
3-DOF HAPTIC RENDERING

C. Basdogan*, S.D. Laycock+ A.M. Day+, V. Patoglu**, R. B. Gillespie++

* Koc University, Istanbul, 34450, Turkey

+ University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
**Sabanci University, Istanbul, 34956, Turkey

++University of Michigan, Ann Arbor, MI, 48109, USA

1. Introduction
Haptic rendering enables a user to touch, feel, and manipulate virtual objects through a haptic
interface (see Figure 1). The field has shown a significant expansion during the last decade.
Since the publication of earlier review papers (Salisbury and Srinivasan, 1997; Srinivasan and
Basdogan, 1997), new rendering techniques and several new applications have emerged (see
the more recent reviews in Basdogan and Srinivasan, 2002, Salisbury et al, 2004, and
Laycock and Day, 2007). The applications now cover a wide range of fields including
medicine (surgical simulation, tele-medicine, haptic user interfaces for blind persons,
rehabilitation for patients with neurological disorders, dental medicine) art and entertainment
(3D painting, character animation, digital sculpting, virtual museums), computer-aided
product design (free-form modeling, assembly and disassembly including insertion and
removal of parts), scientific visualization (geophysical data analysis, molecular simulation,
flow visualization), and robotics (path planning, micro/nano tele-manipulation). This chapter
will primarily focus on the fundamental concepts of haptic rendering with some discussion of
implementation details. In particular, we will focus on the haptic interactions of a single point
(i.e. Haptic Interface Point-HIP- in Figure 1) with a 3D object in virtual environments. This
corresponds to feeling and exploring the same object through a stylus in real world. This
chapter is entitled 3-dof haptic rendering to differentiate it from 6-dof rendering which
involves object-object interaction and is covered in the other parts of this book.

Figure 1. Point-based haptic interactions with 3D objects in virtual environments.

Haptic
Interface Point
Haptic
Interface Point

2. Human-Machine Coupling
Haptic rendering is significantly more complex (and interesting) than visual rendering since it
is a bilateral process: display (rendering) cannot be divorced from manipulation. Thus any
haptic rendering algorithm is intimately concerned with tracking the inputs of the user as well
as displaying the haptic response. Also note that haptic rendering is computationally
demanding due to the high sampling rates required. While the visual system perceives
seamless motion when flipping through 30 images per second, the haptic system requires
signals that are refreshed at least once every millisecond. These requirements are driven by
human haptic ability to detect vibrations which peaks at about 300 Hz but ranges all the way
up to 1000 Hz. Note that vibrations up to 1000 Hz might be required to simulate fast motion
over fine texture, but also might be required for sharp, impulsive rendering of a changing
contact condition.

Haptic rendering requires a haptic interface, a computationally mediated virtual environment,
and a control law according to which the two are linked. Figure 2 presents a schematic view
of a haptic interface and the manner in which it is most commonly linked to a virtual
environment. On the left portion of the figure, mechanical interaction takes place between a
human and the haptic interface device, or more specifically, between a fingertip and the
device end-effector. In the computational domain depicted on the right, an image of the
device end-effector E is connected to a proxy P through what is called the virtual coupler.
The proxy P in turn interacts with objects such as A and B in the virtual environment. Proxy P
might take on the shape of the fingertip or a tool in the user's grasp.

Figure 2. This two part figure presents a schematic representation of haptic rendering. The left figure
corresponds to the physical world where a human interacts with the haptic device. The figure on the
right depicts the computationally implemented virtual environment.

The virtual coupler is depicted as a spring and damper in parallel, which is a model of its most
common computational implementation, though generalizations to 3D involve additional
linear and rotary spring-damper pairs not shown. The purpose of the virtual coupler is two-
fold. First, it links a forward-dynamics model of the virtual environment with a haptic
interface designed for impedance-display1. Relative motion (displacement and velocity) of the

1 Impedance display describes a haptic interface that senses motion and sources forces and moments. An
admittance display sources motion and senses forces and moments. Most haptic interface devices are controlled
using impedance display, which may be implemented using low inertia motors and encoders connected to the
mechanism through low friction, zero backlash, direct-drive or near-unity mechanical advantage transmissions.
Impedance display does not require force or torque sensors.

two ends of the virtual coupler determines, through the applicable spring and damper
constants, the forces and moments to be applied to the forward dynamics model and the equal
and opposite forces and moments to be displayed by the haptic interface. Note that the
motion of P is determined by the forward dynamics solution, while the motion of E is
specified by sensors on the haptic interface. The second role of the virtual coupler is to filter
the dynamics of the virtual environment so as to guarantee stability when display takes place
through a particular haptic device. The parameters of the virtual coupler can be set to
guarantee stability when parameters of the haptic device hardware are known and certain
input-output properties of the virtual environment are met. Thus the virtual coupler is most
appropriately considered part of the haptic interface rather than part of the virtual environment
(Adams and Hannaford, 1999, 2002). If an admittance-display architecture is used, an
alternate interpretation of the virtual coupler exists, though it plays the same two basic roles.
For further discussion of the virtual coupler in performance/stability tradeoffs in either the
impedance or admittance-display cases, see the work done by Adams and Hannaford (1999,
2002), and Miller and Colgate (2000).

One final note can be made with reference to Figure 2: rigid bodies in the virtual environment,
including P, have both configuration and shape -they interact with one another according to
their dynamic and geometric models. Configuration (including orientation and position) is
indicated in Figure 2 using reference frames (three mutually orthogonal unit vectors) and
reference points fixed in each rigid body. Shape is indicated by a surface patch. Note that the
image of the device end-effector E has configuration but no shape. Its interaction with P takes
place through the virtual coupler and requires only the configuration of E and P.

Figure 3. A block diagram of haptic rendering according to an impedance display architecture. There
are three major blocks in the diagram modeling input/output characteristics of the human, the haptic
interface and the virtual environment.

The various components in Figure 2, including the human user, haptic device, virtual coupler,
and virtual environment, form a coupled dynamical system whose behavior depends on the
force/motion relationship established by the interconnection of the components. Figure 3

shows these components interconnected in a block diagram, where the additional indication of
causality has been made. Causality expresses which force and motion variables are inputs and
which are outputs for each component. For example, the human operates on the velocity vh
(common to the finger and end-effector) to produce the force Fh imposed on the haptic device.
The haptic device is a two-port that operates on the force Fh imposed by the human and the
force Fm produced by its motors to produce the velocities vh and vm. Usually, by careful haptic
device transmission design, vh and vm are the same, and measured with a single encoder.
Intervening between the human and haptic device, that ‘live’ in the continuous, physical
world and the virtual coupler and virtual environment that live in the discrete, computed
world are a sampling operator T and zero-order hold (ZOH). The virtual coupler is shown as
a two-port that operates on velocities vm and ve to produce the motor command force Fm and
force Fe imposed on the virtual environment. Forces Fm and Fe are usually equal and opposite.
Finally, the virtual environment is shown in its forward dynamics form, operating on applied
forces Fe to produce response motion ve. Naturally, the haptic device may use motors on its
joints, so the task-space command forces Fm must first be mapped through the manipulator
Jacobian before being applied to the motors.

