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Supporting Information Text

Here we report the computational contact model (formulation, resolution algorithm and model validation) for electroadhesion
used in the main paper to validate the mean field contact mechanics. Furthermore, we report supplemental theoretical details
on the voltage frequency dependence of friction, as well as on the probability density functions of interface fields.

Computational contact model for the human skin/touchscree n interaction

Fig. S1. Skin/touchscreen computational contact model characteristics. In the figure panel we report an overall schematic description of the multiscale skin/touchscreen
contact interface: The large separation of length scales between the apparent contact domain (B) and the largest roughness wavelength (C) allows to formulate the interface
mechanics by decoupling the microscale- from the macroscale- contact mechanics. The computational contact model is thus formulated to study the contact scale (C),
known as the representative elementary volume of interface roughness. In the microscale model, (C), any generic rheological layering of the interface, such as the skin and
touchscreen layering, can be reduced to an equivalent but simplified interface model, shown in the schematic (D).

Summary of the computational model. In Fig. S1(A)-(C) we schematically show the three length scales characterizing the
finger/counter-surface interaction (A). B) shows the macroscopic contact area, which appears smooth when observed at the
length scale of the application. In the finger/counter-surface contact, the macroscopic contact size, say L, is much larger than
the larger roughness wavelength, say L0. This large separation of length scales allows us to study separately the micro-contact
dynamics occurring at the scale of the representative elementary interface volume (with lateral size LREV ≫ L0) from the
macro-scale contact dynamics. The investigation of the micro-contact dynamics allows to determine the effective micro-scale
contact mechanics properties (such as normalized contact area and average interface separation as a function of the locally-
averaged contact pressure) to be used in a homogenized formulation of the macroscale contact equations. Indeed, in the latter
formulation, the roughness is taken into account thanks to the effective micro-scale contact mechanics properties, resulting
in a contact formulation which is smoother, and which requires a reduced computational effort than the full-scale contact
formulation. In the following, we will provide the computational micro-contact model for the skin-touchscreen interaction.

We assume the roughness in normal frictionless contact with LREV ≈ L0, and the roughness to be periodic (with period
L0 in both x- and y-directions). For this case, we stress that the effective micro-scale contact mechanics properties can be
obtained by averaging over multiple roughness realizations. Furthermore, we consider the case where the interacting solids
show a graded rheology in a direction normal to the local average contact plane, see Fig. S1(C). The bulk rheology is assumed
linear, whereas surface plasticity is taken into account with a simple plastic deformation model (see below). Small slope
roughness also applies, so that

〈

∇h(x)2
〉

≪ 1, where h (x) is the surface roughness, and with 〈h〉 = 0.
Within these assumptions, one can easily show that the case of Fig. S1(C) is equivalent to the case of Fig. S1(D) (1–3).

The latter is characterized by the interaction between a rigid ideally smooth substrate and an equivalent compliant solid
covered by an equivalent roughness. The local interface separation u (x), corresponding to the local distance between the
mating surfaces, can be agreed to be

u (x) = ū + w (x) − (h (x) − wpl (x) + w̄pl) , [A1]

where ū is the average interface separation, w (x) the surface elastic normal displacement, h (x) the surface roughness, with
〈w (x)〉 = 〈h (x)〉 = 0. The surface plasticity is taken into account with the plastic displacement wpl (x), with w̄pl = 〈wpl (x)〉.
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We define the following Fourier transform (q is the transformed variable of x)

w (q) = (2π)−2

∫

d2
x w (x) e−iq·x

and

σ (q) = (2π)−2

∫

d2
x σ (x) e−iq·x,

where σ (x) is the interface pressure distribution (σ0 = 〈σ (x)〉 is the average pressure), given by the sum of the contact
pressure field σc (x) and the electroadhesive stress σadh (x)

σ (x) = σc (x) + σadh (x) . [A2]

Following the discussion reported in Ref. (4), w (x) can be related to σ (x) through a simple equation in the Fourier space

w (q) = Mzz (q) σ (q) , [A3]

where Mzz (q) is the surface response of the equivalent block (Fig. S1(D)) in the frequency domain. Mzz (q) depends on
the rheological and geometrical properties of the blocks (Fig. S1(C) but also Fig. S2(A)), and its formulation is summarized
below for completeness.

