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Problem

ǫ-pseudospectrum

Λǫ(A) = {λ ∈ C : ∃E s.t. ‖E‖2 ≤ ǫ and det(A + E − λI) = 0}

= {λ ∈ C : σn(A − λI) ≤ ǫ}.
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Problem

ǫ-pseudospectrum

Λǫ(A) = {λ ∈ C : ∃E s.t. ‖E‖2 ≤ ǫ and det(A + E − λI) = 0}

= {λ ∈ C : σn(A − λI) ≤ ǫ}.

Backward error of an eigenvalue λ

inf{‖∆A‖ : det(A + ∆A − λI) = 0} = σn(A − λI)

If λ is a point on the boundary of Λǫ(A), then

∃∆A such that ‖∆A‖ = ǫ and (A + ∆A) has λ as an eigenvalue.
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Problem

1. If λ is a point where two components of Λǫ(A) coalesce, then

∃∆A s.t. ‖∆A‖ = ǫ and (A + ∆A) has λ as an eval with mult ≥ r = 2.

2. Smallest ǫ s.t. two components of Λǫ(A) coalesce is the distance to
the nearest matrix with an eigenvalue of multiplicity ≥ r = 2.
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Problem

1. If λ is a point where two components of Λǫ(A) coalesce, then

∃∆A s.t. ‖∆A‖ = ǫ and (A + ∆A) has λ as an eval with mult ≥ r = 2.

2. Smallest ǫ s.t. two components of Λǫ(A) coalesce is the distance to
the nearest matrix with an eigenvalue of multiplicity ≥ r = 2.

How do 1. and 2. generalize for an arbitrary r?
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Motivation and Definition

Absolute condition number of an eigenvalue λ

κ(λ) = lim
δ→0

sup
‖∆A‖≤δ

|δλ|

‖∆A‖
=

1

y∗x

where

δλ = λ(∆A) − λ

y, x ∈ C
n : unit left and right eigenvectors associated with λ
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Motivation and Definition

Absolute condition number of an eigenvalue λ

κ(λ) = lim
δ→0

sup
‖∆A‖≤δ

|δλ|

‖∆A‖
=

1

y∗x

where

δλ = λ(∆A) − λ

y, x ∈ C
n : unit left and right eigenvectors associated with λ

(i.e. Ax = λx and y∗A = λy∗)

y∗x = 0 for a (defective) eigenvalue associated with a Jordan block of
size two.
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Motivation and Definition

The eigenvalues corresponding to non-linear elementary divisors must, in
general, be regarded as ill-conditioned ... However we must not be misled
into thinking that this is the main form of ill-conditioning. Even if the
eigenvalues are distinct and well separated they may still be very
ill-conditioned.

J.H. WILKINSON, THE ALGEBRAIC EIGENVALUE PROBLEM
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eigenvalues are distinct and well separated they may still be very
ill-conditioned.
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Motivation and Definition

W (ǫ) =



























20 20

19 20

18 20

. . .
. . .

2 20

ǫ 1



























W (ǫ) has λ = 10.5 as a defective multiple eigenvalue for ǫ ≈ 7.8 × 10−14.
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W (ǫ) has λ = 10.5 as a defective multiple eigenvalue for ǫ ≈ 7.8 × 10−14.

Definition (Wilkinson Distance):
The distance in 2-norm from A to the nearest defective matrix

W(A) = inf{‖∆A‖2 : ∃λ (A + ∆A) has λ as a defect eigval}

= inf{‖∆A‖2 : ∃λ (A + ∆A) has λ as a mult eigval}

is called the Wilkinson distance of A.
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Motivation and Definition

Wilkinson distance measures the sensitivity of the worst-conditioned
eigenvalue to perturbations.

Any matrix close to defectiveness has an ill-conditioned
eigenvalue.
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Motivation and Definition

Wilkinson distance measures the sensitivity of the worst-conditioned
eigenvalue to perturbations.

Any matrix close to defectiveness has an ill-conditioned
eigenvalue.

Conversely, any matrix with an ill-conditioned eigenvalue is close
to defectiveness (Ruhe, 1970 and Wilkinson, 1971).

