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Pseudospectra
Definition (ε-pseudospectrum)

Λε(A) =
⋃
‖E‖2≤ε

Λ(A + E)

=

{
λ ∈ C : ‖(A− λI)−1‖2 ≥

1
ε

}
= {λ ∈ C : σn(A− λI) ≤ ε}

(σj (·) : jth largest singular value)

Properties

Λε(A) is compact.
It has at most n disconnected components
(one component around each eigenvalue).
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Wilkinson Distance

Definition (Wilkinson Distance)

W(A) = inf{‖δA‖2 : ∃λ (A + δA) has λ as a multiple eigenvalue}

Note: Above definition is equivalent to the distance to the
nearest defective matrix.
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Wilkinson Distance

Wilkinson distance measures the sensitivity of the
worst-conditioned eigenvalue to perturbations.

Any matrix close to being defective has an ill-conditioned
eigenvalue.
Conversely, Ruhe (1970) and Wilkinson (1971) showed
that any matrix with an ill-conditioned eigenval. is close to
being defective

Wilkinson’s bound
W(A) ≤ ‖A‖2/

√
κ(λ)2 − 1
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Geometric View of Wilkinson Distance

C(A) := inf{ε : #comp (Λε(A)) ≤ n − 1}

It was conjectured by Demmel (1983), and later proven by
Alam and Bora (2005) that

W(A) = C(A).
Furthermore two components of Λε(A) for ε = C(A)
coalesce at λ∗ iff a nearest matrix at a distance ofW(A)
has λ∗ as a multiple eigenvalue.
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Geometric View of Wilkinson Distance

Orr-Sommerfeld matrix

W(A) = C(A) = 10−2.29

λ∗ = −0.1402− 0.1097i
(point of coalescence
marked with asterisk) is
the multiple eigenvalue of
a nearest matrix
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Generalized Wilkinson distance

Definition (Generalized Wilkinson Distance)

Wr (A) = inf{‖δA‖2 : ∃λ (A + δA) has λ as an eigenvalue of algebraic mult ≥ r}

The singular value characterization (M. 2011)

Wr (A) = infλ∈C supγ σnr−r+1





A− λI γ1,2I γ1,3I . . . γ1,r I

0 A− λI γ2,3I
...

0 0
. . .

A− λI γr−1,r I
0 A− λI




Problems

1 Geometric interpretation ofWr (A) in terms of pseudospectra
2 Optimizing symmetric eigenvalues numerically (e.g. computation of
Wr (A))
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Guess in terms of Pseudospectra

Cr (A) := inf{ε : #comp (Λε(A)) ≤ n − r + 1}

W2(A) = C2(A)

IsWr (A) = Cr (A) for r > 2? Turns out not true in general.
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Guess in terms of Pseudospectra

Matrix resulting from a discretization
of the convection-diffusion operator

W2(A) = C2(A) = 10−0.887

λ∗ = −2.4326 + 1.2803i
(point of coalescence marked
with asterisk) is the multiple
eigenvalue of a nearest matrix
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Guess in terms of Pseudospectra

Matrix resulting from a discretization of the
convection-diffusion operator

W3(A) = 10−0.584 > C3(A)

Λε(A) is illustrated for ε = 10−0.584.
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Guess in terms of Pseudospectra
W2(A) ≤ C2(A)

Λε(A)
λ1

λ2

λ∗

There exists a perturbation ∆A∗ of norm ε s.t.
λ1(A + ∆A∗) = λ2(A + ∆A∗) = λ∗
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Guess in terms of Pseudospectra
W2(A) ≤ C2(A)

Λε(A)
λ1

λ2

λ∗

There exists a perturbation ∆A∗ of norm ε s.t.
λ1(A + ∆A∗) = λ2(A + ∆A∗) = λ∗

Wr (A) � Cr (A) for r > 2

Λε(A)
λ1

λ2

λ3

λ∗

There doesn’t exist a perturbation ∆A∗ of norm ε s.t.
λ1(A + ∆A∗) = λ2(A + ∆A∗) = λ3(A + ∆A∗) = λ∗
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A Special Singular Value Function

A special singular value function

For r > 2 the function

g(r)(λ) := sup
γ
σnr−r+1





A− λI γ1,2I γ1,3I . . . γ1,r I

0 A− λI γ2,3I
...

0 0
. . .

A− λI γr−1,r I
0 A− λI


︸ ︷︷ ︸

A(λ,γ)∈Crn×rn :=


takes the role of g(λ) = σn (A− λI).

