k)))− α′′ε (x(k))
]
(x∗ − x(k)) dω.

(4.11)

As [αVkε ]′(x(k+1)) = 0, a second order Taylor expansion of [αVkε ]′(x) about x(k) gives
rise to

0 = [αVkε ]′′(x(k))]−1[αVkε ]′(x(k)) + (x(k+1) − x(k)) + O(
∣∣x(k+1) − x(k)

∣∣2).

Subtracting the last equality from (4.11) side-by-side yields

0 = (x∗ − x(k+1))

+
{

[α′′ε (x
(k))]−1 − [αVkε ]′′(x(k))]−1

}
α′ε(x

(k)) + O(
∣∣x(k+1) − x(k)

∣∣2)

+ [α′′ε (x
(k))]−1

∫ 1

0

[
α′′ε (x

(k) + ω(x∗ − x(k)))− α′′ε (x(k))
]
(x∗ − x(k)) dω.

Finally, we take the absolute values and employ the triangle inequality in the last
equation to obtain∣∣x(k+1) − x∗

∣∣ ≤ ∣∣[α′′ε (x(k))]−1 −
[
[αVkε ]′′(x(k))

]−1∣∣∣∣α′ε(x(k))
∣∣+O(|x(k+1) − x(k)|2)

+
∣∣[α′′ε (x(k))]−1

∣∣ ∫ 1

0

∣∣α′′ε (x(k) + ω(x∗ − x(k)))− α′′ε (x(k))
∣∣ · ∣∣x∗ − x(k)

∣∣dω. (4.12)
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Now, let us consider the right-hand side of (4.12). It follows from Lemma 4.6,

in particular (4.7), that
∣∣[α′′ε (x(k))]−1 −

[
[αVkε ]′′(x(k))

]−1∣∣ ≤ c|x(k) − x(k−1)| for some

constant c independent of k. Due to this observation and
∣∣α′ε(x(k))

∣∣ = O(
∣∣x(k)− x∗

∣∣),
which can be seen from the Taylor expansion of α′ε(x) about x(k) and exploiting
α′ε(x∗) = 0, the first term on the right-hand side of (4.12) is bounded above by
O(|x(k) − x∗| · |x(k) − x(k−1)|). The last term is bounded above by O(|x(k) − x∗|2)
as
∣∣[α′′ε (x(k))]−1

∣∣ is bounded and α′′ε (x) is Lipschitz continous in B(x∗, νx). These
observations for the right-hand side of (4.12) lead us to

|x(k+1) − x∗| ≤ O(|x(k) − x∗| · |x(k) − x(k−1)|) +O(|x(k+1) − x(k)|2) +O(|x(k) − x∗|2).

The desired result (4.10) follows from |x(k)−x(k−1)| ≤ 2 max{|x(k)−x∗|, |x(k−1)−x∗|},
as well as |x(k+1) − x(k)|2 ≤ 2(|x(k) − x∗|2 + |x(k+1) − x∗|2).

5 Numerical Results

We have implemented the proposed subspace framework to minimize αε(x) in Mat-
lab. In this section, we perform numerical experiments using this implementation
in Matlab 2020b on an an iMac with Mac OS 12.1 operating system, Intel® Core™

i5-9600K CPU and 32GB RAM. Before focusing on numerical experiments on syn-
thetic examples and benchmark examples taken from the COMP leib collection [19]
in Sections 5.2 and 5.3, we first summarize a few important implementation details
in the next subsection.

5.1 Implementation Details

5.1.1 Initial Interpolation Points

We choose the initial interpolation points x1, . . . , xη in line 1 of the subspace frame-
work as follows unless they are made available explicitly. If there are multiple op-
timization parameters, then x1, . . . , xη are selected randomly in Ω. Otherwise, if
there is only one optimization parameter, we choose them as equally-spaced points
in Ω := [L,U ], i.e., xj := L + (j − 1)U−Lη−1 for j = 1, . . . , η. In all of the experiments
below, unless otherwise stated, the number of initial interpolation points is η = 10.

