Multiple Eigenvalues with Prespecified Multiplicitesand Pseudospectra

Emre Mengi

Department of Mathematics**Koc** University emengi@ku.edu.tr

http://home.ku.edu.tr/∼emengi

SIAM Conference on Applied Linear Algebra 2009

ϵ -pseudospectrum \bullet

$$
\Lambda_{\epsilon}(A) = \{ \lambda \in \mathbb{C} : \exists E \text{ s.t. } ||E||_2 \le \epsilon \text{ and } \det(A + E - \lambda I) = 0 \}
$$

= $\{ \lambda \in \mathbb{C} : \sigma_n(A - \lambda I) \le \epsilon \}.$

ϵ -pseudospectrum \bullet

$$
\Lambda_{\epsilon}(A) = \{ \lambda \in \mathbb{C} : \exists E \text{ s.t. } ||E||_2 \le \epsilon \text{ and } \det(A + E - \lambda I) = 0 \}
$$

= $\{ \lambda \in \mathbb{C} : \sigma_n(A - \lambda I) \le \epsilon \}.$

\bullet Backward error of an eigenvalue λ

$$
\inf\{\|\Delta A\| : \det(A + \Delta A - \lambda I) = 0\} = \sigma_n(A - \lambda I)
$$

ϵ -pseudospectrum \bullet

$$
\Lambda_{\epsilon}(A) = \{ \lambda \in \mathbb{C} : \exists E \text{ s.t. } ||E||_2 \le \epsilon \text{ and } \det(A + E - \lambda I) = 0 \}
$$

= $\{ \lambda \in \mathbb{C} : \sigma_n(A - \lambda I) \le \epsilon \}.$

 \bullet Backward error of an eigenvalue λ

$$
\inf\{\|\Delta A\| : \det(A + \Delta A - \lambda I) = 0\} = \sigma_n(A - \lambda I)
$$

\n- If
$$
\lambda
$$
 is a point on the boundary of $\Lambda_{\epsilon}(A)$, then
\n- $\exists \Delta A$ such that $\|\Delta A\| = \epsilon$ and $(A + \Delta A)$ has λ as an eigenvalue.
\n

- 1. If λ is a point where two components of $\Lambda_\epsilon(A)$ coalesce, then ∃ ΔA s.t. $\|\Delta A\| = \epsilon$ and $(A + \Delta A)$ has λ as an eval with mult $\geq r = 2.$
- 2. Smallest ϵ s.t. two components of $\Lambda_\epsilon(A)$ coalesce is the distance to the nearest matrix with an eigenvalue of multiplicity $\geq r=2.$

- 1. If λ is a point where two components of $\Lambda_\epsilon(A)$ coalesce, then ∃ ΔA s.t. $\|\Delta A\| = \epsilon$ and $(A + \Delta A)$ has λ as an eval with mult $\geq r = 2.$
- 2. Smallest ϵ s.t. two components of $\Lambda_\epsilon(A)$ coalesce is the distance to the nearest matrix with an eigenvalue of multiplicity $\geq r=2.$

How do 1. and 2. generalize for an arbitrary r ?

Absolute condition number of an eigenvalue λ

$$
\kappa(\lambda) = \lim_{\delta \to 0} \sup_{\|\Delta A\| \le \delta} \frac{|\delta \lambda|}{\|\Delta A\|} = \frac{1}{y^*x}
$$

where

$$
\delta\lambda = \lambda(\Delta A) - \lambda
$$

 $y, x\in\mathbb{C}^n$: unit left and right eigenvectors associated with λ

 \bullet Absolute condition number of an eigenvalue λ

$$
\kappa(\lambda) = \lim_{\delta \to 0} \sup_{\|\Delta A\| \le \delta} \frac{|\delta \lambda|}{\|\Delta A\|} = \frac{1}{y^*x}
$$

where

$$
\delta\lambda = \lambda(\Delta A) - \lambda
$$

 $y, x \in \mathbb{C}^n$: unit left and right eigenvectors associated with λ
(i.e. $Ax = \lambda x$ and $y^*A = \lambda y^*$)

Absolute condition number of an eigenvalue λ

$$
\kappa(\lambda) = \lim_{\delta \to 0} \sup_{\|\Delta A\| \le \delta} \frac{|\delta \lambda|}{\|\Delta A\|} = \frac{1}{y^*x}
$$

where

$$
\delta\lambda = \lambda(\Delta A) - \lambda
$$

 $y, x \in \mathbb{C}^n$: unit left and right eigenvectors associated with λ
(i.e. $Ax = \lambda x$ and $y^*A = \lambda y^*$)

 y^\ast $^{\ast}x=0$ for a (defective) eigenvalue associated with a Jordan block of size two.