Note that the causality assumption for the human is by itself rather arbitrary. However,
causality for the haptic device is essentially determined by electro-mechanical design, and
causality for the virtual coupler and virtual environment is established by the implementation
of a discrete algorithm. The causality assumptions in Figure 3 correspond to impedance
display. Impedance display is the most common but certainly not the only possible
implementation. See (Adams and Hannaford, 1999) for a framework and analysis using
network diagrams (that do not indicate causality), which is more general.

3. Rendering of 3D Rigid Objects
Typically, a haptic rendering algorithm is made of two parts: (a) collision detection and (b)
collision response (see Figure 4). As the user manipulates the probe of the haptic device, the
new position and orientation of the haptic probe are acquired and collisions with the virtual
objects are detected (i.e. collision detection). If a collision is detected, the interaction forces
are computed using preprogrammed rules for collision response, and conveyed to the user
through the haptic device to provide him/her with the tactual representation of 3D objects and
their surface details. Hence, a haptic loop, which updates forces around 1 kHz (otherwise,
virtual surfaces feel softer, or, at worst, instead of a surface it feels as if the haptic device is
vibrating), includes at least the following function calls:

 …
 get_position (Vector &position); // position and/or orientation of the end-effector
 calculate_force (Vector &force); // user-defined function to calculate forces
 send_force (Vector force); // calculate joint torques and reflect forces back to the user

 …

Collision
Detection

Collision
Response

Geometry

Material

Object
Database

Position
Orientation

Contact
Information

Force
Torque

Figure 4. A haptic interaction algorithm is typically made of two parts: (a) collision detection and (b)
collision response. The haptic loop seen in the figure requires an update rate of around 1 kHz for
stable force interactions. Computationally fast collision detection and response techniques are
necessary to accommodate this requirement.

To describe the basic concepts of haptic rendering, let us consider a simple example: haptic
rendering of a 3D frictionless sphere, located at the origin of a 3D virtual space (see Figure 5).
Let us assume that the user can only interact with the virtual sphere through a single point
which is the end point of the haptic probe, also known as the Haptic Interaction Point (HIP).
In the real world, this is analogous to feeling the sphere with the tip of a stick. As we freely
explore the 3D space with the haptic probe, the haptic device will not reflect any force to the
user until a contact occurs. Since our virtual sphere has a finite stiffness, HIP will penetrate
into the sphere at the contact point. Once the penetration into the virtual sphere is detected and
appropriate forces to be reflected back to the user are computed, the device will reflect
opposing forces to our hand to resist further penetration. We can easily compute the
magnitude of the reaction force by assuming that it is proportional to the depth of penetration.
Assuming no friction, the direction of this force will be along the surface normal as shown in
Figure 5.

F

R

distance
HIP Hand

void calculate_force (Vector &force)
 {
 float X, Y, Z, distance;
 float R = 20.0;

 X = HIP[0]; Y = HIP[1]; Z = HIP[2];
 distance = sqrt(X*X + Y*Y + Z*Z);

 if(distance < R) //collision check
 {
 force[0] = X/distance * (R-distance);
 force[1] = Y/distance * (R-distance);
 force[2] = Z/distance * (R-distance);

 }

 }

Figure 5. Haptic rendering of a 3D sphere in virtual environments. The software code presented on
the right-hand side calculates the direction and the magnitude of the reaction force for the sphere
discussed in the example. The sphere has a radius of 20 units and is located at the origin.

As it can be seen from the example given above, a rigid virtual surface can be modeled as an
elastic element. Then, the opposing force acting on the user during the interaction will be:

xkF vv

∆= (1)

where, k is the stiffness coefficient and || xv∆ is the depth of penetration. While keeping the
stiffness coefficient low would make the surface feel soft, setting a high value can make the
interactions unstable by causing undesirable vibrations. Figure 6 depicts the changes in force
profile with respect to position for real and virtual walls. Since the position of the probe tip is
sampled digitally with certain frequency during the simulation of a virtual wall, a “staircase”
effect is observed. This staircase effect leads to energy generation (see the discussions and
suggested solutions in Colgate and Brown, 1994, Ellis et al., 1996, and Gillespie and
Cutkosky 1996).

F

x

wall

k1

k2

Figure 6. Force-displacement curves for touch interactions with real and virtual walls. In the case of
real wall, the force-displacement curve is continuous. However, we see the “staircase” effect when
simulating touch interactions with a virtual wall. This is due to the fact that a haptic device can only
sample position information with a finite frequency. The difference in the areas enclosed by the curves
that correspond to penetrating into and out of the virtual wall is a manifestation of energy gain. This
energy gain leads to instabilities as the stiffness coefficient is increased (compare the energy gains for
stiffness coefficients k1 and k2). On the other hand, a low value of stiffness coefficient generates a soft
wall, which is not desirable either.

Although the basic recipe for haptic rendering of virtual objects seems easy to follow,
rendering complex 3D surfaces and volumetric objects requires more sophisticated algorithms
than the one presented for the sphere. The stringent requirement of updating forces around 1
kHz leaves us very little CPU time for computing the collisions and reflecting the forces back
to the user in real-time when interacting with complex shaped objects. In addition, the
algorithm given above for rendering of a sphere considered only “point-based” interactions
(as if interacting with objects through the tip of a stick in real world), which is far from what
our hands are capable of in the real world. However, several haptic rendering techniques have
been developed to simulate complex touch interactions in virtual environments. The existing
techniques for haptic rendering with force display can be distinguished based on the way the
probing object is modeled: (1) a point (Zilles and Salisbury, 1995; Adachi et al., 1995; Avila
and Sobierajski, 1996; Ruspini et al., 1997; Ho et al., 1999), (2) a line segment (Basdogan, et
al., 1997; Ho et al., 2000), or (3) a 3D object made of group of points, line segments and
polygons (McNeely et al., 1999; Nelson et al., 1999; Gregory et al. 2001; Johnson et al. 2003;
Laycock et al. 2005; Otuday and Lin, 2005). The type of interaction method used in simulations
depends on the application.

In point-based haptic interactions, only the end point of the haptic device, also known as the
haptic interface point (HIP), interacts with virtual objects. Each time the user moves the
generic probe of the haptic device, the collision detection algorithm checks to see if the end
point is inside the virtual object. If so, the depth of indentation is calculated as the distance
between the current HIP and the corresponding surface point, also known as the Ideal Haptic
Interface Point (IHIP), god-object, proxy point, or surface contact point. For exploring the
shape and surface properties of objects in VEs, point-based methods are probably sufficient
and could provide the users with similar force feedback similar to that experienced when
exploring the objects in real environments with the tip of a stylus.