5.1.2 Termination Condition

In practice we terminate when the gap between the optimal values for the reduced
optimization problems in two consecutive iterations is less than a prescribed tolerance.
Formally, given a tolerance tol, we terminate at iteration k ≥ 3 if

α
Vk−1
ε (x(k))− αVk−2

ε (x(k−1)) < tol. (5.1)
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In practice we use tol = 10−7. Additionally, we terminate if the number of subspace
iterations exceeds a certain amount, which is 30 iterations in all of the numerical
experiments below. But this second condition is never needed for the examples here
as the condition in (5.1) with tol = 10−7 is always met in fewer than 10 iterations.

5.1.3 Solution of the Reduced Optimization Problems

The minimization of α
Vk−1
ε (x) over x ∈ Ω in line 6 of the proposed subspace framework

is performed using either “eigopt” [22] or “GRANSO” [12].
If there is only one parameter, then we rely on “eigopt” as it converges globally

provided a lower bound γ on the second derivatives of α
Vk−1
ε (x) where it is differ-

entiable is chosen small enough. In all of the experiments below depending on one
parameter, we set γ = −400, which seems to work well.

On the other hand, if there are multiple parameters, we depend on “GRANSO” for
the solution of these reduced optimization problems. The reason is “eigopt” is usually
slow when there are multiple optimization parameters, and the number of function
evaluations needed to satisfy a certain accuracy increases quite rapidly with respect to
the accuracy required. “GRANSO”, on the other hand, can solve multiple-parameter
problems quite efficiently. Yet, as it is based on BFGS and quasi-Newton methods,
it converges locally. For the numerical examples depending on multiple parameters
that we report below, this local convergence issue does not cause any problem.

The objective for the reduced optimization problem at the kth subspace iteration

is α
Vk−1
ε (x) meaning α

Vk−1
ε (x) needs to be computed at several x. This requires finding

the rightmost point of the rectangular pseudospectrum

Λε(A
Vk−1(x)) = {z ∈ C | σmin(AVk−1(x)− zVk−1) ≤ ε}.

For this purpose, we adopt the approach proposed in [17, Section 5.2], which is an ex-
tension of the quadratically convergent criss-cross algorithm for the ε-pseudospectral
abscissa of a square matrix [10] to rectangular pencils. We remark that AVk−1(x) and
Vk−1 are of size n × (k − 1). Hence, at first look they are not small scale. Yet, as
suggested in [17, Section 5.2], a reduced QR factorization[

Vk−1 AVk−1(x)
]

= Q
[
B̃ Ã

]
yields Ã, B̃ ∈ C(2k−2)×(k−1) such that

Λε(A
Vk−1(x)) = Λε(Ã, B̃) := {z ∈ C | σmin(Ã− zB̃) ≤ ε}.

To summarize, to compute α
Vk−1
ε (x) the rightmost point of Λε(Ã, B̃) depending on

small matrices is found cheaply using a criss-cross algorithm as in [10].
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One subtle issue is that it is essential for the criss-cross algorithm to locate the
rightmost point in Λε(Ã, B̃) to start iterating initially from a point in the rightmost
component of Λε(Ã, B̃). As a heuristic, it is proposed in [17, Section 5.2] to initialize
the criss-cross algorithm with the rightmost eigenvalue λ of the pencil L(s) = Ã1 −
sB̃1 satisfying σmin(Ã − λB̃) ≤ ε, where Ã1, B̃1 denote the upper (k − 1) × (k − 1)
parts of Ã, B̃. The difficulty is that there may not be such an eigenvalue of L(·)
satisfying σmin(Ã − λB̃) ≤ ε. As a safeguard, we additionally choose equally-spaced
point y1, . . . , yk in a prescribed subinterval (for the examples below [−2i, 2i]) of the
imaginary axis, then find the largest x such that σmin(Ã − (x + iyj)) = ε for j =
1, . . . , κ. Such largest x corresponding to yj , call it xR,j , for j = 1, . . . , κ is given by
the imaginary part of one of the purely imaginary eigenvalues of the pencil