Note : g(r)(λ) is the distance from A to the nearest matrix with λ as an
eigenvalue with algebraic multiplicity ≥ r .
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A Special Singular Value Function

Theorem (Alam and Bora)

Let λ∗ ∈ C be a critical point of g(λ) = σn(A− λI) such that
(i) g(λ∗) = ε > 0, and

(ii) the multiplicity of σn(A− λ∗I) is one.
There exists a rank one perturbation δA with norm ε such that
A + δA has λ∗ as a (defective) multiple eigenvalue.
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A Special Singular Value Function

Theorem
Let λ∗ ∈ C be a critical point of g(r−1)(λ) such that

(i) g(r−1)(λ∗) = ε > 0, and
(ii) the multiplicity of the singular value g(r−1)(λ∗) is one.

There exists a rank (r − 1) perturbation δA with norm ε such
that A + δA has λ∗ as a (defective) eigenvalue with algebraic
multiplicity ≥ r .
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Generalized Pseudospectra

Definition (Generalized (ε, r)-pseudospectrum)

Λε,r (A) =
⋃
‖E‖2≤ε

{λ ∈ C : rank(A + E − λI)r ≤ n − r}

=
{
λ ∈ C : g(r)(λ) ≤ ε

}

Examples
Λε,1(A) = Λε(A) = {λ ∈ C : σn(A− λI) ≤ ε}

Λε,2(A) =

{
λ ∈ C : supγ σ2n−1

([
A− λI γI

0 A− λI

])
≤ ε
}

Emre Mengi Distances to multiple eigenvalues and eigenvalue optimization
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Generalized Pseudospectra Characterization

Gr (A) := inf{ε : two components of Λε,r−1(A) coalesce}.

Wr (A) = inf{‖δA‖2 : ∃λ (A + δA) has λ as an

eigenvalue of algebraic mult ≥ r}

Conjecture

Wr (A) = Gr (A)
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Generalized Pseudospectra Characterization

Matrix resulting from a discretization of the
convection-diffusion operator

W3(A) = 10−0.584 = G3(A)

Λε,2(A) is illustrated for ε = 10−0.584.

λ∗ = −2.6520 (point of coalescence
marked with asterisk) is the triple
eigenvalue of a nearest matrix
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Generalized Pseudospectra Characterization

Hatano matrix

W3(A) = 10−1.1973 = G3(A)

Λε,2(A) is illustrated for ε = 10−1.1973.

λ∗ = 0.6421 (point of coalescence
marked with asterisk) is the triple
eigenvalue of a nearest matrix
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Proof ofWr(A) ≤ Gr(A)

Theorem

Let λ∗ ∈ C be a critical point of g(r−1)(λ) such that

(i) g(r−1)(λ∗) = ε > 0, and

(ii) the multiplicity of the singular value g(r−1)(λ∗) is one.

There exists a rank (r − 1) perturbation δA with norm ε such that A + δA has
λ∗ as a (defective) eigenvalue with algebraic multiplicity ≥ r .
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Analyticity Result

Theorem (Rellich)

Let A(ω) : R→ Cn×n be a Hermitian matrix function that
depends on ω analytically. Each root of the characteristic
polynomial of A(ω) is an analytic function of ω.

The eigenvalues λ1(ω), . . . , λn(ω) ordered from largest to
smallest of A(ω) are piece-wise analytic.
The result does not extend to non-Hermitian functions.
e.g. the roots of the characteristic polynomial of

A(ω) =

[
0 1
ω 0

]
(given by ±√ω) are not analytic.
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Derivatives of Eigenvalues

Let λ̃(ω) be one of the unordered eigenvalues with the assoc.
unit eigenvector ṽ(ω) (which also varies analytically w.r.t ω).

First Derivative
λ̃′(ω) = ṽ∗(ω)

dA(ω)

dω
ṽ(ω)

Second Derivative

λ̃′′(ω) = ṽ∗(ω)
d2A(ω)

dω2 ṽ(ω) + 2ṽ∗(ω)
dA(ω)

dω

[
λ̃(ω)I −A(ω)

]+ dA(ω)

dω
ṽ(ω)
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unit eigenvector ṽ(ω) (which also varies analytically w.r.t ω).

First Derivative
λ̃′(ω) = ṽ∗(ω)
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dω
ṽ(ω)
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λ̃′′(ω) = ṽ∗(ω)
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dω2 ṽ(ω) + 2
∑

j,λ̃j (ω) 6=λ̃(ω)

1
λ̃(ω)− λ̃j (ω)

∣∣∣∣ṽ∗(ω)
dA(ω)

dω
ṽj (ω)

∣∣∣∣2
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Derivatives of Eigenvalues

Some observations helpful algorithmically

Analyticity implies the boundedness of derivatives. In
particular we will exploit the existence of a γ such that∣∣∣λ̃′′(ω)

∣∣∣ ≤ γ ∀ω.