Wilkinson’s bound

W(A) ≤ ‖A‖2/
√

κ(λ)2 − 1
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Wilkinson Distance and Pseudospectra

The ǫ-pseudospectrum of a matrix A (the set of eigenvalues of
matrices within an ǫ-neighborhood of A)
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The ǫ-pseudospectrum of a matrix A (the set of eigenvalues of
matrices within an ǫ-neighborhood of A)

Λǫ(A) = {λ ∈ C : ∃E s.t. ‖E‖2 ≤ ǫ and det(A + E − λI) = 0}

= {λ ∈ C : σn(A − λI) ≤ ǫ}.

Define

C(A) = inf{ǫ : #comp (Λǫ(A)) ≤ n − 1}
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Wilkinson Distance and Pseudospectra

The ǫ-pseudospectrum of a matrix A (the set of eigenvalues of
matrices within an ǫ-neighborhood of A)

Λǫ(A) = {λ ∈ C : ∃E s.t. ‖E‖2 ≤ ǫ and det(A + E − λI) = 0}

= {λ ∈ C : σn(A − λI) ≤ ǫ}.

Define

C(A) = inf{ǫ : #comp (Λǫ(A)) ≤ n − 1}

It was conjectured by Demmel (1983), and later proven by Alam and
Bora (2005) that

W(A) = C(A),

Two components of Λǫ(A) for ǫ = C(A) coalesce at λ∗ iff a nearest
matrix at a distance of W(A) has λ∗ as a multiple eigenvalue.
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Wilkinson Distance and Pseudospectra
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Wilkinson Distance and Pseudospectra

A =
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W(A) = C(A) = 10−1.0693

λ∗ = 2.5057 (point of coalescence marked with asterisk) is the
multiple eigenvalue of a nearest matrix.
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Wilkinson Distance and Pseudospectra

Proof of W(A) = C(A)
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Proof of W(A) = C(A)

Let (A + ∆A∗) be the nearest matrix such that ‖∆A∗‖ = W(A) and
with λ∗ as a multiple eigenvalue.
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Proof of W(A) = C(A)

Let (A + ∆A∗) be the nearest matrix such that ‖∆A∗‖ = W(A) and
with λ∗ as a multiple eigenvalue.

There exist two continuous curves λ1, λ2 : [0, 1] → C s.t.

1. λ1(t), λ2(t) are distinct eigenvalues of A + t∆A∗ for t < 1.
2. λ1(1) = λ2(1) = λ∗.
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Wilkinson Distance and Pseudospectra

Proof of W(A) = C(A)

For the other direction let λ∗ be a critical point of g(λ) = σn(A − λI).
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Proof of W(A) = C(A)

For the other direction let λ∗ be a critical point of g(λ) = σn(A − λI).

Theorem (Rellich):
Let f : R → R be defined as f(ω) = σj(A(ω)) (σj denoting the
jth largest singular value). If the multiplicity of σj(A (ω̃)) is one and
σj (A(ω̃)) 6= 0, then f(ω) is real analytic at ω̃ with the derivative

f ′(ω̃) = Real

(

u∗ dA(ω̃)

dω
v

)

where u and v consist of a consistent pair of a unit left and a right
singular vector associated with σj (A(ω̃)).
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Proof of W(A) = C(A)

For the other direction let λ∗ be a critical point of g(λ) = σn(A − λI).

Theorem (Rellich):
Let f : R → R be defined as f(ω) = σj(A(ω)) (σj denoting the
jth largest singular value). If the multiplicity of σj(A (ω̃)) is one and
σj (A(ω̃)) 6= 0, then f(ω) is real analytic at ω̃ with the derivative

f ′(ω̃) = Real

(

u∗ dA(ω̃)

dω
v

)

where u and v consist of a consistent pair of a unit left and a right
singular vector associated with σj (A(ω̃)).

Viewing g : R2 → R yields

Real(u∗v) = Real(iu∗v) = 0 =⇒ u∗v = 0
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Wilkinson Distance and Pseudospectra

Proof of W(A) = C(A)

Let g(λ∗) = σn(A − λI) = ǫ. Then defining ∆A = −ǫuv∗ we have

(A + ∆A − λI)v = (A − λI)v + ∆Av = ǫu − ǫu = 0

u∗(A + ∆A − λI) = u∗(A − λI) + u∗∆A = ǫv∗ − ǫv∗ = 0
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Proof of W(A) = C(A)

Let g(λ∗) = σn(A − λI) = ǫ. Then defining ∆A = −ǫuv∗ we have

(A + ∆A − λI)v = (A − λI)v + ∆Av = ǫu − ǫu = 0

u∗(A + ∆A − λI) = u∗(A − λI) + u∗∆A = ǫv∗ − ǫv∗ = 0

Therefore u, v are left, right eigenvectors of A + ∆A associated with
λ∗ such that u∗v = 0 implying λ∗ is a multiple eigenvalue of A + ∆A.