Finally, the relation between separation u(x) and contact pressure σc(x) is calculated within the Derjaguin’s approximation
(5), and it can be written in term of a generic interaction law (6)

σc(u) = f(u). [A4]

In this work we have adopted the (integrated) repulsive term of the L-J potential in Eq. A4 to simulate the adhesionless
interaction. The relation between separation u(x) and the electro-adhesive traction σadh(x) is instead calculated in term of
Maxwell stress (7)

σadh(u) = −
1

2
ǫ0V 2

0
1

(u + h0)2
[A5]

where h0 is defined in the main text.
Eqs. A1 to A5 are discretized on a regular square mesh of grid size δ in term of a residuals molecular dynamics process

(RMD) (3, 6), and solved with a velocity Verlet integration scheme. The simulation is performed by a stepwise decrease of
the average interface separation until a certain normalized contact area is reached. In order to take into account the surface
plasticity, the plastic displacement field wpl is locally incremented in order for the unilateral constraint σc (x) ≤ ppl to hold,
where ppl is the surface hardness (limit contact pressure for surface plasticity).

We now report a summary of the main formulas needed to calculate Mzz (q) for a layered solid. We first consider the
generic case of a linearly viscoelastic infinitely wide slab of thickness d, see Fig. S2(B) and Ref. (3). By considering the

Fig. S2. Schematic of a infinitely-wide slab of finite thickness d, characterized by a linear viscoelastic rheology. σup (σdo) and wup (wdo) are, respectively, the stress and
displacement fields on the top z = 0 (bottom z = −d) surface.

following Fourier transform (t → ω and x → q)

w (q, z, ω) =

∫

dt
∫

d2x w (x, z, t) e−i(q·x−ωt)

(2π)3

µ (ω) =

∫

dt µ (t) e−i(−ωt)
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and, inversely,

µ (t) = (2π)−1

∫

dω ei(−ωt)µ (ω)

w (x, z, t) =

∫

dω

∫

d2q w (q, z, ω) ei(q·x−ωt),

the relation between the stress and displacement fields on the top (z = 0) and bottom surface (z = −d), in the limit of
quasi-static interaction [i.e. ω/ (qc) = v/c ≪ 1, see Ref. (4), where c is the generic sound speed] reads in matrix form

[

σup (q, ω) / [Er (ω) q/2]
wup (q, ω)

]

= cosh (qd)

[

M1 M2

M3 M4

] [

σdo (q, ω) / [Er (ω) q/2]
wdo (q, ω)

]

, [A6]

where Mj [qd, ν (ω)] is a 3 by 3 matrix. σup (σdo) and wup (wdo) are, respectively, the stress and displacement fields on the
top (bottom) surface, see Fig. S2(B). Er (ω) = E (ω) /

[

1 − ν (ω)2
]

is the complex reduced elastic modulus, q̄ = qd (similarly
for q̄x and q̄y), q̃ = tanh q̄, p (ω) = 1 − ν (ω), p0 = 1 − ν0 [with ν0 = ν (ω → 0)] and where we have defined

m = p/p0, n = [1 − 2ν (ω)] / [1 − 2ν0] , γ = n/m, [A7]

β =
1 − 4νp0

[1 − 2ν (ω)] [1 − 2ν0]
.

Note that m, n, γ and β depend on the frequency ω through the dependence on ν (ω). The matrix Mi, i = 1..4, reads

M1 = I + (2q̄p0)−1

[

q̄2
xq̃ q̄xq̄y q̃ −iq̄xγ [q̄ − (1 − 2ν0) q̃]

q̄xq̄y q̃ q̄2
y q̃ −iq̄yγ [q̄ − (1 − 2ν0) q̃]

−iq̄x [q̄ + β (1 − 2ν0) q̃] −iq̄y [q̄ + β (1 − 2ν0) q̃] −γq̄2q̃

]

, [A8]

M2 = q̄−2

[

(nq̄ + q̃) q̄2
x + pq̃q̄2

y q̄xq̄y (nq̄ + νq̃) −imq̄xq̄2q̃
q̄xq̄y (nq̄ + νq̃) pq̃q̄2

x + (nq̄ + q̃) q̄2
y −imq̄y q̄2q̃

−inq̄xq̄2q̃ −inq̄y q̄2q̃ −mq̄2 (q̄ − q̃/n)