L(s) =

[
−yjB̃∗ + iÃ∗ εI

−εI yjB̃ + iÃ

]
− s

[
B̃∗ 0

0 B̃

]
with the largest imaginary part [17, Lemma 5.1]. To conclude, we initialize the criss-
cross algorithm for rectangular pencils with the rightmost point among the points
xR,1, . . . , xR,κ and the point produced by the heuristic described above from [17,
Section 5.2].

5.1.4 Finding the Rightmost Point of Λε(x)

The computation of the rightmost point of Λε(x
(1)
j ) for j = 1, 2, . . . , η, and Λε(x

(j))
for j = 2, . . . , k is required by the subspace framework to form the subspace Vk. This
is usually the most intensive computational task, as it involves finding the rightmost
point in the ε-pseudospectral abscissa of the large matrix A(x) at various x. For this
purpose, we either employ the original criss-cross algorithm for the computation of the
pseudospectral abscissa [10] if the size of A(x) is less than or equal to a prescribed
amount, or the subspace framework in [17] if the size of A(x) is larger than the
prescribed amount. In the experiments below, this prescribed size is chosen as 1000.

5.2 Synthetic Examples Depending on One Parameter

We start by conducting numerical experiments with the synthetic examples used in
[21, Section 7], that are publicly available1. Each example here concerns a matrix-
valued function of the form A(x) = A+ xbcT over x ∈ R in a prescribed interval for
given A ∈ Rn×n, b, c ∈ Rn.

Recall that the distance to instability of a matrix M is defined by

D(M) := inf{ ‖∆‖2 | ∆ ∈ Rn×n s.t. Λ(M + ∆) ∩ C+ 6= ∅ },
1http://home.ku.edu.tr/~emengi/software/max_di/Data_&_Updates.html
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where C+ denotes the closed right-half of the complex plane. It follows from the
definition of D(M) that, for every ε > 0, we have

D(M) ≤ ε ⇐⇒ αε(M) ≥ 0. (5.2)

In [21, Section 7], the distance to instability for each example A(x) is maximized over
x in a prescribed interval I, and the maximal value of the distance to instability, as
well as the maximizer are reported. Letting x∗ be the global maximizer of D(A(x))
over x ∈ I, and D∗ := D(A(x∗)), we deduce from (5.2) that

min
x∈I

αε(A(x)) = αε(A(x∗)) = 0

for ε = D∗.
We illustrate the proposed subspace framework in Figure 1 to minimize αε(x) :=

αε(A(x)) for the example A(x) in [21, Section 7] of order n = 400 over x ∈ [−0.3, 0.2],
and with ε = 0.12870882 ≈ D(A(x∗)). The initial subspace V1 is chosen as the
2-dimensional subspace so that Hermite interpolation is attained between αε(x) and
αV1ε (x) at x = −0.2, 0.1. The reduced function αV1ε (x) is minimized over x ∈ [−0.3, 0.2];
its minimizer turns out to be x(2) = 0.0480905. Then the subspace V1 is expanded
into V2 so that αV2ε (x) interpolates αε(x) at x = x(2). The global minimizer of αV2ε (x)
is already quite close to the actual minimizer of αε(x) as can be seen in Figure 1.
The subspace framework on this example terminates after 4 subspace iterations. The
iterates of the subspace framework are given in Table 1. It appears from the second
and third columns of this table that x(k) converges to the minimizer x∗ of αε(x) at
a superlinear rate, consistent with the superlinear convergence assertion of Theorem
4.7. Also, as expected, the globally smallest value of αε(A(x)) is about 0, and the com-
puted global minimizer x∗ = −0.1056336 is about the same as the global maximizer
of D(A(x)) reported in [21, Section 7].