An important component of any haptic rendering algorithm is the collision response. Merely
detecting collisions between 3D objects is not enough for simulating haptic interactions. How
the collision occurs and how it evolves over time (i.e. contact history) are crucial factors in
haptic rendering to accurately compute the interaction forces that will be reflected to the user
through the haptic device (Ho et al., 1999; Basdogan and Srinivasan, 2002). In other words,
the computation of IHIP relies on the contact history. Ignoring contact history and always
choosing the closest point on the object surface as our new IHIP for a given HIP would make
the user feel as if he is pushed out of the object. For example, Figure 7a shows a thin object
with the HIP positioned at three successive time steps. Step 1 shows the HIP on the left hand
side just coming into contact with the thin object. At Step 2, the HIP has penetrated the thin
object and is now closer to the right face of the object. The HIP will be forced out the other
side producing an undesired result. A similar problem will occur if the HIP is located
equidistant to two faces of the virtual object. Figure 7b illustrates this case and it is unclear
which face normal to choose by looking at a single time step. The HIP could easily be forced
out of the object in the incorrect direction. To overcome these problems an approach is
required to keep a contact history of the position of the HIP. The next section discusses
techniques that, among other advantages, overcome these problems.

 (a) (b)

Figure 7. a) The Haptic Interface Point can be forced out of the wrong side of thin objects. b) The
Haptic Interface Point is equidistant to both faces. The algorithm is unable to decide which face is
intersected first by looking at a single time step.

The algorithms developed for 3-dof point-based haptic interaction depend on the geometric
model of the object: 1) surface models and 2) volumetric models. The surface models can be
also grouped as 1) polygonal surfaces, 2) parametric surfaces, and 3) implicit surfaces.

Step 1. Step 3.

Step 2.

3.1. Surface Models
Polygonal surfaces: Virtual objects have been modeled using polygonal models in the field of
computer graphics for decades due to their simple construction and efficient graphical
rendering. For similar reasons haptic rendering algorithms were developed for polygonal
models and triangular meshes in particular. Motivating this work was the ability to directly
augment the existing visual cues with haptic feedback utilizing the same representations.

The first method to solve the problems of single point haptic rendering for polygonal models
was developed at the Massachusetts Institute of Technology (MIT) (Zilles and Salisbury,
1995). The method enabled a contact history to be kept and at the time it was able to provide
stable force feedback interactions with polygonal models of 616 triangular faces on a
computer with a 66MHz Pentium processor. A second point known as the “god-object” was
employed to keep the contact history. It would always be collocated with the HIP if the haptic
device and the virtual object were infinitely stiff. In practice the god-object and the HIP are
collocated when the HIP is moving in free space. As the HIP penetrates the virtual objects the
god-object is constrained to the surface of the virtual object. An approach is subsequently
required to keep the god-object on the surface of the virtual object as the HIP moves around
inside. Constraint based approaches that keep a point on the surface sometimes refer to this
point as the Surface Contact Point, SCP. The position of the god-object can be determined by
minimizing the energy of a spring between the god-object and the HIP, taking into account
constraints represented by the faces of the virtual object. By minimizing L in Equation (2) the
new position can be obtained. The first line of the equation represents the energy in the spring
and the remaining three lines represent the equations of three constraining planes. The values
x, y and z are the coordinates of the god-object and xp, yp and zp represent the coordinates of
the HIP.

)(
)(

)(

)(
2
1)(

2
1)(

2
1

33333

22222

11111

222

DzCyBxAl
DzCyBxAl

DzCyBxAl

zzyyxxL ppp

−+++
−+++
−+++

−+−+−=

where, L = value to be minimized.

 l1,l2,l3 = Lagrange multipliers
 A,B,C,D = coefficients for the constraint plane equations.

To efficiently solve this problem a matrix can be constructed and used in Equation (3) to
obtain the new position of the god-object as given by x, y and z. When there are three
constraining planes limiting the motion of the god-object the method only requires 65
multiplications to obtain the new coordinates. The problem is reduced as the number of
constraint planes is reduced.

(2)

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

3

2

1

3

2

1

333

222

111

321

321

321

000
000
000

100
010
001

D
D
D
z
y
x

l
l
l
z
y
x

CBA
CBA
CBA

CCC
BBB
AAA

p

p

p

It was noted by Ruspini et al. (1997) that small numerical inconsistencies can cause gaps in
polygonal models that enable the god-object to slip into the virtual objects. To overcome this
the topology of the surface must be reconstructed. To avoid this reconstruction phase a
strategy similar in style to the previous approach was developed which permitted the
constrained point to have finite size (Ruspini et al., 1997). The algorithms employed by
Ruspini et al. were originally developed for the robotics field. The term Virtual Proxy is used
to refer to the spherical object constrained to the surface of the virtual objects. Its motion is
akin to the motion of a robot greedily attempting to move towards a goal, in this case the HIP.
Configuration space obstacles are constructed by wrapping the virtual object by a zone equal
to the radius of the Virtual Proxy. Doing this enables a single point to be incorporated as the
haptic probe once more. Lagrange multipliers can then be used as described by Zilles and
Salisbury (1995) to obtain the new position of the Virtual Proxy.

A more procedural constraint based approach was developed by Ho et al. (1999) for single
point rendering. They state that it increases the servo-rate, facilitates stable haptic interactions
and importantly enables the servo rate to be independent of the number of polygons. They
refer to their constrained point as the Ideal Haptic Interface Point, IHIP, with a force being
sent to the haptic device based on a spring between the IHIP and HIP. Figure 8 illustrates an
overview of the algorithm. A two-dimensional slice of a three-dimensional object has been
included to represent the virtual object. Initially the IHIP and the HIP are set at the same
position identical to the god-object and Virtual Proxy approaches. At each time step a line
segment is constructed from the previous HIP, P_HIP, to the current HIP. If there exists an
intersection point between this line segment and the virtual object, then the IHIP is
constrained to the closest point to the current HIP on the face nearest to the P_HIP. This is
depicted in Figure 8b. As the HIP moves the IHIP is tracked over the surface of the mesh by
choosing the closest feature to the HIP. For efficiency, only those features (edge, vertex, face)
that bound the current feature are tested, as is depicted in Figures 8c and 8d. When the vector
from the IHIP to HIP points in the direction of the current feature normal, then there is no
contact with the surface and the HIP and IHIP are once again collocated.

(3)

(a) (b)

(c) (d)

Figure 8 a) The HIP and IHIP illustrated moving down towards the top of the two-dimensional slice of
the virtual object. b) The line segment between the P_HIP and the HIP intersects with the virtual
objects. The contact face is shown with the dotted line and the IHIP is constrained to the surface. c)
The IHIP is tracked along the surface of the virtual object. d) The HIP is now closer to a new feature of
the virtual object and so the contact face is updated.

Parametric surfaces: Polygonal representations are perfect for displaying simple objects,
particularly those with sharp corners, but are limited when it comes to representing highly
curved objects. In such case a large number of polygons would be required to approximate the
curved surface, resulting in higher memory requirements. Modeling interactively using these
models can also be very tedious. To overcome this, parametric surfaces have been used and
are very important in modeling packages and Computer Aided Design (CAD) packages.