Theorem (Alam and Bora):
Let λ∗ ∈ C be a critical point of g(λ) = σn(A − λI) such that g(λ∗) =

ǫ > 0. There exists a perturbation ∆A with norm ǫ such that A + ∆A

has λ∗ as a multiple eigenvalue.
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Wilkinson Distance and Pseudospectra

Proof of W(A) = C(A)

Now suppose λ∗ is a point of coalescence of two components of
Λǫ(A) for ǫ = C(A).
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Proof of W(A) = C(A)

Now suppose λ∗ is a point of coalescence of two components of
Λǫ(A) for ǫ = C(A).

Suppose the multiplicity of σn(A − λ∗I) = C(A) is two or greater
with the left singular vectors u1, u2 and right singular vectors
v1, v2. Define ∆A = −C(A)[u1 u2][v1 v2]

∗ and note

(A + ∆A − λ∗I)[v1 v2] = 0.
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Proof of W(A) = C(A)

Now suppose λ∗ is a point of coalescence of two components of
Λǫ(A) for ǫ = C(A).

Suppose the multiplicity of σn(A − λ∗I) = C(A) is two or greater
with the left singular vectors u1, u2 and right singular vectors
v1, v2. Define ∆A = −C(A)[u1 u2][v1 v2]

∗ and note

(A + ∆A − λ∗I)[v1 v2] = 0.

If the multiplicity of σn(A − λ∗I) = C(A) is one, λ∗ must be a
critical point. From previous theorem we have a perturbation ∆A

of norm C(A) such that A + ∆A has λ∗ as a multiple eigenvalue.
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Proof of W(A) = C(A)

Now suppose λ∗ is a point of coalescence of two components of
Λǫ(A) for ǫ = C(A).

Suppose the multiplicity of σn(A − λ∗I) = C(A) is two or greater
with the left singular vectors u1, u2 and right singular vectors
v1, v2. Define ∆A = −C(A)[u1 u2][v1 v2]

∗ and note

(A + ∆A − λ∗I)[v1 v2] = 0.

If the multiplicity of σn(A − λ∗I) = C(A) is one, λ∗ must be a
critical point. From previous theorem we have a perturbation ∆A

of norm C(A) such that A + ∆A has λ∗ as a multiple eigenvalue.

Therefore C(A) ≥ W(A).
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Wilkinson Distance and Pseudospectra

The following characterizations are useful for computational purposes.

The smallest saddle point characterization

W(A) = inf {σn(A − λI) : λ ∈ C is a saddle point of σn(A − λI)}
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Wilkinson Distance and Pseudospectra

The following characterizations are useful for computational purposes.

The smallest saddle point characterization

W(A) = inf {σn(A − λI) : λ ∈ C is a saddle point of σn(A − λI)}

The singular value characterization (Malyshev, 1999)

W(A) = inf
λ∈C

sup
γ∈(0,1]

σ2n−1









A − λI γI

0 A − λI
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Generalized Wilkinson Distance and Pseudospectra

Definition (Generalized Wilkinson Distance):
The distance from A to the nearest matrix with an eigenvalue of multiplicity
r or greater
Wr(A) = inf{‖∆A‖2 : ∃λ (A + ∆A) has λ as an eigenvalue of mult ≥ r}

is called the generalized Wilkinson distance of A.
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Definition (Generalized Wilkinson Distance):
The distance from A to the nearest matrix with an eigenvalue of multiplicity
r or greater
Wr(A) = inf{‖∆A‖2 : ∃λ (A + ∆A) has λ as an eigenvalue of mult ≥ r}

is called the generalized Wilkinson distance of A.