Table 1: The iterates of the subspace framework to minimize αε(A(x)) for the
example A(x) in [21, Section 7] of order n = 400, and with ε ≈ D(A(x∗)).

k x(k+1) |x(k+1) − x∗| αVkε (x(k+1))

1 −0.0480905 0.0575430 −0.0137274
2 −0.1088387 0.0032051 −0.0000501
3 −0.1056332 0.0000003 −0.0000000
4 −0.1056336 0.0000000 −0.0000000
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Figure 1: The progress of the subspace framework to minimize αε(A(x)) over x ∈
[−0.3, 0.2] for the example A(x) in [21, Section 7] of order n = 400, and with ε ≈
D(A(x∗)). The black circles mark the interpolation points, whereas the crosses mark
the global minimizers of αV1ε (x) and αV2ε (x).

The progress of the algorithm on this example can also be traced by looking at the
pseudospectra. When αV1ε (x) is minimized over x, it yields ΛV1ε (x(2)), the innermost
dashed-dotted blue curve in the leftmost plot in Figure 2. Then the subspace V1 is
expanded into V2 so that the rightmost point of ΛV2ε (x(2)) is the same as the rightmost
point of Λε(x

(2)), i.e., the rightmost point of the solid orange curve representing the
boundary of ΛV2ε (x(2)) is the same as the rightmost point of the dashed red curve
representing the boundary of Λε(x

(2)) in the leftmost plot in Figure 2. Next αV2ε (x)
is minimized over x yielding ΛV2ε (x(3)), the dashed-dotted blue curve in the middle
plot in Figure 2. Observe that ΛV2ε (x(3)) and ΛV2ε (x(2)) depicted by the orange curve
on the left are quite similar as x(2) and x(3) are close. Now V2 is expanded into V3

so as to ensure that the rightmost points of ΛV3ε (x(3)) and Λε(x
(3)), the rightmost

points of the solid orange and dashed red curves in the middle plot in Figure 2, are
the same. Minimizing ΛV3ε (x) over x yields ΛV3ε (x(4)), the dashed-dotted curve in the
rightmost plot in Figure 2 and so on. Note that, indeed, in these three plots the
boundaries of ΛVkε (x(k)) and Λε(x

(k)) are tangent to each other at their rightmost
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Figure 2: The subspace framework on the example A(x) in [21, Section 7] of or-
der n = 400 with ε ≈ D(A(x∗)) is traced by looking at the ε-pseudospectrum.
The dashed-dotted blue, solid orange, dashed red curves represent the boundaries of

ΛVkε (x(k+1)),Λ
Vk+1
ε (x(k+1)),Λε(x

(k+1)) for k = 1 (left plot), k = 2 (middle plot), k = 3

(right plot). The crosses mark the rightmost points of Λ
Vk+1
ε (x(k+1)),Λε(x

(k+1)). The
ε-pseudospectrum Λε(x

(k)) for k = 2, 3, 4 are generated using EigTool [26].

points for k = 2, 3, 4 from left to right.
We have also performed experiments with the examples from [21, Section 7] of

order n = 200, 400, 800, 1200, 2000 that concern the maximization of D(A(x)) on
the interval [−3, 3], where A(x) = A + xbcT for given An×n, b, c ∈ Rn. In each
case, we have minimized αε(A(x)) over x ∈ [−3, 3] using the subspace framework for
ε ≈ D(A(x∗)) (to be precise for ε equal to the reported value of D(A(x∗)) in [21,
Section 7], which is eight decimal digit accurate). The results are listed in Table 2.
The globally minimal value αε(x∗) of αε(x) is about 0 for each one of these examples as
expected. Moreover, the global minimizers x∗ of D(A(x)) listed in the table are close
to those reported in [21, Section 7]. The number of iterations until termination for
each one of the examples is 3 to 6 indicating quick convergence. As for the runtimes,
according to the table the main computational task that contributes to the runtime
is the computation of the ε-pseudospectral abscissa of A(x), which is required once
per iteration as well as to form the initial subspaces. On the other hand, the reduced
optimization problem that involves the minimization of αVkε (x) at the kth subspace
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Table 2: The table concerns the application of the subspace framework to the
examples from [21, Section 7] of order n = 200, 400, 800, 1200, 2000. In each case,
αε(A(x)) is minimized over x ∈ [−3, 3], where ε is the reported largest value of
D(A(x)) over x ∈ [−3, 3]. The last three columns list the total runtime (time), the
time for the reduced minimization problems (red), the time to compute the rightmost
point of Λε(A(x)) at various x (psa) in seconds.