The eigenvalues corresponding to non-linear elementary divisors must, ingeneral, be regarded as ill-conditioned ... However we must not be misledinto thinking that this is the main form of ill-conditioning. Even if theeigenvalues are distinct and well separated they may still be veryill-conditioned.

J.H. WILKINSON, THE ALGEBRAIC EIGENVALUE PROBLEM

The eigenvalues corresponding to non-linear elementary divisors must, ingeneral, be regarded as ill-conditioned ... However we must not be misledinto thinking that this is the main form of ill-conditioning. Even if theeigenvalues are distinct and well separated they may still be veryill-conditioned.

J.H. WILKINSON, THE ALGEBRAIC EIGENVALUE PROBLEM

 $W(\epsilon)$ has $\lambda=10.5$ as a defective multiple eigenvalue for $\epsilon\approx 7.8\times 10^{-14}$.

 $W(\epsilon)$ has $\lambda=10.5$ as a defective multiple eigenvalue for $\epsilon\approx 7.8\times 10^{-14}$.

Definition (Wilkinson Distance):

The distance in 2-norm from A to the nearest defective matrix

$$
\mathcal{W}(A) = \inf \{ ||\Delta A||_2 : \exists \lambda \ (A + \Delta A) \text{ has } \lambda \text{ as a defect eigval} \}
$$

 $= \inf \{ \|\Delta A\|_2 : \exists \lambda \ \ (A + \Delta A) \text{ has } \lambda \text{ as a mult eigval} \}$

is called the *Wilkinson distance* of A .

- Wilkinson distance measures the sensitivity of the worst-conditioned \bullet eigenvalue to perturbations.
	- Any matrix close to defectiveness has an ill-conditioned \bullet eigenvalue.

- Wilkinson distance measures the sensitivity of the worst-conditionedeigenvalue to perturbations.
	- Any matrix close to defectiveness has an ill-conditionedeigenvalue.
	- Conversely, any matrix with an ill-conditioned eigenvalue is close to defectiveness (Ruhe, 1970 and Wilkinson, 1971).

Wilkinson's bound

$$
W(A) \le ||A||_2 / \sqrt{\kappa(\lambda)^2 - 1}
$$

The ϵ -pseudospectrum of a matrix A (the set of eigenvalues of matrices within an ϵ -neighborhood of $A)$

The ϵ -pseudospectrum of a matrix A (the set of eigenvalues of matrices within an ϵ -neighborhood of $A)$

 $\Lambda_{\epsilon}(A)$ = { $\lambda \in \mathbb{C} : \exists E \text{ s.t. } ||E||_2 \leq \epsilon \text{ and } \det(A + E -\lambda I$) = 0}.

The ϵ -pseudospectrum of a matrix A (the set of eigenvalues of matrices within an ϵ -neighborhood of $A)$

$$
\Lambda_{\epsilon}(A) = \{ \lambda \in \mathbb{C} : \exists E \text{ s.t. } ||E||_2 \le \epsilon \text{ and } \det(A + E - \lambda I) = 0 \}
$$

= $\{ \lambda \in \mathbb{C} : \sigma_n(A - \lambda I) \le \epsilon \}.$

The ϵ -pseudospectrum of a matrix A (the set of eigenvalues of matrices within an ϵ -neighborhood of $A)$

$$
\Lambda_{\epsilon}(A) = \{ \lambda \in \mathbb{C} : \exists E \text{ s.t. } ||E||_2 \le \epsilon \text{ and } \det(A + E - \lambda I) = 0 \}
$$

= $\{ \lambda \in \mathbb{C} : \sigma_n(A - \lambda I) \le \epsilon \}.$

Define

$$
\mathcal{C}(A) = \inf \{ \epsilon : \#comp\left(\Lambda_{\epsilon}(A)\right) \leq n - 1 \}
$$

The ϵ -pseudospectrum of a matrix A (the set of eigenvalues of matrices within an ϵ -neighborhood of $A)$

$$
\Lambda_{\epsilon}(A) = \{ \lambda \in \mathbb{C} : \exists E \text{ s.t. } ||E||_2 \le \epsilon \text{ and } \det(A + E - \lambda I) = 0 \}
$$

= $\{ \lambda \in \mathbb{C} : \sigma_n(A - \lambda I) \le \epsilon \}.$

Define

$$
\mathcal{C}(A) = \inf \{ \epsilon : \#comp\left(\Lambda_{\epsilon}(A)\right) \leq n - 1 \}
$$

- It was conjectured by Demmel (1983), and later proven by Alam and
Produces and their constances Bora (2005) that
	- $\mathcal{W}(A)=\mathcal{C}(A),$
	- Two components of $\Lambda_\epsilon(A)$ for $\epsilon=\mathcal{C}(A)$ coalesce at λ_* matrix at a distance of $\mathcal{W}(A)$ has λ_* $_{\ast}$ iff a nearest $_{\ast}$ as a multiple eigenvalue.