The singular value characterization (M. 2008)

Wr(A) = inf
λ∈C

sup
γ

σnr−r+1
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where γ = [γ1,2 γ1,3 . . . γr−1,r]
T ∈ C

(r−1)r/2.
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Generalized Wilkinson Distance and Pseudospectra

For the 6 × 6 smoke matrix S

W3(S) = 0.3270 and the nearest matrix has λ∗ = −0.3841 − 0.6767i

as the eigenvalue with multiplicity 3.
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For the 6 × 6 smoke matrix S

W3(S) = 0.3270 and the nearest matrix has λ∗ = −0.3841 − 0.6767i

as the eigenvalue with multiplicity 3.
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Generalized Wilkinson Distance and Pseudospectra

Wr(A) does not appear to be relevant to Λǫ(A).
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Wr(A) does not appear to be relevant to Λǫ(A).

The generalized (ǫ, r)-pseudospectrum (the eigenvalues with
multiplicity r or greater of the matrices within an ǫ neighborhood)

Λǫ,r(A) = {λ ∈ C : ∃E s.t. ‖E‖2 ≤ ǫ and rank(A + E − λI)r ≤ n − r}.
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Generalized Wilkinson Distance and Pseudospectra

Wr(A) does not appear to be relevant to Λǫ(A).

The generalized (ǫ, r)-pseudospectrum (the eigenvalues with
multiplicity r or greater of the matrices within an ǫ neighborhood)

Λǫ,r(A) = {λ ∈ C : ∃E s.t. ‖E‖2 ≤ ǫ and rank(A + E − λI)r ≤ n − r}.

For instance Λǫ,2 consists of the multiple eigenvalues of the matrices
within an ǫ neighborhood.

Λǫ,2(A) = {λ ∈ C : ∃E s.t. ‖E‖2 ≤ ǫ and rank(A + E − λI)2 ≤ n − 2}

=







λ ∈ C : sup
γ∈(0,1]

σ2n−1









A − λI γI

0 A − λI







 ≤ ǫ







October 28, 2009 – p.17/30



Generalized Wilkinson Distance and Pseudospectra

For the 6 × 6 smoke matrix S
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Generalized Wilkinson Distance and Pseudospectra
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Generalized Wilkinson Distance and Pseudospectra

It appears that

often two components of Λǫ,r(A) coalesce for ǫ = Wr+1(A),
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It appears that

often two components of Λǫ,r(A) coalesce for ǫ = Wr+1(A),

a point of coalescence is λ∗ whenever a nearest matrix at a
distance of Wr+1(A) has λ∗ as an eigenvalue of multiplicity r + 1.
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It appears that

often two components of Λǫ,r(A) coalesce for ǫ = Wr+1(A),

a point of coalescence is λ∗ whenever a nearest matrix at a
distance of Wr+1(A) has λ∗ as an eigenvalue of multiplicity r + 1.

Alam and Bora showed that

σn(A − λ∗I) = ǫ > 0 and (λ∗ is a critical point of σn(A − λI))

=⇒

∃∆A s.t. ‖∆A‖ = ǫ and (λ∗ is a multiple eigenvalue of A + ∆A)
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Generalized Wilkinson Distance and Pseudospectra

Proposition

g(λ∗) = ǫ > 0 and (λ∗ is a critical point of g(λ))

=⇒

∃∆A s.t. ‖∆A‖ = ǫ and (λ∗ is an eigenvalue of A + ∆A with multiplicity ≥ r + 1)
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Proposition

g(λ∗) = ǫ > 0 and (λ∗ is a critical point of g(λ))

=⇒

∃∆A s.t. ‖∆A‖ = ǫ and (λ∗ is an eigenvalue of A + ∆A with multiplicity ≥ r + 1)

where

g(λ) = sup
γ
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Generalized Wilkinson Distance and Pseudospectra

Outline of the proof of the proposition

Assumptions

Suppose g(λ∗) = σnr−r+1 (A(λ∗, γ∗)). Then the multiplicity of
σnr−r+1 (A(λ∗, γ∗)) is one.
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Outline of the proof of the proposition

Assumptions

Suppose g(λ∗) = σnr−r+1 (A(λ∗, γ∗)). Then the multiplicity of
σnr−r+1 (A(λ∗, γ∗)) is one.