To directly render parametric models without performing a difficult conversion into a
polygonal representation, haptic rendering algorithms have been developed to allow direct
interaction with NURBS surfaces. In 1997, at the University of Utah, Thompson et al. (1997)
developed a technique for the haptic rendering of NURBS surfaces. The motivation was to be
able to interact with a CAD modeling system using the Sarcos force-reflecting exoskeleton
arm. The algorithm is broken into two phases. Firstly, the collision detection between the HIP
and the surfaces is undertaken and secondly they employ a Direct Parametric Tracing
algorithm to constrain a point to the surface as the HIP is permitted to penetrate the surface.
The constrained point will be referred to as the Surface Contact Point, SCP. The first stage of
the collision detection uses bounding boxes encompassing the surfaces to aid in trivial
rejection. If the HIP is inside the bounding box then the HIP is projected onto the control
mesh. The parameters (u, v) are defined for each vertex of the control mesh. The (u, v)
parameters for the projected point can be obtained by interpolating the parameter values at the
vertices. The distance between the HIP and the point on the surface can then be obtained. The
Direct Parametric Tracing method tracks the position of the HIP on the surface. As the HIP
moves it is projected onto the surface tangent plane, tangential to the gradient of the surface at
the previous location of the SCP. The new SCP and tangent plane are then found by

parametric projection using the projected HIP (Thompson et al., 1997). The force returned to
the device is based on a spring damper model between the HIP and the surface.

Alternatively, the minimum distance between convex parametric surfaces may be determined
by formulating a nonlinear control problem and solving it with the design of a switching
feedback controller (Patoglu and Gillespie, 2004, 2005). The controller simply has the job of
stabilizing the integration of the differential kinematics of the error vector that connects two
candidate points, one drawn from each of two interacting surfaces. The controller manipulates
the parameters (u, v) and (r, s) of the candidate points until the projections of the error vector
onto all four surface tangents are driven to zero. With the design of a suitable feedback
control law, the simulation of the differential kinematics produces an asymptotically
convergent algorithm. While algorithms based on Newton's Iteration have a limited region of
attraction, the algorithm built around the control formulation guarantees global uniform
asymptotic stability, hence dictates that any pair of initial points belonging to the convex
surface patches will converge to the closest point solution without ever leaving the patches
(Patoglu and Gillespie, 2005). Global convergence for a narrow phase algorithm greatly
simplifies the design of a multi-phase algorithm with global convergence. The algorithm may
be run as the surface patches move, where it becomes a tracking algorithm. Other notable
features include no requirement for matrix inversion, high computational efficiency, and the
availability of analytic limits of performance. Together with a top-level switching algorithm
based on Voronoi diagrams, this closest point algorithm can treat parametric models formed
by tiling together surface patches (Patoglu and Gillespie, 2005).

One of the most promising applications of rendering parametric surfaces is in free-form
design. Free-form surfaces are defined by parametric functions and the conventional methods
of design using these surfaces require tedious manipulation of control points and careful
specification of constraints. However, the integration of haptics into free form design
improves the bandwidth of interactions and shortens the design cycle. Dachille et al. (1999)
developed a method that permits users to interactively sculpt virtual B-spline objects with
force feedback. In this approach, point, normal, and curvature constraints can be specified
interactively and modified naturally using forces. Nowadays, commercial packages based on
the free-form design concept (FreeForm Concept and FreeForm Modeling Plus from Sensable
Tech.) offer alternative solutions to the design of jewelry, sport shoes, animation characters,
and many other products. Using these software solutions and a haptic device, the user can
carve, sculpt, push, and pull instead of sketching, extruding, revolving, and sweeping as in
traditional design.

Implicit Surfaces: An early approach for the haptic rendering of implicit surfaces was
developed by Salisbury and Tarr (1997). Their approach used implicit surfaces defined by
analytic functions. Later, Kim et al. (2002) developed a technique where an implicit surface is
constructed that wraps around a geometric model to be graphically rendered. To ensure the
surface can be accurately felt a virtual contact point is incorporated. This point is constrained
to the surface as shown in Figure 9.

(a) (b)

Figure 9. Computing the force magnitude, (a) shows an approximate method and (b) illustrates the
approach by Kim et al. Adapted from Kim et al. (2002)

The method was used for virtual sculpting. The space occupied by the object is divided into a
three-dimensional grid of boxes, in a similar strategy to the volume rendering techniques that
will be discussed in the next section. Collision detection using implicit surfaces can be
performed efficiently, since by using implicit surfaces it is possible to determine whether a
point is interior, exterior or on the surface by evaluating the implicit function with a point.
The potential value is determined for each grid point and then it can be used with an
interpolation scheme to return the appropriate force. The surface normal at each grid point is
calculated from the gradient of the implicit function. The surface normal for any point can
then be determined by interpolating the values of the surface normals at the eight neighbors.

The previous two methods permit only one side of the surface to be touched. For many
applications this is not sufficient, since users often require both sides of a virtual object to be
touched. Maneewarn et al. (1999) developed a technique using implicit surfaces that enabled
the user to interact with the exterior and interior of objects. The user's probe is restricted by
the surface when approached from both sides.

3.2. Volumetric Models
Volumetric objects constructed from individual voxels can store significantly more
information than a surface representation. The ability to visualize volume data directly is
particularly important for medical and scientific applications. There are a variety of
techniques for visualizing the volume data such as the one proposed by Lacroute and Levoy
for shearing, warping and compositing two-dimensional image slices (Lacroute and Levoy,
1994). In contrast, a method termed “splatting” can be used where a circular object can be
rendered in each voxel (Laur and Hanrahan 1991). Each circular object is aligned to the
screen and rendered to form the final image. Volume data can also be visualized indirectly by
extracting a surface representation using methods such as Marching Cubes. Once the surface
is extracted, haptic interaction can then take place using the surface based methods discussed
earlier (Eriksson et al. 2005; Körner et al. 1999). However, the process of surface extraction
introduces a number of problems. As it requires a preprocessing step the user is prevented
from modifying the data during the simulation and it also can generate a large number of
polygons. Furthermore, by only considering the surface, it is not possible to incorporate all the
structures present in a complex volume. To create a complete haptic examination of volume
data, a direct approach is required. Iwata and Noma (1993) were the first to enable haptic
feedback in conjunction with volume data using a direct volume rendering approach, which
they termed Volume Haptization. The approach illustrated ways of mapping 3D vector or
scalar data to forces and torque. The mapping must determine the forces at interactive rates
and typically the forces must directly relate to the visualization of the data. This form of direct

volume rendering is particularly useful for scientific visualization (Lawrence et al. 2000).
Iwata and Noma used their approach for the haptic interaction of data produced in
Computational Fluid Dynamics. In this case force could be mapped to the velocity and torque
mapped to vorticity.

Utilizing Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) as a basis for
volume rendering enables a three dimensional view of patient specific data to be obtained.
Enabling the user to interact with the patient data directly is useful for the medical field
particularly since surgeons commonly examine patients through their sense of touch. Gibson
(1995) developed a prototype for the haptic exploration of a 3D CT scan of a human hip. The
CT data is converted to voxels with each voxel incorporating information for both haptic
rendering and graphical rendering. The human hip is then inserted into an occupancy map,
detailing where the model is located in the voxel grid. The occupancy map consists of a
regularly spaced grid of cells. Each cell either contains a null pointer or an address of one of
the voxels representing an object in the environment. The size of the occupancy map is set to
encompass the entire virtual environment. The fingertip position controlled by the haptic
device is represented by a single voxel. Collision detection between the fingertip and the
voxels representing the human hip are determined by simply comparing the fingertip voxel
with the occupancy map for the environment.