$$
A = \left[\begin{array}{rrr} 1 & -1 & 2 \\ 0 & 2 & -2 \\ 0 & 0 & 3 \end{array} \right]
$$

$$
A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -2 \\ 0 & 0 & 3 \end{bmatrix}
$$

$$
W(A) = C(A) = 10^{-1.0693}
$$

 λ_{*} multiple eigenvalue of ^a nearest matrix. $_{*} = 2.5057$ (point of coalescence marked with asterisk) is the

Proof of
$$
W(A) = C(A)
$$

Proof of $\mathcal{W}(A)=\mathcal{C}(A)$

Let $(A + \Delta A_*)$ be the nearest matrix such that $\| \Delta A_* \| = \mathcal{W}(A)$ and with λ_* as a ⊦ $_{\ast}$ as a multiple eigenvalue.

- Let $(A + \Delta A_*)$ be the nearest matrix such that $\| \Delta A_* \| = \mathcal{W}(A)$ and with λ_* as \imath $_{\ast}$ as a multiple eigenvalue.
	- There exist two continuous curves λ_1, λ_2 $_2: [0,1] \rightarrow \mathbb{C}$ s.t. \bullet 1. $\,\lambda_1(t),\lambda_2(t)$ are distinct eigenvalues of $A+t\Delta A_*$ $_{*}$ for $t < 1$. 2. $\lambda_1(1) = \lambda_2(1) = \lambda_*$.

- Let $(A + \Delta A_*)$ be the nearest matrix such that $\| \Delta A_* \| = \mathcal{W}(A)$ and with λ_* as \imath $_{\ast}$ as a multiple eigenvalue.
	- There exist two continuous curves λ_1, λ_2 $_2: [0,1] \rightarrow \mathbb{C}$ s.t. \bullet 1. $\,\lambda_1(t),\lambda_2(t)$ are distinct eigenvalues of $A+t\Delta A_*$ $_{*}$ for $t < 1$. 2. $\lambda_1(1) = \lambda_2(1) = \lambda_*$.
	- $\lambda_1(t), \lambda_2(t) \in \Lambda_{\epsilon}(A)$ for all $t \in [0,1]$ and $\epsilon = \mathcal{W}(A)$.

- Let $(A + \Delta A_*)$ be the nearest matrix such that $\| \Delta A_* \| = \mathcal{W}(A)$ and with λ_* as \imath $_{\ast}$ as a multiple eigenvalue.
	- There exist two continuous curves λ_1, λ_2 $_2: [0,1] \rightarrow \mathbb{C}$ s.t. \bullet 1. $\,\lambda_1(t),\lambda_2(t)$ are distinct eigenvalues of $A+t\Delta A_*$ $_{*}$ for $t < 1$. 2. $\lambda_1(1) = \lambda_2(1) = \lambda_*$.
	- $\lambda_1(t), \lambda_2(t) \in \Lambda_{\epsilon}(A)$ for all $t \in [0,1]$ and $\epsilon = \mathcal{W}(A)$.

$$
\bullet \ \#comp\left(\Lambda_{\epsilon}(A)\right) < n \text{ for } \epsilon = \mathcal{W}(A).
$$

- Let $(A + \Delta A_*)$ be the nearest matrix such that $\| \Delta A_* \| = \mathcal{W}(A)$ and with λ_* as \imath $_{\ast}$ as a multiple eigenvalue.
	- There exist two continuous curves λ_1, λ_2 $_2: [0,1] \rightarrow \mathbb{C}$ s.t. 1. $\,\lambda_1(t),\lambda_2(t)$ are distinct eigenvalues of $A+t\Delta A_*$ 2. $\lambda_1(1) = \lambda_2(1) = \lambda_*$. $_{*}$ for $t < 1$.
	- $\lambda_1(t), \lambda_2(t) \in \Lambda_{\epsilon}(A)$ for all $t \in [0,1]$ and $\epsilon = \mathcal{W}(A)$.
	- $\#\textit{comp}(\Lambda_{\epsilon}(A)) < n$ for $\epsilon = \mathcal{W}(A)$.
- Therefore $\mathcal{W}(A) \geq \mathcal{C}(A)$.