Once λ̃(ω) is computed, λ̃′(ω) is available for free.
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Quadratic Models

Some notation
Let f : R→ R be a piece-wise analytic function defined in
terms of analytic functions f1, . . . , fn : R→ R,
γ be an upper bound on the second derivatives (in
absolute value) of fj for j = 1, . . . ,n,
xk , x ∈ R and xk ,1, . . . , xk ,m be points in (xk , x) where f is
not analytic, and
f ′(xk ) := minj=1,n f ′j (xk ).
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Quadratic Models

f (x) = f (xk ) +
m∑
`=0

∫ xk,`+1

xk,`

f ′(t)dt

Note: xk ,0 = xk and xk ,m+1 = x

Quadratic Model Function about xk

qk (x) := f (xk ) + f ′(xk )(x − xk )− γ

2
(x − xk )2

satisfies f (x) ≥ qk (x) for all x ∈ R.
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The Algorithm

Suppose that the global minimizer of f is in [a,b].

1 Initially x0 = a, x1 = b and s = 1. Evaluate f (x0), f (x1),
f ′(x0), and f ′(x1).

2 Find the global minimizer of x∗ of q(x) where

q(x) = max
k=0,s

qk (x).

3 Set xs+1 = x∗, evaluate f (xs+1), f ′(xs+1).
4 Let ` = q(x∗) and u = maxk=0,s+1f (xk ).
5 While u − l > ε, increment s and repeat steps 2-4.
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The Algorithm

Illustration of the algorithm on σn(A− ωiI) where σn denotes the
smallest singular value.

2.04 2.06 2.08 2.1 2.12 2.14

0.328

0.33

0.332

0.334

0.336

0.338

Emre Mengi Distances to multiple eigenvalues and eigenvalue optimization



Introduction
Generalized Wilkinson Distance and Pseudospectra

Numerical Optimization of Symmetric Eigenvalues
Summary

Eigenvalue Perturbation Results
One Dimensional Algorithm
Multi-dimensional Algorithm

The Algorithm

Illustration of the algorithm on σn(A− ωiI) where σn denotes the
smallest singular value.

2.04 2.06 2.08 2.1 2.12 2.14

0.328

0.33

0.332

0.334

0.336

0.338

Emre Mengi Distances to multiple eigenvalues and eigenvalue optimization



Introduction
Generalized Wilkinson Distance and Pseudospectra

Numerical Optimization of Symmetric Eigenvalues
Summary

Eigenvalue Perturbation Results
One Dimensional Algorithm
Multi-dimensional Algorithm

The Algorithm

Illustration of the algorithm on σn(A− ωiI) where σn denotes the
smallest singular value.

2.04 2.06 2.08 2.1 2.12 2.14

0.328

0.33

0.332

0.334

0.336

0.338

Emre Mengi Distances to multiple eigenvalues and eigenvalue optimization



Introduction
Generalized Wilkinson Distance and Pseudospectra

Numerical Optimization of Symmetric Eigenvalues
Summary

Eigenvalue Perturbation Results
One Dimensional Algorithm
Multi-dimensional Algorithm

The Algorithm

Illustration of the algorithm on σn(A− ωiI) where σn denotes the
smallest singular value.

2.04 2.06 2.08 2.1 2.12 2.14

0.328

0.33

0.332

0.334

0.336

0.338

Emre Mengi Distances to multiple eigenvalues and eigenvalue optimization



Introduction
Generalized Wilkinson Distance and Pseudospectra

Numerical Optimization of Symmetric Eigenvalues
Summary

Eigenvalue Perturbation Results
One Dimensional Algorithm
Multi-dimensional Algorithm

The Algorithm

Illustration of the algorithm on σn(A− ωiI) where σn denotes the
smallest singular value.

2.04 2.06 2.08 2.1 2.12 2.14

0.328

0.33

0.332

0.334

0.336

0.338

Emre Mengi Distances to multiple eigenvalues and eigenvalue optimization



Introduction
Generalized Wilkinson Distance and Pseudospectra

Numerical Optimization of Symmetric Eigenvalues
Summary

Eigenvalue Perturbation Results
One Dimensional Algorithm
Multi-dimensional Algorithm

Case Study

Distance to Instability

β(A) := inf{‖∆A‖2 : x ′(t) = (A + ∆A)x(t) is unstable}
= infω∈Rσn (A− ωiI)

Matrices result from a discretization of the Airy operator

# of function evaluations
n / ε 10−3 10−5 10−7 10−9 10−11

25 40 48 56 62 68
100 46 54 65 74 82
400 46 54 65 74 81
1600 46 54 64 68 69

Emre Mengi Distances to multiple eigenvalues and eigenvalue optimization



Introduction
Generalized Wilkinson Distance and Pseudospectra

Numerical Optimization of Symmetric Eigenvalues
Summary

Eigenvalue Perturbation Results
One Dimensional Algorithm
Multi-dimensional Algorithm