]

, [A9]

M3 = (2q̄mp0)−2

[

4pq̃q̄2 + m (q̄ − q̃) q̄2
x mq̄xq̄y (q̄ − q̃) −inq̄xq̄2q̃

mq̄xq̄y (q̄ − q̃) 4pq̃q̄2 + m (q̄ − q̃) q̄2
y −inq̄y q̄2q̃

−imq̄xq̄2q̃ −imq̄y q̄2q̃ −γq̄2 [m (q̄ + q̃) − 4pq̃]

]

[A10]

M4 = I + (2q̄p0)−1

[

γq̄2
xq̃ γq̄xq̄y q̃ −iq̄x [q̄ + (1 − 2ν0) q̃]

γq̄xq̄y q̃ γq̄2
y q̃ −iq̄y [q̄ + (1 − 2ν0) q̃]

−iq̄xγ [q̄ − β (1 − 2ν0) q̃] −iq̄yγ [q̄ − β (1 − 2ν0) q̃] −q̄2q̃

]

. [A11]

Again here Mj = Mj (ω) through the frequency dependence of the Poisson’s ratio.
In the case the frequency variation of the lateral contraction can be neglected, i.e. ν (ω) = ν = ν0, we have that m = n =

β = γ = 1 (and p0 = p) and the Eqs. A8-A11 simplify to

M1 = I + (2q̄p)−1

[

q̄2
xq̃ q̄xq̄y q̃ −iq̄x [q̄ − (2p − 1) q̃]

q̄xq̄y q̃ q̄2
y q̃ −iq̄y [q̄ − (2p − 1) q̃]

−iq̄x [q̄ + (2p − 1) q̃] −iq̄y [q̄ + (2p − 1) q̃] −q̄2q̃

]

M2 = q̄−2

[

(q̄ + q̃) q̄2
x + pq̃q̄2

y q̄xq̄y (q̄ + νq̃) −iq̄xq̄2q̃
q̄xq̄y (q̄ + νq̃) pq̃q̄2

x + (q̄ + q̃) q̄2
y −iq̄y q̄2q̃

−iq̄xq̄2q̃ −iq̄y q̄2q̃ −q̄2 (q̄ − q̃)

]

M3 = (2q̄p)−2

[

4pq̃q̄2 + (q̄ − q̃) q̄2
x q̄xq̄y (q̄ − q̃) −iq̄xq̄2q̃

q̄xq̄y (q̄ − q̃) 4pq̃q̄2 + (q̄ − q̃) q̄2
y −iq̄y q̄2q̃

−iq̄xq̄2q̃ −iq̄y q̄2q̃ −q̄2 [(q̄ + q̃) − 4pq̃]

]

,

with M1 = MT
4 .

Now, in Fig. S2(A) we show the schematic of the generic composite slab with a step-wise graded rheology, with j = 1..n..N
bonded layers. We first assume the generic layer (n − 1) to be described by the general stress-displacement relation

wup (q, ω) = [M](n−1) σup (q, ω)

[Er (ω)](n−1) q/2
,

where M is a 3 by 3 matrix. Imposing the continuity of stress and displacement between layer (n − 1) and (n), and by using
Eq. A6, we get for the layer (n)

wup (q, ω) =

[

M3 +
Er (ω)

[Er (ω)]n−1
M4 [M]n−1

] [

M1 +
Er (ω)

[Er (ω)]n−1
M2 [M]n−1

]

−1
σup (q, ω)

Er (ω) q/2
,
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Fig. S3. (a) Normalized contact area A/A0 as a function of the normalized squeezing pressure p0/E∗ for the Westergaard sinus contact solution. Here the ratio between
the sinus amplitude h and wavelength λ is h/λ = 0.01. The solid line is the analytical prediction, whereas dots are from the RMD model. (b) Normalized contact radius
ac/R as a function of the normal force FN in logaritmic scale. For a point contact constituted by a rigid smooth ball squeezed against a coated elastic half space. The
coating (bulk) elastic modulus and Poisson’s ratio are Ec = 1 MPa (Eb = 2 MPa) and νc = 0.49 (νb = 0.49), respectively. The coating thickness is 200 µm and the
ball radius 1 mm. The solid black line is the analytical model prediction, whereas dots are from the RMD model (at increasing mesh resolution). The red and blue curves are
instead Hertzian results, obtained for an infinite and infinitesimal coating thickness, respectively.