Avila and Sobierajski (1996) developed a technique for the haptic rendering of volume data,
where the surface normals were obtained analytically. The method works by decomposing the
object into a three-dimensional grid of voxels. Each voxel contains information such as
density, stiffness and viscosity. An interpolation function is used to produce a continuous
scalar field for each property. They present one example of interacting with a set of dendrites
emanating from a lateral geniculate nucleus cell. The data was obtained by scanning with a
confocal microscope. The additional functionality was developed to enable the user to
visualize and interact with the internal structure. Bartz and Guvit (2000) used distance fields
to enable the direct volume rendering of a segment of an arterial blood vessel derived from
rotational angiography. The first distance field is generated by first computing a path from a
given starting voxel to a specified target voxel in the blood vessel. This path is computed
using Dijkstra’s Algorithm. This creates a distance field which details the cost of traveling to
the target voxel. A second field is based on the Euclidean distance between each voxel and the
surface boundary. A repulsive force can then be rendered based on the distance between the
haptic probe and the surface. The effects of the two distance fields are controlled using
constant coefficients. A local gradient at a point can then be obtained using trilinear
interpolation of the surrounding voxels. The coefficients of the distance fields must be chosen
carefully to avoid oscillations.

Several researchers have investigated cutting and deforming volumetric data representing
anatomical structures (Agus et al. 2002; Eriksson et al. 2005; Kusumoto et al. 2006; Petersik
et al. 2002; Gibson et al. 1997). Gibson et al. (1997) segmented a series of MRI images by
hand for the simulation of arthroscopic knee surgery. The deformation of the model was
calculated using an approach which permits a volume to stretch and contract in accordance to
set distances (Gibson 1997). The physical properties of the material are also useful for
sculpting material represented by volume data. Chen and Sun (2002) created a system for
sculpting both synthetic volume data and data obtained from CT, MRI and Ultrasound
sources. The direct haptic rendering approach utilized an intermediate representation of the
volume data (Chen et al. 2000). The intermediate representation approach to haptic rendering

was inspired from its use in rendering geometric models (Mark et al. 1996). The sculpting
tools developed by Chen and Sun were treated as volumes allowing each position in the tool
volume to effect the object volume data. They simulated a variety of sculpting effects
including melting, burning, peeling and painting.

When interacting with the volume data directly, an approach is required to provide stiff and
stable contacts in a similar fashion to the rendering achieved with geometric representations.
This is not easily accomplished when using the techniques based on mapping volume data
directly to forces and torques. One strategy is to use a proxy constrained by the volume data
instead of utilizing an intermediate representation as in the previous example (Ikits et al.
2003; Lundin et al. 2002; Palmerius 2007). Lundin et al. (2002) presented an approach aimed
at creating natural haptic feedback from density data with solid content (CT scans). To update
the movements of the proxy point, the vector between the proxy and the HIP was split into
components: one along the gradient vector (fn) and the other perpendicular to it (ft). The proxy
could then be moved in small increments along ft. Material properties such as friction,
viscosity and surface penetratability could be controlled by varying how the proxy position
was updated. Palmerius (2007) developed an efficient volume rendering technique to
encompass a constraint based approach with a numerical solver and importantly a fast
analytical solver. The proxy position is updated by balancing the virtual coupler force, f

r
,

against the sum of the forces from the constraints, iF
r

. The constraints are represented by
points, lines and planes. The balancing is achieved by minimizing the residual term, ε

r
, in the

following equation:

∑+−=
i

proxyiproxy xFxf)()(rrrrr
ε (4)

By modifying the effects of the constraints in the above equation different modes of volume
exploration can take place such as surface-like feedback and 3D friction. Linear combinations
of the constraint effects can be used to obtain the combined residual term. An analytical
solver may then be used to balance the equation and hence find the position of the proxy. The
analytical solver is attempted first for situations where the constraints are orthogonal,
however, if this fails a numerical solver is utilized. This combination of techniques is
available in the open source software titled Volume Haptics Toolkit (VHTK).

4. Surface Details: Smoothing, Friction, and Texture
Haptic simulation of surface details such as friction and texture significantly improves the
realism of virtual worlds. For example, friction is almost impossible to avoid in real life and
virtual surfaces without friction feel “icy-smooth” when they are explored with a haptic
device. Similarly, most surfaces in nature are covered with some type of texture that is sensed
and distinguished quite well by our tactile system. Haptic texture is a combination of small-
scale variations in surface geometry and its adhesive and frictional characteristics. Oftentimes,
displaying the detailed geometry of textures is computationally too expensive. As an
alternative, both friction and texture can be simulated by appropriate perturbations of the
reaction force vector computed using nominal object geometry and material properties. The
major difference between the friction and the texture simulation via a haptic device is that the
friction model creates only forces tangential to the nominal surface in a direction opposite to
the probe motion, while the texture model can generate both tangential and normal forces in
any direction (see Figure 10).

Figure 10. Forces acting on the user (Fuser = Fn + Ft + Ff) during haptic simulation of friction and
textures. The normal force can be computed using a simple physics-based model such as Hooke’s law
(Fn = k ∆x, where ∆x is the depth of penetration of the haptic probe into the virtual surface). To
simulate coulomb friction, we need to create a force (Ff = µFn, where µ is the coefficient of friction) that
is opposite to the direction of the movement. To simulate texture, we change the magnitude and
direction of the normal vector (Fn) using the gradient of the texture field at the contact point.

Smoothing: A rapid change in surface normals associated with sharp edges between joining
surfaces or between faces in a polygonal models causes force discontinuities that may prove
problematic during haptic rendering. Incorporating techniques to blend between the surface
normals can alleviate these problems. Without this type of technique high numbers of
polygons would be required to simulate surfaces with smooth curved areas. Strategies
analogous to Gourard or Phong shading, used for interpolating normals for lighting, can be
developed for haptic rendering. The paper by Morgenbesser and Srinivasan (1996) was the
first to demonstrate the use of force shading for haptic rendering. Using a similar technique to
Phong shading Salisbury et al. (1995) found that a smooth model could be perceived from a
coarse three-dimensional model. This is akin to visualizing a smooth three-dimensional object
using Phong shading when a relatively low number of triangles are used in the underlying
geometry.

Ruspini et al. (1997) also incorporated a force shading model, which interpolated the normals
similar to Phong shading. A two pass technique was utilized to modify the position of the
Virtual Proxy. The first stage computes the closest point, CP, between the HIP and a plane
that runs through the previous virtual proxy position. The plane's normal is in the same
direction as the interpolated normal. The second stage proceeds by using the CP as the
position of the HIP in the usual haptic rendering algorithm described in the previous section.
They state that the advantages of this method are that it deals with the issue of force shading
multiple intersecting shaded surfaces and that by modifying the position of the Virtual Proxy
the solution is more stable.