Proof of $\mathcal{W}(A)=\mathcal{C}(A)$

 $_*$ be a critical point of $g(\lambda) = \sigma_n(A -\lambda I$). For the other direction let λ_* ┙

Proof of $\mathcal{W}(A)=\mathcal{C}(A)$

For the other direction let λ_* $_*$ be a critical point of $g(\lambda) = \sigma_n(A -\lambda I$). Theorem (Rellich):

Let f : $\mathbb{R} \to \mathbb{R}$ be defined as $f(\omega) \ = \ \sigma_j(\mathcal{A}(\omega))$ (σ_j denoting the *j*th largest singular value). If the multiplicity of $\sigma_j(\mathcal{A}(\tilde{\omega}))$ is one and $\sigma_j\left(\mathcal{A}(\tilde{\omega})\right)\neq 0,$ then $f(\omega)$ is real analytic at $\tilde{\omega}$ with the derivative

$$
f'(\tilde{\omega}) = \mathrm{Real} \left(u^* \frac{d \mathcal{A}(\tilde{\omega})}{d \omega} v \right)
$$

where u and v consist of a consistent pair of a unit left and a right singular vector associated with $\sigma_j\left(\mathcal{A}(\tilde{\omega})\right)$.

Proof of $\mathcal{W}(A)=\mathcal{C}(A)$

For the other direction let λ_* $_*$ be a critical point of $g(\lambda) = \sigma_n(A -\lambda I$). Theorem (Rellich):

Let f : $\mathbb{R} \to \mathbb{R}$ be defined as $f(\omega) \ = \ \sigma_j(\mathcal{A}(\omega))$ (σ_j denoting the *j*th largest singular value). If the multiplicity of $\sigma_j(\mathcal{A}(\tilde{\omega}))$ is one and $\sigma_j\left(\mathcal{A}(\tilde{\omega})\right)\neq 0,$ then $f(\omega)$ is real analytic at $\tilde{\omega}$ with the derivative

$$
f'(\tilde{\omega}) = \mathrm{Real} \left(u^* \frac{d \mathcal{A}(\tilde{\omega})}{d \omega} v \right)
$$

where u and v consist of a consistent pair of a unit left and a right singular vector associated with $\sigma_j\left(\mathcal{A}(\tilde{\omega})\right)$.

Viewing $g:\mathbb{R}^2$ $^2\to\mathbb{R}$ yields

$$
Real(u^*v) = Real(iu^*v) = 0 \Longrightarrow u^*v = 0
$$

Proof of
$$
W(A) = C(A)
$$

Let
$$
g(\lambda_*) = \sigma_n(A - \lambda I) = \epsilon
$$
. Then defining $\Delta A = -\epsilon uv^*$ we have
\n
$$
(A + \Delta A - \lambda I)v = (A - \lambda I)v + \Delta Av = \epsilon u - \epsilon u = 0
$$
\n
$$
u^*(A + \Delta A - \lambda I) = u^*(A - \lambda I) + u^*\Delta A = \epsilon v^* - \epsilon v^* = 0
$$

Proof of
$$
W(A) = C(A)
$$

Let
$$
g(\lambda_*) = \sigma_n(A - \lambda I) = \epsilon
$$
. Then defining $\Delta A = -\epsilon uv^*$ we have
\n
$$
(A + \Delta A - \lambda I)v = (A - \lambda I)v + \Delta Av = \epsilon u - \epsilon u = 0
$$
\n
$$
u^*(A + \Delta A - \lambda I) = u^*(A - \lambda I) + u^*\Delta A = \epsilon v^* - \epsilon v^* = 0
$$

Therefore $u, \, v$ are left, right eigenvectors of $A + \Delta A$ associated with λ_* such that $u^*v=0$ implying λ_* is a multiple eig $_{\ast}$ such that u^{\ast} $^*v=0$ implying $\frac{\lambda_*}{\lambda_*}$ $_*$ is a multiple eigenvalue of $A+\Delta A.$

Proof of
$$
W(A) = C(A)
$$

Let $g(\lambda_*) = \sigma_n(A (A + \Delta A - \lambda I)v =$ $(A - \lambda I)v + \Delta Av =$ $(\lambda - \lambda I) = \epsilon$. Then defining $\Delta A = -\epsilon uv^*$ we have $(\lambda I)v =$ $(A (\lambda I)v + \Delta Av = \epsilon u -\epsilon u = 0$ u^{\ast} $^*(A + \Delta A -\lambda I$) = u^* $^{\ast}(A -\lambda I$) + u^* * $\Delta A = \epsilon v^*$ * $-\epsilon v^* = 0$

Therefore $u, \, v$ are left, right eigenvectors of $A + \Delta A$ associated with λ_* such that $u^*v=0$ implying λ_* is a multiple eig $_{\ast}$ such that u^{\ast} $^*v=0$ implying $\frac{\lambda_*}{\lambda_*}$ $_*$ is a multiple eigenvalue of $A+\Delta A.$

Theorem (Alam and Bora):

Let $\lambda_*\in\mathbb{C}$ be a critical point of $g(\lambda)=\sigma_n(A-1)$ $\epsilon>0.$ There exists a perturbation ΔA with norm ϵ such that $A+\Delta A$ $(\lambda - \lambda I)$ such that $g(\lambda_*) =$ has λ_* _{*} as a multiple eigenvalue.