Let U = [uT
1 uT

2 . . . uT
r ] and V = [vT

1 vT
2 . . . vT

r ] be a consistent pair
of unit left and right singular vectors associated with
σnr−r+1 (A(λ∗, γ∗)) where u1, . . . , ur, v1, . . . , vr ∈ Cn. The sets

{u1, u2, . . . ur} and {v1, v2, . . . vr}

are linearly independent.
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Outline of the proof of the proposition

A nearest matrix with λ∗ as an eigenvalue of multiplicity r or greater
is given by

A − ǫ[u1 u2 . . . ur][v1 v2 . . . vr]
†

October 28, 2009 – p.23/30



Generalized Wilkinson Distance and Pseudospectra

Outline of the proof of the proposition

A nearest matrix with λ∗ as an eigenvalue of multiplicity r or greater
is given by

A − ǫ[u1 u2 . . . ur][v1 v2 . . . vr]
†

The fact that g(λ∗) = supγ σnr−r+1 (A(λ∗, γ)) implies

u∗
jvk = 0 for all j, k such that j < k.
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Outline of the proof of the proposition

Define for i = 1, . . . , n

gi(λ) = sup
γ

σnr−r+1
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B

B

B

B

B

B
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B

B
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6

6

6

6

6

6

4

A − λ∗I γ1,2I γ1,3I . . . γ1,rI

0
. . . γ2,3I

...

0 0 A − λI
| {z }

ith block row

. . . γr−1,rI

0 A − λ∗I

3

7

7

7

7

7

7

7

7

7

7

7

7

5

1
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Outline of the proof of the proposition

Define for i = 1, . . . , n

gi(λ) = sup
γ

σnr−r+1
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A − λ∗I γ1,2I γ1,3I . . . γ1,rI

0
. . . γ2,3I

...

0 0 A − λI
| {z }

ith block row

. . . γr−1,rI

0 A − λ∗I
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7
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7

7

7

7

7

7

7

7

5

1

C

C

C

C
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C

C

C

C

C

C

C

A

gi(λ) is the distance to the nearest matrix with r − 1 of the
eigenvalues equal to λ∗ and the remaining equal to λ. Therefore

gi(λ) = gj(λ) for all i, j.
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Outline of the proof of the proposition

Take the derivatives of gi for all i

g′i(λ∗) = u∗
i vi = u∗

jvj = g′j(λ∗)
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Outline of the proof of the proposition

Take the derivatives of gi for all i

g′i(λ∗) = u∗
i vi = u∗

jvj = g′j(λ∗)

Furthermore λ∗ is a critical point of g(λ) implying

g′(λ∗) =
n

∑

i=1

u∗
i vi = 0 =⇒ u∗

i vi = 0 for all i
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Outline of the proof of the proposition

Theorem:
Let u1 be a left eigenvector and {v1, v2, . . . , vr} be a linearly indepen-
dent set of right eigenvectors of A associated with λ. If u∗

1vj = 0 for
j = 1, . . . , r, then λ is an eigenvalue of A with multiplicity r + 1 or
greater.
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Outline of the proof of the proposition

Theorem:
Let u1 be a left eigenvector and {v1, v2, . . . , vr} be a linearly indepen-
dent set of right eigenvectors of A associated with λ. If u∗

1vj = 0 for
j = 1, . . . , r, then λ is an eigenvalue of A with multiplicity r + 1 or
greater.

For the matrix

Ap = A − ǫ[u1 u2 . . . ur][v1 v2 . . . vr]
†

u1, u2, . . . ur are the left eigenvectors and v1, v2, . . . , vr are the right
eigenvectors associated with λ∗.
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Outline of the proof of the proposition

Since u∗
1vj = 0 for j = 1, . . . , r, it follows that λ∗ is an eigenvalue of

Ap with multiplicity r + 1 or greater.
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Outline of the proof of the proposition

Since u∗
1vj = 0 for j = 1, . . . , r, it follows that λ∗ is an eigenvalue of

Ap with multiplicity r + 1 or greater.

It can also be shown that

‖Ap − A‖ = ‖ − ǫ[u1 u2 . . . ur][v1 v2 . . . vr]
†‖ = ǫ

deducing the proposition.
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Corollary of the Proposition

Define

Cr(A) = inf{ǫ : two components of Λǫ,r−1(A) coalesce}
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Corollary of the Proposition

Define

Cr(A) = inf{ǫ : two components of Λǫ,r−1(A) coalesce}

If at a point of coalescence of Λǫ,r−1(A) for ǫ = Cr(A) the multiplicity
and linear independence assumptions hold, then

Wr(A) ≤ Cr(A)
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The other direction Wr(A) ≥ Cr(A) seems to be usually true, but not
always.
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The other direction Wr(A) ≥ Cr(A) seems to be usually true, but not
always.
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