In some approaches changes in contact information, penetration distance and normals can
affect the force feedback significantly between successive steps of the haptic update loop.
These changes can cause large force discontinuities producing undesirable force feedback.
Gregory et al. (2001) encountered this problem and employed a simple strategy to interpolate
between two force normals. Their strategy prevents the difference between previous and
current forces becoming larger than a pre-defined value, Fmax. This simple approach provides
a means of stabilizing forces.

if (F1x-F0x) > 2Fmax
then F1x = F0x – Fmax

else if (F1x – F0x) > Fmax
then F1x = (F0x + F1x) / 2

return F1x

Direction

of m
ovement

Fn

F
f

Ft

Fuser

Direction

of m
ovement

Fn

F
f

Ft

Fuser

The pseudo code given above is used to prevent the new force vector, F1, becoming
significantly different from the previous force vector, F0. The pseudo code presented
illustrated how the force smoothing takes place for the x components of the force vectors.
Similar code is required for the y components and z components.

Friction: In the previous section the methods for computing forces that act to restore the HIP
to the surface of the virtual object have been discussed. If this force is the only one
incorporated then the result is a frictionless contact where the sensation perceived is
analogous to moving an ice-cube along a glassy surface (Salisbury et al., 1995). Achieving
this is a good result as some good properties with respect to the design of the haptic feedback
device are exhibited in addition to smooth and stable feedback. However, this interaction is
not very realistic, in most cases, and can even hinder the interaction as the user slips off
surfaces accidentally. Several approaches have been developed to simulate both static and
dynamic friction to alleviate this problem (Salcudean and Vlaar 1994; Salisbury et al., 1995,
Mark et al., 1996, Ruspini et al., 1997, Kim et al., 2002). By changing the mean value of
friction coefficient and its variation, more sophisticated frictional surfaces such as periodic
ones (Ho et al., 1999) and various grades of sandpaper (Green and Salisbury, 1997) can be
simulated as well.

Salisbury et al. (1995) developed a stick-slip friction model enhancing the feedback from their
god-object approach. The model utilizes Coulomb friction and records a stiction point. The
stiction point remains static until an offset between the stiction point and the user's position is
exceeded. At this stage the stiction point is moved to a new location along a line that connects
the previous stiction point and the user's position. Kim et al. (2002) enabled friction to be
incorporated with their implicit surface rendering technique. By adjusting the position of the
contact point on the surface a component of force tangential to the surface could be
integrated. To achieve this, a vector, V, is obtained between the previous and new positions of
the contact point on the surface. A friction coefficient can be integrated to determine a point,
P, along V. The surface point that is intersected by a ray emanating from the HIP position
passing through P is chosen as the new contact point.

At the University of North Carolina, Chapel Hill, Mark et al. (1996) developed a model for
static and dynamic friction. The surfaces of the objects are populated by snags, which hold the
position of the user until they push sufficiently to leave the snag. When the probe moves
further than a certain distance from the centre of the snag the probe is released. While stuck in
a snag a force tangential to the surface pulls the user to the centre of the snag and when
released a friction force proportional to the normal force is applied. It is easily envisaged that
this technique is appropriate for representing surface texture by varying the distribution of the
snags. Surface texture will be described in the next section.

Texture: Haptic perception and display of textures in virtual environments require a thorough
investigation, primarily because the textures in nature come in various forms. Luckily,
graphics texturing has been studied extensively and we can draw from that experience to
simulate haptic textures in virtual environments. There exists a strong correlation between the
friction of a surface and its surface roughness, or texture. However, texture enriches the user’s
perception of a surface to a higher extent than friction, as extra details about the surface can
be perceived. Integrating texture into haptic rendering algorithms presents more information,

to the user, about the virtual object than applying images to the surface of objects for
graphical rendering, using texture mapping. Surface texture is important when humans
interact with objects and therefore it is important for the haptic rendering of virtual objects.
Many researchers have investigated the psychophysics of tactile texture perception. Klatzky et
al. (2003) investigate haptic textures perceived through the bare finger and through a rigid
probe. Choi and Tan (2004) investigated the perceived instabilities in haptic texture rendering
and concluded that the instabilities may come from many sources including the traditional
control instability of haptic interfaces as well as inaccurate modeling of environment
dynamics, and the difference in sensitivity to force and position changes of the human
somatosensory system. Minsky et al. (1990) developed a simulation to represent the
roughness of varying degrees of sandpaper. Users were then asked to order the pieces of
simulated sandpaper according to their roughness. A texture depth map was created, utilized
by the haptic device by pulling the user's hand into low regions and away from high regions.
A strategy similar to that of bump mapping objects, utilized in graphical rendering, was
employed by Ho et al. (1999). For graphical texture mapping, techniques have been
developed to enable statistical approaches to the generation of textures (Siira and Pai, 1996;
Fritz and Barner, 1996; Basdogan et al., 1997). Fritz and Barner (1996) developed two
methods for rendering stochastic based haptic textures. The lattice texture approach works by
constructing a 2D or 3D grid where a force is associated to each point. The second method
labeled local space approach also uses a lattice defined in the texture space coordinate system.
In this case the forces are determined for the centers of the grid cells. For implicit surfaces
Kim et al. (2002) enabled Gaussian noise and texture patterns to directly alter the potential
values stored in the points forming three-dimensional grids. The three-dimensional grids
encompass the virtual objects. The adaptation could be incorporated without increasing the
overall complexity of the haptic rendering algorithm. Fractals are also appropriate for
modeling natural textures since many objects seem to exhibit self-similarity Ho et al. (1999)
have used the fractal concept in combination with the other texturing functions such as
Fourier series and pink noise in various frequency and amplitude scales to generate more
sophisticated surface details.

Recently haptic texturing has also been employed between two polygonal models. This
approach can be applied to the haptic rendering techniques for object-object interactions.
Otaduy et al. (2004) developed a technique to estimate the penetration depth between two
objects described by low resolution geometric representations and haptic textures created
from images that encapsulate the surface properties.

5. Summary and Future
The goal of 3-dof haptic rendering is to develop software algorithms that enable a user to
touch, feel, and manipulate objects in virtual environments through a haptic interface. 3-dof
haptic rendering views the haptic cursor as a point in computing point-object interaction
forces. However, this does not restrict us to simulate tool-object or multi-finger interactions.
For example, a 3D tool interacting with a 3D object can be modeled as dense cloud of points
around the contact region to simulate tool-object interactions. Many of the point-based
rendering algorithms have been already incorporated into commercial software products such as
the Reachin API1, GHOST SDK, and OpenHaptics2. Using these algorithms, real-time haptic
display of shapes, textures, and friction of rigid and deformable objects has been achieved.
Haptic rendering of dynamics of rigid objects, and to a lesser extent, linear dynamics of

1 http://www.reachin.se
2 http://www.sensable.com

deformable objects has also been accomplished. Methods for recording and playing back
haptic stimuli as well as algorithms for haptic interactions between multiple users in shared
virtual environments are emerging.