Proof of $\mathcal{W}(A)=\mathcal{C}(A)$

Now suppose λ_* $\Lambda_\epsilon(A)$ for $\epsilon=\mathcal{C}(A).$ $_{\ast}$ is a point of coalescence of two components of
Proof of $\mathcal{W}(A)=\mathcal{C}(A)$

- Now suppose λ_* $_{\ast}$ is a point of coalescence of two components of $\Lambda_\epsilon(A)$ for $\epsilon=\mathcal{C}(A).$
	- Suppose the multiplicity of $\sigma_n(A-\lambda_* I)=\mathcal{C}(A)$ is two or greater with the left singular vectors u_1, u_2 and right $\mathbf s$ $_{\rm 2}$ and right singular vectors v_1, v_2 . Define $\Delta A = -\mathcal{C}(A)[u_1 \;\; u_2] [v_1 \;\; v_2]^*$ and note

$$
(A + \Delta A - \lambda_* I)[v_1 \quad v_2] = 0.
$$

Proof of $\mathcal{W}(A)=\mathcal{C}(A)$

- Now suppose λ_* $_{\ast}$ is a point of coalescence of two components of $\Lambda_\epsilon(A)$ for $\epsilon=\mathcal{C}(A).$
	- Suppose the multiplicity of $\sigma_n(A-\lambda_* I)=\mathcal{C}(A)$ is two or greater with the left singular vectors u_1, u_2 and right $\mathbf s$ $_{\rm 2}$ and right singular vectors v_1, v_2 . Define $\Delta A = -\mathcal{C}(A)[u_1 \;\; u_2] [v_1 \;\; v_2]^*$ and note

$$
(A + \Delta A - \lambda_* I)[v_1 \quad v_2] = 0.
$$

If the multiplicity of $\sigma_n(A-\lambda_* I) = \mathcal{C}(A)$ is one, λ_* $_{*}$ must be a \bullet critical point. From previous theorem we have a perturbation ΔA of norm ${\cal C}(A)$ such that $A+\Delta A$ has λ_* as a multiple eigenvalu ϵ $_{\ast}$ as a multiple eigenvalue.

Proof of $\mathcal{W}(A)=\mathcal{C}(A)$

- Now suppose λ_* $_{\ast}$ is a point of coalescence of two components of $\Lambda_\epsilon(A)$ for $\epsilon=\mathcal{C}(A).$
	- Suppose the multiplicity of $\sigma_n(A-\lambda_* I)=\mathcal{C}(A)$ is two or greater with the left singular vectors u_1, u_2 and right $\mathbf s$ $_{\rm 2}$ and right singular vectors v_1, v_2 . Define $\Delta A = -\mathcal{C}(A)[u_1 \;\; u_2] [v_1 \;\; v_2]^*$ and note

$$
(A + \Delta A - \lambda_* I)[v_1 \ \ v_2] = 0.
$$

If the multiplicity of $\sigma_n(A-\lambda_* I) = \mathcal{C}(A)$ is one, λ_* $_{*}$ must be a \bullet critical point. From previous theorem we have a perturbation ΔA of norm ${\cal C}(A)$ such that $A+\Delta A$ has λ_* as a multiple eigenvalu ϵ $_{\ast}$ as a multiple eigenvalue.

Therefore $\mathcal{C}(A) \geq \mathcal{W}(A)$.

The following characterizations are useful for computational purposes.

The smallest saddle point characterization

 $\mathcal{W}(A)=\inf\big\{\sigma_n(A-\big)$ $-\lambda I$) : $\lambda \in \mathbb{C}$ is a saddle point of $\sigma_n(A-\lambda I)$ $-\lambda I$ ³}

The following characterizations are useful for computational purposes.

The smallest saddle point characterization

 $\mathcal{W}(A)=\inf\big\{\sigma_n(A-\big)$ $-\lambda I$) : $\lambda \in \mathbb{C}$ is a saddle point of $\sigma_n(A-\lambda I)$ $-\lambda I$ ³}

The singular value characterization (Malyshev, 1999)

$$
W(A) = \inf_{\lambda \in \mathbb{C}} \sup_{\gamma \in (0,1]} \sigma_{2n-1} \left(\begin{bmatrix} A - \lambda I & \gamma I \\ 0 & A - \lambda I \end{bmatrix} \right)
$$

Definition (Generalized Wilkinson Distance):

The distance from A to the nearest matrix with an eigenvalue of multiplicity \overline{r} or greater

 $\mathcal{W}_r(A) = \inf \{ \|\Delta A\|_2 : \exists \lambda \ \ (A + \Delta A) \text{ has } \lambda \text{ as an eigenvalue of mult } \geq r \}$

is called the generalized Wilkinson distance of $A.$

Definition (Generalized Wilkinson Distance):