n ε ≈ D(A(x∗)) x∗ αε(x∗) iter time red psa

200 0.01839422 0.09439 0 3 47.5 3.3 43.8
400 0.12870882 −0.10566 0 4 235.7 52.4 181.7
800 0.11545563 −0.05851 0.0000005 4 979.8 57.1 914.1
1200 0.07941192 −0.48625 0 3 616.6 138.8 471.8
2000 0.08436380 −0.04766 0.0000058 6 3210 59.7 3125.1

iteration is relatively cheap to solve. These two computational tasks determine the
total runtime.

5.3 Benchmark Examples

Several benchmark examples for the stabilization by static output feedback problem
are provided in the COMP leib collection [19]. The problems that we consider here
taken from COMP leib concern finding a K ∈ Rm×p such that A+BKC has all of its
eigenvalues in the open left-half of the complex plane for given A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rp×n. Minimizing the ε-pseudospectral abscissa of A + BKC over K for a
prescribed ε has also been suggested in [19] for the robust stabilization of the system.

We focus on three examples. The first one is about the stabilization of a single-
input-single-output system so that K is a scalar meaning there is only one parameter
to be optimized, whereas the remaining two examples depend on multiple optimization
parameters. Especially, the first and third examples involve relatively large matrices
so that a direct minimization of the ε-pseudospectral abscissa does not seem feasible.
In all of the examples, ε is chosen as 0.2.

NN18 (n = 1006, m = p =1). This example involves the stabilization of A+xbcT

over x ∈ R. We minimize αε(x) for ε = 0.2 over x ∈ [−1, 1] by employing the subspace
framework. The computed global minimizer is x∗ = −1, and the computed globally
smallest ε-pseudospectral abscissa is αε(x∗) = −0.9149600. The correctness of these
computed values can be verified by looking at Figure 3. Note that the original matrix
A is asymptotically stable, yet its ε-pseudospectral abscissa αε(0) = −0.8 is larger
than αε(x∗). Hence, optimizing αε(x) over x yields a system that is more robustly
stable compared to the original system. The subspace framework terminates after 3
subspace iterations, and the iterates generated are listed in Table 3. We also report
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the runtimes of the subspace framework in Table 4. Once again the computation of
αε(x) required several times to form and expand the subspaces dominate the run-
time, whereas the minimization of the reduced pseudospectral abscissa functions is
computationally much cheaper.
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Figure 3: The plots of αε(x) as a function of x for the NN18 example in the COMP leib
collection. The right-hand plot is a zoomed version of the left-hand plot focusing on
x ∈ [−1, 0.02].

Table 3: The iterates of the subspace framework to minimize αε(x) over x ∈ [−1, 1]
for the NN18 example.

k x(k+1) αVkε (x(k+1))

1 0.2319048 −1.0680310
2 −1.0000000 −0.9149600
3 −1.0000000 −0.9149600

Table 4: Optimal values for αε(x) over x ∈ [−1, 1] for the NN18 example obtained
using the subspace framework, as well as the runtimes for the subspace framework.
The last three columns list in seconds the total runtime, the time for the reduced
minimization problems, and the time to compute a rightmost point in Λε(x) several
times.