where Mi=1..4 and Er (ω) are for the layer (n) (the superscript (n) has been omitted for simplicity). Thus M for the layer (n)
reads

[M](n) =

[

M3 +
Er (ω)

[Er (ω)](n−1)
M4 [M](n−1)

] [

M1 +
Er (ω)

[Er (ω)](n−1)
M2 [M](n−1)

]

−1

, [A12]

resulting in

wup = [M](n) σup

[Er (ω)](n) q/2
. [A13]

Eq. A12 shows that the surface response of a stepwise-graded composite can be determined with a simple recursive calculation.

Finally, for the stepwise graded composite with N -layers

Mzz (q, ω) =
2

q

[M (q, ω)](N)
3,3

[Er (ω)](N)
, [A14]

where [M](1) [innermost layer, needed to initialize Eq. A12] is obtained depending on the adopted BCs (note: Mzz (q) of Eq.
A3 is given by Mzz (q, ω) of Eq. A14 for ω = 0). For wdo (q, ω) = 0 we have

[M](1) = M3M
−1
1 ,

whereas for σdo (q, ω) = 0 we have

[M](1) = M4M
−1
2 ,

for q 6= 0. We observe that in the simplest case where the bulk is an elastic half-space

Mzz (q) = 2/ [|q| Er] ,

where Er = E/
(

1 − ν2
)

is the reduced Young’s modulus, ν is the Poisson’s ratio.

It is also interesting to calculate the stress and displacement fields acting at intermediate layers across the graded solid.
Indeed, the stress (or deformation) variations across the solid is of large interest since it could be linked to the stress acting
on the nerve cells at different depths from the contact surface. For the generic layer of index n, by using Eqs. A6 and A13,
after some manipulations, one can calculate (recursively) the stress acting on the bottom surface σdo (q, ω) from the following
equation

Nσup (q, ω) = cosh (qd) M1σdo (q, ω) , [A15]

where

N = I +
(

M3M−1
1 − M4M−1

2

)

−1 (

M − M3M−1
1

)

, [A16]

and where the index n has been dropped in the notation of Eqs. A15 and A16.
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Model validation. In this section, we compare the RMD results with the predictions of existing analytical contact mechanics
results, in order to validate the contact algorithm (ability to detect contact borders) as well as the layered-bulk surface kernel
(to test the recursive Eq. A14).

The fist validation is thus made against a very simple periodic contact geometry, the Westergaard (sinus) roughness in
contact with a linear elastic half plane. Thus, in Fig. S3(a) we report the normalized contact area A/A0 as a function of
the normalized squeezing pressure p0/E∗ for the Westergaard geometry, for a ratio between the sinus roughness amplitude h
and wavelength λ given by h/λ = 0.01. In the figure, the solid line is the analytical prediction (1), whereas dots are from
the RMD model run with 256 divisions over the wavelength. The simulation is run up to a small normalized contact area
(A/A0 < 0.2), thus for contacts involving a reduced number of contacting points, in order to check the contact area accuracy
for small contact patches. The agreement is satisfactory.

Now, to verify the RMD model predictions for the case of graded rheology, we make use of the analytical model provided
for the case of an elastically-coated elastic half space in point contact with a rigid smooth ball (thus, similar to the Hertzian
circular contact geometry but with a coated half space), see Refs. (1). Thus, in Fig. S3(b) we show the normalized contact
radius ac/R as a function of the normal force FN in logaritmic scale, for a point contact constituted by a rigid smooth
ball squeezed against a coated elastic half space. The coating (bulk) elastic modulus and Poisson’s ratio are Ec = 1 MPa
(Eb = 2 MPa) and νc = 0.49 (νb = 0.49), respectively. The coating thickness is 200 µm and the ball radius 1 mm. The solid
black line is the analytical model prediction (1), whereas dots are from the RMD model (at increasing mesh resolution). The
red and blue curves are instead Hertzian results, obtained for an infinite and infinitesimal coating thickness, respectively. Also
here the agreement is satisfactory, confirming the overall accuracy of the computational contact model.