The distance from A to the nearest matrix with an eigenvalue of multiplicity \overline{r} or greater

 $\mathcal{W}_r(A) = \inf \{ \|\Delta A\|_2 : \exists \lambda \ \ (A + \Delta A) \text{ has } \lambda \text{ as an eigenvalue of mult } \geq r \}$ is called the generalized Wilkinson distance of $A.$

The singular value characterization (M. 2008)

$$
\mathcal{W}_r(A) = \inf_{\lambda \in \mathbb{C}} \sup_{\gamma} \sigma_{nr-r+1} \left(\begin{bmatrix} A - \lambda I & \gamma_{1,2}I & \gamma_{1,3}I & \dots & \gamma_{1,r}I \\ 0 & A - \lambda I & \gamma_{2,3}I & & \vdots \\ 0 & 0 & \ddots & & \\ & & A - \lambda I & \gamma_{r-1,r}I \\ & & & & 0 & A - \lambda I \end{bmatrix} \right)
$$

where $\gamma=[\gamma_{1,2}\;\gamma_{1,3}\;\dots\;\gamma_{r-1,r}]^T$ $T \in \mathbb{C}^{(r-1)r/2}$ 2.

For the 6×6 smoke matrix S

 $\mathcal{W}_3(S)=0.3270$ and the nearest matrix has $\lambda_*=-0.3841-0.6767i$ as the eigenvalue with multiplicity 3.

For the 6×6 smoke matrix S

 $\mathcal{W}_3(S)=0.3270$ and the nearest matrix has $\lambda_*=-0.3841-0.6767i$ as the eigenvalue with multiplicity 3.

 $\mathcal{W}_r(A)$ does not appear to be relevant to $\Lambda_\epsilon(A).$

 $\mathcal{W}_r(A)$ does not appear to be relevant to $\Lambda_\epsilon(A).$

The generalized (ϵ, r) -pseudospectrum (the eigenvalues with multiplicity r or greater of the matrices within an ϵ neighborhood)

 $\Lambda_{\epsilon,r}(A) = \{\lambda \in \mathbb{C} : \exists E \text{ s.t. } ||E||_2 \leq \epsilon \text{ and } \text{rank}(A+E-\epsilon) \}$ $(-\lambda I)^r$ $r\leq n-r\}.$

 $\mathcal{W}_r(A)$ does not appear to be relevant to $\Lambda_\epsilon(A).$

The generalized (ϵ, r) -pseudospectrum (the eigenvalues with multiplicity r or greater of the matrices within an ϵ neighborhood)

 $\Lambda_{\epsilon,r}(A) = \{\lambda \in \mathbb{C} : \exists E \text{ s.t. } ||E||_2 \leq \epsilon \text{ and } \text{rank}(A+E-\epsilon) \}$ $(-\lambda I)^r$ $r\leq n-r\}.$

For instance $\Lambda_{\epsilon,2}$ $_{\rm 2}$ consists of the multiple eigenvalues of the matrices within an ϵ neighborhood.

$$
\Lambda_{\epsilon,2}(A) = \left\{ \lambda \in \mathbb{C} : \exists E \text{ s.t. } ||E||_2 \le \epsilon \text{ and } \text{rank}(A + E - \lambda I)^2 \le n - 2 \right\}
$$

$$
= \left\{ \lambda \in \mathbb{C} : \sup_{\gamma \in (0,1]} \sigma_{2n-1} \left(\begin{bmatrix} A - \lambda I & \gamma I \\ 0 & A - \lambda I \end{bmatrix} \right) \le \epsilon \right\}
$$

For the 6×6 smoke matrix S

It appears that

often two components of $\Lambda_{\epsilon,r}(A)$ coalesce for $\epsilon=\mathcal{W}_{r+1}(A),$

It appears that

- often two components of $\Lambda_{\epsilon,r}(A)$ coalesce for $\epsilon=\mathcal{W}_{r+1}(A),$
- a point of coalescence is λ_* whenever a nearest matrix ε distance of $\mathcal{W}_{r+1}(A)$ has λ_* $_{\ast}$ whenever a nearest matrix at a $_{\ast}$ as an eigenvalue of multiplicity $r+1.$

It appears that

- often two components of $\Lambda_{\epsilon,r}(A)$ coalesce for $\epsilon=\mathcal{W}_{r+1}(A),$
- a point of coalescence is λ_* whenever a neares $_{\ast}$ whenever a nearest matrix at a distance of $\mathcal{W}_{r+1}(A)$ has λ_* $_{\ast}$ as an eigenvalue of multiplicity $r+1.$
- Alam and Bora showed that

$$
\sigma_n(A - \lambda_* I) = \epsilon > 0 \text{ and } (\lambda_* \text{ is a critical point of } \sigma_n(A - \lambda I))
$$

$$
\implies
$$

$$
\exists \Delta A \text{ s.t. } ||\Delta A|| = \epsilon \text{ and } (\lambda_* \text{ is a multiple eigenvalue of } A + \Delta A)
$$