In the future, the capabilities of haptic interface devices are expected to improve primarily in
two ways: (1) improvements in both desktop and wearable interface devices in terms of
factors such as inertia, friction, workspace volume, resolution, force range, and bandwidth; (2)
development of tactile displays to simulate direct contact with objects, including temperature
patterns. These are expected to result in multifinger, multihand, and even whole body
displays, with heterogeneous devices connected across networks. Even with the current rapid
expansion of the capabilities of affordable computers, the needs of haptic rendering with more
complex interface devices will continue to stretch computational resources. Currently, even
with point-based rendering, the computational complexity of simulating the nonlinear
dynamics of physical contact between an organ and a surgical tool as well as surrounding
tissues is very high (see the review in Basdogan et al., 2004). Thus there will be continued
demand for efficient algorithms, especially when the haptic display needs to be synchronized
with the display of visual, auditory, and other modalities. Similar to graphics accelerator cards
used today, it is quite likely that much of the repetitive computations will need to be done
through specialized electronic hardware perhaps through parallel processing. Given all the
complexity and need for efficiency, in any given application the central question will be how
good does the simulation need to be to achieve a desired goal.

References:

Adachi, Y., Kumano, T., Ogino, K., (1995). “Intermediate representation for stiff virtual

objects”, Proceedings of the Virtual Reality Annual International Symposium
(VRAIS'95), pp. 203.

Adams, R.J., Hannaford, B. (2002). “Control law design for haptic interfaces to virtual
reality”, IEEE Transactions on Control Systems Technology, Vol. 10, No. 1, pp. 3-13.

Adams, R.J., Hannaford, B. (1999). “Stable haptic interaction with virtual environments”,
IEEE Transactions on Robotics and Automation, Vol. 15, No. 3, pp. 465-474.

Agus, M., Giachetti, A., Gobbetti, E., Zanetti, G., John, N.W., and Stone, R.J. (2002)
"Mastoidectomy Simulation with Combined Visual and Haptic Feedback,",
Proceedings of Medicine Meets Virtual Reality Conference, pp. 17-23.

Avila, R. S. and Sobierajski, L. M., (1996). "A Haptic Interaction Method for Volume
Visualization", IEEE Proceedings of Visualization, pp. 197-204.

Bartz, D., and Guvit, O. (2000). "Haptic Navigation in Volumetric Datasets," In Phantom
User Research Symposium, Zurich.

Basdogan, C, De S., Jung Kim, Muniyandi, M., Kim, H.,Mandayam A.
Srinivasan (2004). “Haptics in Minimally Invasive Surgical Simulation and Training”,
IEEE Computer Graphics and Applications, Vol. 24, No.2, pp. 56-64.

Basdogan, C., Srinivasan, M.A., (2002). “Haptic Rendering In Virtual Environments”,
Handbook of Virtual Environments, Ed.: K. Stanney, pp. 117-134

Basdogan, C., Ho, C., Srinivasan, M.A., (1997). "A Ray-Based Haptic Rendering Technique
for Displaying Shape and Texture of 3D Objects in Virtual Environments", the Winter
Annual Meeting of ASME’97, DSC-Vol. 61, pp. 77-84, Dallas, TX, Nov. 16-21.

Chen, H., and Sun, H. (2002). "Real-time Haptic Sculpting in Virtual Volume Space," Proc.
ACM Symposium on Virtual Reality Software and Technology) pp 81-88.

Chen, K.W., Heng, P.A., and Sun, H. (2000). "Direct Haptic Rendering of Isosurface by
Intermediate Representation," VRST: Proc. of ACM Symposium on Virtual Reality
Software and Technology, pp 188-194.

Choi, S., Tan, H., (2004). "Toward Realistic Haptic Rendering of Surface Textures", IEEE
Computer Graphics and Applications, Vol. 24, No.2, pp. 40-47.

Colgate, J.E., Brown, J.M., 1994, "Factors affecting the z-width of a haptic display”,
Proceedings of IEEE Int. Conference on Robotics and Automation, pp. 3205-3210.

Dachille, F., Qin, H., Kaufman, A., El-sanat J., (1999). “Haptic sculpting of dynamic
surfaces”, ACM Symposium on Interactive 3D Graphics, pp. 103-110.

Ellis, R.E., Sarkar, N. and Jenkins, M.A., (1996). "Numerical Methods For the Haptic
Presentation of Contact: Theory, Simulations, and Experiments", Proceedings of the
ASME Dynamic Systems and Control Division, DSC-Vol. 58, pp. 413-420.

Eriksson, M., Flemmer, H., and Wikander, J. (2005). "A Haptic and Virtual Reality Skull
Bone Surgery Simulator," Proceedings of World Haptics, March, Pisa, Italy.

Fritz and Barner (1996). Haptic Scientific Visualization. Proceedings of the First PHANToM
Users Group Workshop, Eds: Salisbury J.K. and Srinivasan M.A. MIT-AI TR-1596
and RLE TR-612.

Gibson, S.F., Samosky, J., Mor, A., Fyock, C., Grimson, W.E.L., Kanade, T., Kikinis, R.,
Lauer, H.C., McKenzie, N., Nakajima, S., Ohkami, T., Osborne, R., and Sawad, A.
(1997). "Simulating Arthroscopic Knee Surgery using Volumetric Object
Representations, Real-Time Volume Rendering and Haptic Feedback," Proceedings of
CVRMed-MRCAS, pp 369-378.

Gibson, S.F. (1995). "Beyond Volume Rendering: Visualization, Haptic Exploration and
Physical Modeling of Voxel-based Objects," MERL Technical Report 95-004.

Gibson, S.F. (1997). "3D ChainMail: a fast algorithm for deforming volumetric objects,"
ACM Symposium on Interactive 3D Graphics, pp 149-154.

Gillespie, B. Cutkosky, M., (1996). "Stable User-Specific Haptic Rendering of the Virtual
Wall," Proceedings of ASME Conference, Vol. 58, 1996, pp. 397-406.

Gregory, A., Mascarenhas, A., Ehmann, S., Lin, M. and Manocha, D. (2001) Six Degree-of-
Freedom Haptic Display of Polygonal Models, Proc. of IEEE Visualisation Conf., pp.
139-146.

Ho, C., Basdogan, C. and Srinivasan, M. A. (1999) Presence: Teleoperators and Virtual
Environments, Vol. 8, No. 5, pp. 477-491.

Ho, C., Basdogan, C., Srinivasan, M.A., 2000, “Ray-based Haptic Rendering: Interactions
Between a Line Probe and 3D Objects in Virtual Environments”, International
Journal of Robotics Research, Vol. 19, No. 7, pp. 668-683.

Ikits, M., Brederson, J.D., Hansen, C., and Johnson, C. (2003). "A Constraint-Based
Technique for Haptic Volume Exploration," Proc. of IEEE Visualization Conf., pp.
263-269.

Iwata, H. and Noma, H. (1993) In Proc. of IEEE Symp. on Research Frontiers in Virtual
Reality, pp. 16-23.

Johnson, D. E. and Willemsen, P. (2003). "Six Degree-of-Freedom Haptic Rendering of
Complex Polygonal Models", Proceedings of 11th Symp. on Haptic Interfaces for
Virtual Environment and Teleoperator Systems, pp. 229-235.