On the volt age frequency dependency of fric tion

Fig. S4. Distribution of charges at the contact between the skin (green and pink) and a touchscreen (black and blue) when an oscillating electric potential φ = V0cos(ωt)

acts between the skin and the touchscreen. The SC of the skin has a finite electric conductivity. (A) When the frequency ω is very high there is not enough time for charges
to drift through the SC during the time period of an oscillation T = 2π/ω. (B) As ω decreases, charges can drift to the bottom surface of the skin. If the electric resistance of
the glass surface layer is infinite, no charges can flow to the glass surface of the touchscreen. (C) However, the glass surface layer has a finite surface conductivity, and if the
frequency ω is small enough, the charges will drift to the glass surface, which will reduce the electroadhesive force between the finger and the touchscreen to nearly zero.
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Fig. S5. The calculated dependency of the contact area on the frequency f = ω/(2π) of the oscillating electric potential φ = V0cos(ωt). The Aon/Aoff is the ratio
between the real contact area with electroadhesion to that without electroadhesion. See text for details.

Fig. S4 shows the spatial distribution of charges close to the contact interface when the frequency of the oscillating applied
voltage is reduced. (A) For high frequencies there is no time for the charges on the skin side to drift to the outer skin surface.
When the frequency is reduced, charges drift to the outer surface of the SC (B) and at very low frequency the charges may
drift onto the touch screen glass surface (C), which would result in a drop in the electroadhesion force.
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Fig. S5 shows the frequency dependency of the calculated ratio between the (time averaged) contact area when the applied
voltage is turned on and when it is turned off. We have assumed that the electric insulating layer on the touch screen has
the dielectric function ǫ1 = 4 and 8. We have assumed that there is no transfer of charges from the skin to the touch screen
glass surface, so the electroadhesion force is largest at low frequencies where the charges on the skin are located on the outer
surface of the SC.

The prob abil ity density func tion of in ter face electro -adhesive stress and electric field

The multiscale roughness of real surfaces results in contact mechanics properties which vary over a wide range of parameters
values. To illustrate this, let Pu(u), PE(E) and Pσ(σ) be the probability distributions for the separation u, the electric field
strength in the air-gap E, and the attractive electric stress σ acting on the outer surface of the skin from the touchscreen.
The probability distributions are assumed to be normalized so that, e.g.,

∫

∞

0

du Pu(u) =

∫

∞

0

dE PE(E) = 1. [B1]

Since

E =
V0

u + h0
[B2]

we get

dE = −
V0

(u + h0)2
du.

Using this gives
∫

∞

0

dE PE =

∫

∞

0

du PE

V0

(u + h0)2
.

Comparing this to Eq. B1 gives

PE =
(u + h0)2

V0
Pu. [B3]

Using Eq. B2 and B3 it is easy to plot PE as a function of E given Pu as a function of u.
Next let us derive the distribution of attractive stress due to the electric field in the air gap. The electric stress

σ =
1

4

ǫ0V 2
0

(u + h0)2
. [B4]

Thus we get

dσ = −
1

2

ǫ0V 2
0

(u + h0)3
du.

From
∫

∞

0

du Pu(u) =

∫

∞

0

dσ Pσ(σ) =

∫

∞

0

du Pσ

1

2

ǫ0V 2
0

(u + h0)3

we get

Pσ =
2(u + h0)3

ǫ0V 2
0

Pu. [B5]

Using Eq. B4 and B5 it is easy to plot Pσ as a function of σ given Pu as a function of u.
In Fig. S6 we show the probability distributions of interfacial separation when the finger is squeezed with the nominal

pressure p0 = 15.5 kPa against the touchscreen. We have assumed ESC = 40 MPa and h0 = 0.2 µm as in Fig. 3(C) in
the main text. We show results when the applied voltage is V0 = 0 and V0 = 100 V. When the electric voltage is applied,
the effective squeezing force (and the area of real contact) roughly increases with a factor of 2, but the interfacial surface
separation decreases rather small.

Fig. S7 shows the probability distribution of electric field strength. The highest electric field occurs in the vacuum gap
where the interfacial separation is small, but this region (which consists of the area of contact and the rim-area) occupies only
a small part of the nominal contact area.