Proposition

 $g(\lambda_*) = \epsilon > 0$ and $(\lambda_*$ is a critical point of $g(\lambda)$)

 $\exists \Delta A \text{ s.t. } ||\Delta A|| = \epsilon \text{ and } (\lambda_* \text{ is an eigenvalue})$ * is an eigenvalue of $A + \Delta A$ with multiplicity $\geq r + 1$)

=⇒

Proposition

 $g(\lambda_*) = \epsilon > 0$ and $(\lambda_*$ is a critical point of $g(\lambda)$)

=⇒

 $\exists \Delta A \text{ s.t. } ||\Delta A|| = \epsilon \text{ and } (\lambda_* \text{ is an eigenvalue})$ where* is an eigenvalue of $A + \Delta A$ with multiplicity $\geq r + 1$)

$$
g(\lambda) = \sup_{\gamma} \sigma_{nr-r+1} \begin{bmatrix} A - \lambda I & \gamma_{1,2}I & \gamma_{1,3}I & \dots & \gamma_{1,r}I \\ 0 & A - \lambda I & \gamma_{2,3}I & \vdots \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & A - \lambda I & \gamma_{r-1,r}I \\ 0 & A - \lambda I & \lambda I \end{bmatrix}
$$

Outline of the proof of the proposition

Assumptions

Suppose $g(\lambda_*) = \sigma_{nr-r+1}\left(\mathcal{A}(\lambda_*, \gamma_*)\right)$. Then the multiplicity of $\left(1, 1/2, \ldots, 1/2\right)$ $\sigma_{nr-r+1}\left(\mathcal{A}(\lambda_*,\gamma_*)\right)$ is one.

Outline of the proof of the proposition

Assumptions

- Suppose $g(\lambda_*) = \sigma_{nr-r+1}\left(\mathcal{A}(\lambda_*, \gamma_*)\right)$. Then the multiplicity of $\left(1, 1/2, \ldots, 1/2\right)$ $\sigma_{nr-r+1}\left(\mathcal{A}(\lambda_*,\gamma_*)\right)$ is one.
- Let $\mathcal{U} = [u_1^T]$ of unit left and right singular vectors associated with $_1^T$ u_2^T $\frac{1}{2}$... u_i $\, T \,$ $\{T\}$ and $\mathcal{V}=[v_1^T]$]
] $_1^T$ v_2^T $\frac{1}{2}$... v_r $\, T \,$ $\left[T\atop r\right]$ be a consistent pair] $\sigma_{nr-r+1}\left(\mathcal{A}(\lambda_*,\gamma_*)\right)$ where $u_1,\ldots,u_r,v_1,\ldots,v_r\in\mathbb{C}^n.$ The sets

$$
\{u_1, u_2, \ldots u_r\} \text{ and } \{v_1, v_2, \ldots v_r\}
$$

are linearly independent.

Outline of the proof of the proposition

A nearest matrix with λ_* $_{\ast}$ as an eigenvalue of multiplicity r or greater is given by

$$
A - \epsilon [u_1 \ u_2 \ \ldots \ u_r][v_1 \ v_2 \ \ldots \ v_r]^\dagger
$$

Outline of the proof of the proposition

A nearest matrix with λ_* $_{\ast}$ as an eigenvalue of multiplicity r or greater is given by

$$
A - \epsilon [u_1 \ u_2 \ \ldots \ u_r][v_1 \ v_2 \ \ldots \ v_r]^{\dagger}
$$

The fact that $g(\lambda_*)=\sup_{\gamma} \sigma_{nr-r+1}\left(\mathcal{A}(\lambda_*,\gamma)\right)$ implies

$$
u_j^* v_k = 0 \text{ for all } j, k \text{ such that } j < k.
$$

Outline of the proof of the proposition

Define for $i = 1, \ldots, n$

Outline of the proof of the proposition

• Define for
$$
i = 1, \ldots, n
$$

$$
g_i(\lambda) = \sup_{\gamma} \sigma_{nr-r+1} \left(\begin{bmatrix} A - \lambda_* I & \gamma_{1,2}I & \gamma_{1,3}I & \dots & \gamma_{1,r}I \\ & \vdots & \ddots & \gamma_{2,3}I & \vdots \\ 0 & 0 & \underbrace{A - \lambda I}_{i\text{th block row}} & \\ & & \ddots & \gamma_{r-1,r}I \\ & & & 0 & A - \lambda_* I \end{bmatrix} \right)
$$