Case Study

Distance to Instability

β(A) := inf{‖∆A‖2 : x ′(t) = (A + ∆A)x(t) is unstable}
= infω∈Rσn (A− ωiI)

Matrices result from a discretization of the Airy operator

# of function evaluations
n / ε 10−3 10−5 10−7 10−9 10−11

25 40 48 56 62 68
100 46 54 65 74 82
400 46 54 65 74 81
1600 46 54 64 68 69

Emre Mengi Distances to multiple eigenvalues and eigenvalue optimization



Introduction
Generalized Wilkinson Distance and Pseudospectra

Numerical Optimization of Symmetric Eigenvalues
Summary

Eigenvalue Perturbation Results
One Dimensional Algorithm
Multi-dimensional Algorithm

Case Study

Distance to Instability

β(A) := inf{‖∆A‖2 : x ′(t) = (A + ∆A)x(t) is unstable}
= infω∈Rσn (A− ωiI)

Matrices result from a discretization of the Airy operator

cpu-times
n / ε 10−3 10−5 10−7 10−9 10−11

25 0.06 0.09 0.09 0.10 0.12
100 0.87 0.96 1.13 1.27 1.41
400 13.53 15.73 18.82 21.02 23.26

1600 362 409 474 505 506
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Non-analyticity Result

For a multivariate Hermitian function A(ω) : Rn → Cn×n

that depend on ω analytically an unordered eigenvalue
λ̃(ω) is not analytic in general.

e.g. The roots of the characteristic polynomial of

A(ω) =

[
ω1

ω1+ω2
2

ω1+ω2
2 ω2

]

(given by ω1 + ω2 ±
√

2
√
ω2

1 + ω2
2) are not analytic.

But λ̃(ω) is analytic over any line in Rn (due to Rellich’s
result).
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Model Functions

Let f : Rn → R be analytic over any line in Rn, and
γ be an upper bound on the second derivative (on any line
in Rn) of f .

Quadratic Model Function about xk

qk (x) := f (xk ) +∇f (xk )T (x − xk )− γ

2
(x − xk )T (x − xk )

satisfies f (x) ≥ qk (x) for all x ∈ Rn.
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The Algorithm
The algorithm remains the same. But the calculation of a global minimizer of

q(x) = max
k=0,s

qk (x)

appears to be more difficult computationally.
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The Algorithm
The algorithm remains the same. But the calculation of a global minimizer of

q(x) = max
k=0,s

qk (x)

appears to be more difficult computationally.

q5

(a1, b1) (a2, b1)

(a1, b2) (a2, b2)

q1
q2

q3

q4

Split the region where a global minimizer
is known to lie into subregions.

In subregion qk the quadratic function
qk (x) ≥ qj (x) ∀j 6= k .
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The Algorithm

Finding a global minimizer of q(x) = maxk=0,s qk (x)

Solve the quadratic program (QP) for k = 0, . . . , s.

minimizex∈Rn qk (x)

subject to qk (x) ≥ qj(x), j 6= k
x` ∈ [a`,b`] ` = 1, . . . ,n
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The Algorithm

Notes on the quadratic program

The constraints qk (x) ≥ qj (x) are linear.

The fact that qk (x) is negative definite makes the QP NP-hard.

The solution will be attained at a vertex. There are at most
(

s
n

)
vertices.

In practice number of vertices is much smaller; for n = 2 typically each
QP has 5-6 vertices regardless of s.

For small n each QP can be solved efficiently.
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Case Study

Wilkinson Distance

W(A) := inf{‖δA‖2 : ∃λ (A + δA) has λ a multiple eigenvalue}

= inf
λ∈C

sup
γ∈C

σ2n−1

([
A− λI γI

0 A− λI

])

Random matrices

# of function evaluations
n / ε 10−2 10−3 10−4 10−5

10 74 80 84 89
20 102 111 114 115
40 101 135 148 155
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Case Study

Wilkinson Distance

W(A) := inf{‖δA‖2 : ∃λ (A + δA) has λ a multiple eigenvalue}

= inf
λ∈C

sup
γ∈C

σ2n−1

([
A− λI γI

0 A− λI

])

Random matrices

cpu-times
n / ε 10−2 10−3 10−4 10−5

10 4.90 6.09 6.99 9.22
20 24.5 30.1 34.0 34.3
40 32.8 69.7 90.4 103.6
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Summary

A conjecture has been made relating the the psedospectra
and generalized Wilkinson distance.

In particular it is shown thatWr (A) ≤ Gr (A).

A generic algorithm is introduced for the optimization of
symmetric eigenvalues based on their analyticity.

Future work
The directionWr (A) ≥ Gr (A) remains open.

Improvements on the algorithm for the optimization of
eigenvalues in the multivariate-case
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