Kim, L., Kyrikou, A., Sukhatme, G. S. and Desbrun, M. (2002). Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 2943-2948.

Klatzky, R. L., Lederman, S. J., Hamilton, C., Grindley, M. and Swendsen, R. H. (2003).
Perception \& Psychophysics, Vol. 65, No. 4, pp. 613-631.

Körner, O., Schill, M., Wagner, C., Bender, H.J., and Männer, R. (1999). "Haptic Volume
Rendering with an Intermediate Local Representation," Proc. 1st International
Workshop on Haptic Devices in Medical Applications, pp 79-84.

Kusumoto, N., Sohmura, T., Yamada, S., Wakabayashi, K., Nakamura, T., and Yatani, H.,
(2006). "Applcation of virtual reality force feedback haptic device for oral implant
surgery," Clinical Oral Impl. Res. Vol. 17, pp 708-713.

Lacroute, P., and Levoy, M. (1994). "Fast Volume Rendering Using a Shear-Warp
Factorization of the viewing transformation," ACM Siggraph, pp. 451-458.

Laur, D., and Hanrahan, P. (1991). "Hierarchical Splatting: A progressive refinement
algorithm for volume rendering," ACM Siggraph, pp 285-288.

Laycock, S.D., and Day, A.M. (2005). Incorporating Haptic Feedback for the Simulation of a
Deformable Tool in a Rigid Scene, Computers & Graphics, Vol. 29, No. 3, pp. 341-
351.

Laycock, S.D., Day, A.M. (2007) A Survey of Haptic Rendering Techniques, Computer
Graphics Forum, Vol. 26, No. 1, pp 50-65.

Lawrence, D.A., Lee, C.D., Pao, L.Y., and Novoselov, R.Y. (2000). "Shock and Vortex
Visualization using a combined visual/haptic interface," Proc. of IEE Visualization
Conf., pp 131-137.

Lundin, K., Ynnerman, A., and Gudmundsson, B. (2002). "Proxy-based Haptic Feedback
from Volumetric Density Data," EuroHaptics, pp 104-109.

Maneewarn, T., Storti, D. W., Hannaford, B. and Ganter, M. A. (1999). "Haptic Rendering for
Internal Content of an Implicit Object", Proc. ASME Winter Annual Meeting Haptic
Symposium, Nashville, TN.

Mark, W. R., Randolph, S. C., Finch, M., Verth, J. M. V. and II, R. M. T. (1996). "Adding
Force Feedback to Graphics Systems: Issues and Solutions", ACM Siggraph,
Louisiana, pp. 447-452.

McNeely, W., Puterbaugh, K., and Troy, J. (1999). Six degree-of-freedom haptic rendering
using voxel sampling. Proc. of ACM Siggraph, pp. 401–408.

Miller, B.E., Colgate, J.E., and Freeman, R.A. (2000). "Guaranteed stability of haptic systems
with nonlinear virtual environments", IEEE Transactions on Robotics and
Automation, Vol. 16, No. 6, pp. 712-719.

Minsky, M., Ouh-young, M., Steele, O., Brooks, F. P. and Behensky, M. (1990). Feeling and
Seeing in Force Display", ACM Siggraph, Vol. 24(2), pp. 235-243.

Morgenbesser, H.B., Srinivasan, M.A. (1996). "Force Shading for Haptic Shape Perception",
Proceedings of the ASME Dynamic Systems and Control Division, Vol. 58, 407-412.

Nelson, D. D., Johnson, D. E., and Cohen, E. (1999). "Haptic rendering of surface-to-surface sculpted
model interaction", Proc. of ASME Dynamic Systems and Control Division.

Otaduy, M. A., Jain, N., Sud, A. and Lin, M. C. (2004). "Haptic display of interaction
between textured models", Proc. of IEEE Visualization ConferenceAustin, TX, pp.
297-304.

Otaduy, M. A., and Lin, M. C. 2005. Stable and responsive six-degree-of-freedom haptic manipulation
using implicit integration. Proc. of World Haptics Conference.

Palmerius, K.L. (2007). "Fast and high Precision Volume Haptics," to appear in Proc. World
Haptics Conference.

Patoglu, V., Gillespie R.B. (2005). "A closest point algorithm for parametric surfaces with
global uniform asymptotic stability", Proceedings of IEEE Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems.

Patoglu, V., Gillespie R.B. (2004). "Haptic Rendering of Parametric Surfaces Using a
Feedback Stabilized Extremal Distance Tracking Algorithm", Proceedings of IEEE
Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.

Petersik, A., Pflesser, B., Tiede, U., Höhne, K.H., and Leuwer, R. (2002). "Realistic Haptic
Volume Interaction for Petrous Bone Surgery Simulation," Proc. of CARS Conf..

Ruspini, D.C., Kolarov, K., Khatib O. (1997). The Haptic Display of Complex Graphical
Environments. ACM (Proceedings of SIGGRAPH), July, pp. 345-352.

Salcudean, S. E. and Vlaar, T. D. (1994). On the Emulation of Stiff Walls and Static Friction
with a Magnetically Levitated Input/Output Device. Proceedings of ASME, DSC, Vol.
55, No.1, pp. 303 - 309.

Salisbury, K., Brock, D., Massie, T., Swarup, N. and Zilles, C. (1995). "Haptic
rendering: programming touch interaction with virtual objects", Proc. of the Symp. on
Interactive 3D Graphics, pp. 123-130.

Salisbury, J.K., and Tarr, C., (1997). "Haptic Rendering of Surfaces Defined by Implicit
Functions", Proceedings of the ASME, DSC-61, pp. 61-67.

Salisbury, J. K., Srinivasan, M. A. (1997). "Phantom-Based Haptic Interaction with Virtual
Objects", IEEE Computer Graphics and Applications, Vol. 17, No. 5, pp. 6-10.

Salisbury, K., Conti, F., Barbagli, F. (2004). "Haptic Rendering: Introductory Concepts",
IEEE Computer Graphics and Applications, Vol. 24, No. 2, pp. 24-32.

Stewart, P., Chen, Y., Buttolo, P., (1997). “Direct Integration of haptic user interface in CAD
systems", Proceedings of ASME, DSC-Vol. 61, pp. 93-99.

Siira, J., Pai D. K. (1996). Haptic Texturing - A Stochastic Approach. Proceedings of the
IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota,
pp. 557-562.

Srinivasan, M.A., and Basdogan, C. (1997). Haptics in Virtual Environments: Taxonomy,
Research Status, and Challenges. Computers and Graphics, Vol. 21, No. 4, pp. 393 -
404.

Thompson, T. V., Johnson, D. E. and Cohen, E. (1997). "Direct Haptic Rendering Of
Sculptured Models", Proc. of Symp. on Interactive 3D Graphics, pp. 167-176.

Zilles, C. B. and Salisbury, J. K. (1995). "A constraint-based god-object method for haptic
display", Proc. of the IEEE Conference on Intelligent Robots and Systems, pp. 146-
151.