 $g_i(\lambda)$ is the distance to the nearest matrix with $r-1$ of the eigenvalues equal to λ_* and the remaining equal $_{*}$ and the remaining equal to $\lambda.$ Therefore

$$
g_i(\lambda) = g_j(\lambda) \text{ for all } i, j.
$$

Outline of the proof of the proposition

Take the derivatives of g_i for all i \bullet

$$
g_i'(\lambda_*) = u_i^* v_i = u_j^* v_j = g_j'(\lambda_*)
$$

Outline of the proof of the proposition

Take the derivatives of g_i for all i

$$
g_i'(\lambda_*) = u_i^* v_i = u_j^* v_j = g_j'(\lambda_*)
$$

Furthermore λ_* $_{*}$ is a critical point of $g(\lambda)$ implying

$$
g'(\lambda_*) = \sum_{i=1}^n u_i^* v_i = 0 \quad \Longrightarrow \quad u_i^* v_i = 0 \text{ for all } i
$$

Outline of the proof of the proposition

Theorem:

Let u_1 $_1$ be a left eigenvector and $\{v_1, v_2, \ldots, v_r\}$ be a linearly independent set of right eigenvectors of A associated with λ . If u_1^* $_1^*v_j = 0$ for $j~=~1,\ldots,r,$ then λ is an eigenvalue of A with multiplicity $r+1$ or greater.

Outline of the proof of the proposition

Theorem:

Let u_1 dent set of right eigenvectors of A associated with λ . If u_1^* $_1$ be a left eigenvector and $\{v_1, v_2, \ldots, v_r\}$ be a linearly indepen- $_1^*v_j = 0$ for $j~=~1,\ldots,r,$ then λ is an eigenvalue of A with multiplicity $r+1$ or greater.

For the matrix

$$
A_p = A - \epsilon [u_1 \ u_2 \ \dots \ u_r][v_1 \ v_2 \ \dots \ v_r]^\dagger
$$

 $u_1, u_2, \ldots u_r$ are the left eigenvectors and v_1, v_2, \ldots, v_r are the right eigenvectors associated with $\lambda_*.$

Outline of the proof of the proposition

Since $u_{\texttt{\tiny 1}}^*$ A_p with multiplicity $r+1$ or greater. $_{1}^{\ast }v_{j}=0$ for $j=1,\ldots ,r,$ it follows that $\lambda _{\ast }$ $_{\ast}$ is an eigenvalue of

Outline of the proof of the proposition

Since $u_{\texttt{\tiny 1}}^*$ A_p with multiplicity $r+1$ or greater. $_{1}^{\ast }v_{j}=0$ for $j=1,\ldots ,r,$ it follows that $\lambda _{\ast }$ $_{\ast}$ is an eigenvalue of

It can also be shown that

$$
||A_p - A|| = || - \epsilon [u_1 \ u_2 \ \dots \ u_r][v_1 \ v_2 \ \dots \ v_r]^{\dagger}|| = \epsilon
$$

deducing the proposition.

Corollary of the Proposition

Define

 $\mathcal{C}_r(A)=\inf\{\epsilon: \text{ two components of } \Lambda_{\epsilon,r}$ $_{-1}(A)\ \rm{coalesce}\}$

Corollary of the Proposition

Define

 $\mathcal{C}_r(A)=\inf\{\epsilon: \text{ two components of } \Lambda_{\epsilon,r}$ $_{-1}(A)\ \rm{coalesce}\}$

If at a point of coalescence of $\Lambda_{\epsilon,r-1}(A)$ for $\epsilon=\mathcal{C}_r(A)$ the multiplicity and linear independence assumptions hold, then

$$
\mathcal{W}_r(A) \leq \mathcal{C}_r(A)
$$

The other direction $\mathcal{W}_r(A)\geq \mathcal{C}_r$ $_r(A)$ seems to be usually true, but not always.

The other direction $\mathcal{W}_r(A)\geq \mathcal{C}_r$ $_r(A)$ seems to be usually true, but not always.

References

- J.H. Wilkinson, Note on matrices with ^a very ill-conditionedeigenproblem, *Numer Math*, 19:176-178, 1972
- J.W. Demmel, Computing Stable Eigendecompositions of matrices, Linear Algebra Appl, 79:163-193, 1986.
- A.N. Malyshev, A formula for the 2-norm distance from ^a matrix to theset of matrices with multiple eigenvalues, Numer Math, 83:443-454, 1999.
- R. Alam and S. Bora, On sensitivity of eigenvalues andeigendecompositions of matrices, Linear Algebra Appl, 396:273-301, 2005
- E. Mengi, Locating ^a nearest matrix with an eigenvalue of prespecified algebraic multiplicity, Numer Math, 2009 (acceptedsubject to minor revision).