Fig. S8 shows the distribution of (repulsive) stress acting in the area of real contact. Note that the stress is very high,
of order the Young’s modulus of the skin SC. This result follows immediately from contact mechanics theory. Thus, when
the relative contact area is small as in the present case, the linear elastic contact mechanics predicts the relative contact
area A/A0 ≈ 2p0/(Eh′) where h′ is the rms surface slope (which is of order unity in our case). The normal (applied) force
F0 = A0p0 so the average stress in the asperity contact regions F0/A ≈ Eh′/2 is of order the Young’s modulus of the SC, as
indeed observed in Fig. S8.

Fig. S9 shows the probability distribution of the adhesive electric stress acting on the outer skin surface in the nominal
skin-glass contact area. In most of the skin area the adhesive stress is very small, of order 1 − 100 Pa, but this surface area
gives a negligible contribution to the total attractive electrostatic force. This can be explained as follows.
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0 /(4h2
0).

To understand which region in space gives the largest contribution to the electric adhesion force, we consider the average
adhesive stress

〈σ〉 =

∫

∞

0

dσ σPσ(σ).

Let us introduce a new integration variable x = log10(σ) so that dσ = ln(10)σdx and

〈σ〉 =

∫

∞

−∞

dx S(x),

where

S = ln(10)σ2Pσ(σ).

Thus S(x)dx is the contribution to the average stress from the region where the logarithm of the stress is between x = log10σ and
x+dx = log10σ +dlog10σ. In Fig. S10 we show log10S as a function of x = log10σ. Clearly the most important contribution to
the adhesive normal load comes from the region where the stress is close to the maximum stress σmax = ǫ0V 2

0 /(4h2
0), indicated

by the vertical dashed line. This region in σ-space corresponds to the area of real contact and the region close to the area of
real contact, where the skin-touchscreen surface separation is very small; this region is denoted as the rim-area.
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Fig. S10. The logarithm of the function S as a function of the logarithm of the electric stress (see text for details) for ESC = 40 MPa, h0 = 0.2 µm, and the applied
voltage amplitude V0 = 100 V. The vertical dashed line indicates the maximum electric stress σ = ǫ0V 2

0 /(4h2
0).

The spatial distribution of the interfacial separation, and the spatial distribution of the attractive and repulsive surface
stresses, depends on the realization of the randomly rough surface and is hence not predicted by the Persson’s contact mechanics
theory which only predicts ensemble averaged quantities. However, these quantities are easily predicted by (deterministic)
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Fig. S11. Top panel: Contact pressure, interface separation and electro-adhesive stress acting on the magnified contact domain of Fig. 2C, as obtained with BEM simulations.
Bottom panel: Probability density function of the interface separation (A) and electro-adhesive stress (B) as calculated with the BEM model for the system of Fig. 2D at
V0 = 400 V, for the largest normalized contact area. In (A) and (B), the strait (dotted) line at decreasing separation (A) or electro-adhesive stress (B) is due to the finite
mesh size and separation field encountered in the numerical system.

10 of 11 Mehmet Ayyildiz, Michele Scaraggi, Omer Sirin, Cagatay Bas dogan, Bo N.J. Persson



computational contact methods, when applied to one realization of the rough surface. To illustrate this, we show some results
from the BEM calculation for the surface considered in Fig. 2B, C and D.

For the contact parameters of Fig. 2 with V0 = 400 V, in Fig. S11 we show in the top panel the contact pressure, interface
separation and electro-adhesive stress acting on the magnified contact domain of Fig. 2C (obtained with BEM simulations).
Moreover, for the same system, in the bottom panel of Fig. S11 we report the BEM-calculated probability density function
(PDF) of the interface separation (A) and electro-adhesive stress (B). We observe that the interface separation (electro-adhesive
stress) PDF reported in Fig. S11(A) (S11(B)) is in good qualitative agreement with the PDF calculated with the mean field
theory in Fig. S6 (Fig. S9), when considering the different input contact parameters. We note, nevertheless, that the predicted
PDFs show a poorer agreement at decreasing values of separation or electro-adhesive stress. This is easy to be understood.
Indeed, at small separations, the numerical system probes the finite size effects (finite spatial resolution), resulting in a small
statistical set available for the PDF generation. Similarly, at small electro-adhesive stresses, the numerical system probes
a finite roughness height effect, i.e. the numerical separation field is always limited to a maximum value (the maximum
roughness height) which depends on the specific roughness realization.
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