x∗ αε(x∗) αε(0) time red psa

−1 −0.9149600 −0.8 101.2 9.3 87.8

30



-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
0.17

0.175

0.18

0.185

0.19

0.195

0.2

0.205

0.21

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
0.17

0.175

0.18

0.185

0.19

0.195

0.2

Figure 4: The plots of αε(x) for ε = 0.2 as a function of x for the HF1 example from
the COMP leib collection near its computed global minimizer x∗ = (x∗,1, x∗,2). (Left)
The plot of x1 7→ αε(x1, x∗,2). (Right) The plot of x2 7→ αε(x∗,1, x2). The circles
mark (x∗,1, αε(x∗)) and (x∗,2, αε(x∗)) on the left and on the right, respectively.

HF1 (n = 130, m=1, p = 2). This example concerns the stabilization of A+BKC
with respect to K ∈ R1×2 for given A ∈ R130×130, B ∈ R130, C ∈ R2×130. We
minimize αε(x) using the subspace framework for ε = 0.2 and A(x) = A+ x1BC(1, :)
+x2BC(2, :) over x ∈ [−1, 1] × [−1, 1], where C(j, :) denotes the jth row of C. The
subspace framework terminates after two subspace iterations with the optimal value
of x as x∗ = (−0.36363,−0.26188), and the corresponding minimal value of the ε-
pseudospectral abscissa as αε(x∗) = 0.1749194. The accuracy of these computed
optimal values can be verified from Figure 4. Once again the optimized system is
more robustly stable compared to the original system with αε(0) = 0.1810205. The
runtimes in Table 5 again confirm that the total runtime is determined by the time
required for the computation of αε(x) at several x.

Table 5: Optimal values for αε(x) over x ∈ [−1, 1] × [−1, 1] for the HF1 example
obtained using the subspace framework, and the runtimes for the subspace framework.
The last three columns list the runtimes in seconds as in Table 4.

x∗ αε(x∗) αε(0) time red psa

(−0.36363, −0.26188) 0.1740919 0.1810205 11.4 0.5 10.7

HF2D2 (n = 3796, m = 2, p = 3). This is a large-scale example that arises
from a modeling of 2D heat flow [19, Section 3]. A stabilizer K ∈ R2×3 is sought so
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that A + BKC is asymptotically stable for given A ∈ R3796×3796, B ∈ R3796×2, C ∈
R3×3796. The original matrix A is unstable with spectral abscissa 0.2556862, and
ε-pseudospectral abscissa for ε = 0.2 equal to 0.4625511.

We express A + BKC in the form A(x) = A +
∑6

j=1 xjAj , where xj = k1j ,
x3+j = k2j , and Aj = B(:, 1)C(j, :), A3+j = B(:, 2)C(j, :) for j = 1, 2, 3, while
B(:, 1) and B(:, 2) represent the first and second columns of B. We minimize αε(x)
for ε = 0.2 with the constraints that xj ∈ [−1, 1] for j = 1, . . . , 6. The subspace
framework terminates after 4 subspace iterations with optimal x∗ corresponding to
the following matrix:

K∗ =

[
1 0.33494 1
1 −1 1

]
.

It appears from Figure 5 that the computed global minimizer is accurate. The re-
sulting matrix is asymptotically stable, as indeed αε(x∗) = −0.4124020. As depicted
in Figure 6, whereas one of the components of Λε(0) is fully on the right-hand side of
the complex plane, the rightmost component of Λε(x∗) is fully contained in the open
left-half of the complex plane. In terms of the runtime, now the reduced optimization
problems take more time than the time to compute αε(x) as reported in Table 6.
Yet, the overall runtime is quite reasonable considering the system at hand is of order
3796, and there are several optimization parameters.
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Figure 6: The plots of of the boundaries of the rightmost components of Λε(0) and
Λε(x∗) for the HF2D2 example. The crosses mark the rightmost two eigenvalues of
A, while the vertical line represents the imaginary axis.
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Figure 5: The plots of αε(x) for ε = 0.2 as a function of x for the HF2D2 example
near the computed global minimizer x∗ = (x∗,1, x∗,2, x∗,3, x∗,4, x∗,5, x∗,6). Each plot
corresponds to the graph of xj 7→ αε(x∗,j [xj ]), where x∗,j [xj ] is equal to x∗ except its
jth component is xj . The circle marks (x∗,j , αε(x∗)).
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Table 6: Optimal values of αε(x) over x ∈ [−1, 1]6 for the HF2D2 example by the
subspace framework, and the runtimes for the subspace framework. The last three
columns are runtimes in seconds as in Table 4.

αε(x∗) αε(0) time red psa

−0.4124020 0.4625511 46.1 29.1 14.5

6 Software

A Matlab implementation of the proposed subspace framework, that is Algorithm 1,
is publicly available at https://zenodo.org/record/6992092. This implementation
makes use of all of the implementation details described in Section 5.1. The numerical
results on the benchmark examples in Section 5.3 can be reproduced by running the
script demo on benchmarks.

7 Concluding Remarks

Minimization of the ε-pseudospectral abscissa of a matrix dependent on parameters for
a prescribed ε > 0 is motivated by robust stability and transient behavior considera-
tions for the associated linear control system, as well as stabilization problems such as
the stabilization by static output feedback. Here, we have proposed a subspace frame-
work to minimize the ε-pseudospectral abscissa of a large matrix-valued function de-
pendent on parameters analytically aiming at large-scale nature of the matrix-valued
function. The large-scale matrix-valued functions are restricted to small subspaces,
and the ε-pseudospectral abscissa of the resulting reduced small-scale matrix-valued
functions is minimized. The subspaces are gradually expanded so as to attain Hermite
interpolation properties between the ε-pseudospectral abscissa of the original and re-
duced matrix-valued functions at the minimizers of the reduced problems. We have
proven the global convergence of the subspace framework in the infinite dimensional
setting, that is the convergence of the optimal values of the reduced problems to the
globally smallest value of the ε-pseudospectral of the original matrix-valued function,
under mild assumptions. Additionally, we have shown that the rate of convergence of
the minimizers of the reduced problems to the global minimizer of the original prob-
lem is superlinear, again under mild assumptions. The validity of these theoretical
findings in practice is confirmed on synthetic and benchmark examples. The proposed
framework makes it feasible to minimize the pseudospectral abscissa of matrix-valued
functions of size on the order of thousands, such as the NN18 and HF2D2 examples
from the COMP leib collection, in a short time.

Some of the ingredients in an actual implementation of the overall subspace frame-
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work are locally convergent. Specifically, the subspace framework requires the right-
most point of the ε-pseudospectrum of the original matrix-valued function at several
parameter values, and if the matrix-valued function is really large, then it appears for
this purpose one has to rely on a subspace framework such as the one proposed in [17]
that converges locally. Additionally, if the minimization is over several parameters,
then it appears that the reduced minimization problems must be fulfilled by em-
ploying a locally convergent optimization algorithm such as those based on Newton’s
method, e.g., “GRANSO” [12]. There is no quick remedy for these local conver-
gence issues. However, we note that, on several benchmark examples, the subspace
framework indeed converges globally.

The reduced minimization problems require computing the ε-pseudospectral ab-
scissa of rectangular pencils as in (2.1). We solve at the moment such pseudospectral
abscissa problems using an extension of the criss-cross algorithm [11] to rectangular
pencils [17, Section 5.2]. One major challenge in the rectangular setting is that one
has to start from a point in the rightmost component of the associated rectangular
ε-pseudospectrum. We have outlined some ideas to overcome this challenge in Section
5.1.3. Yet, locating the rightmost point in the ε-pseudospectrum, and computing the
ε-pseudospectral abscissa for a rectangular pencil appear to be far from settled. This
is certainly a problem worth investigating in detail.
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