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1. Introduction 
Haptic rendering enables a user to touch, feel, and manipulate virtual objects through a haptic 
interface (see Figure 1). The field has shown a significant expansion during the last decade. 
Since the publication of earlier review papers (Salisbury and Srinivasan, 1997; Srinivasan and 
Basdogan, 1997), new rendering techniques and several new applications have emerged (see 
the more recent reviews in Basdogan and Srinivasan, 2002, Salisbury et al, 2004, and 
Laycock and Day, 2007). The applications now cover a wide range of fields including 
medicine (surgical simulation, tele-medicine, haptic user interfaces for blind persons, 
rehabilitation for patients with neurological disorders, dental medicine) art and entertainment 
(3D painting, character animation, digital sculpting, virtual museums), computer-aided 
product design (free-form modeling, assembly and disassembly including insertion and 
removal of parts), scientific visualization (geophysical data analysis, molecular simulation, 
flow visualization), and robotics (path planning, micro/nano tele-manipulation). This chapter 
will primarily focus on the fundamental concepts of haptic rendering with some discussion of 
implementation details. In particular, we will focus on the haptic interactions of a single point 
(i.e. Haptic Interface Point-HIP- in Figure 1) with a 3D object in virtual environments. This 
corresponds to feeling and exploring the same object through a stylus in real world. This 
chapter is entitled 3-dof haptic rendering to differentiate it from 6-dof rendering which 
involves object-object interaction and is covered in the other parts of this book.  
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 1. Point-based haptic interactions with 3D objects in virtual environments. 
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2. Human-Machine Coupling 
Haptic rendering is significantly more complex (and interesting) than visual rendering since it 
is a bilateral process: display (rendering) cannot be divorced from manipulation. Thus any 
haptic rendering algorithm is intimately concerned with tracking the inputs of the user as well 
as displaying the haptic response. Also note that haptic rendering is computationally 
demanding due to the high sampling rates required. While the visual system perceives 
seamless motion when flipping through 30 images per second, the haptic system requires 
signals that are refreshed at least once every millisecond. These requirements are driven by 
human haptic ability to detect vibrations which peaks at about 300 Hz but ranges all the way 
up to 1000 Hz. Note that vibrations up to 1000 Hz might be required to simulate fast motion 
over fine texture, but also might be required for sharp, impulsive rendering of a changing 
contact condition. 
 
Haptic rendering requires a haptic interface, a computationally mediated virtual environment, 
and a control law according to which the two are linked. Figure 2 presents a schematic view 
of a haptic interface and the manner in which it is most commonly linked to a virtual 
environment.  On the left portion of the figure, mechanical interaction takes place between a 
human and the haptic interface device, or more specifically, between a fingertip and the 
device end-effector. In the computational domain depicted on the right, an image of the 
device end-effector E is connected to a proxy P through what is called the virtual coupler. 
The proxy P in turn interacts with objects such as A and B in the virtual environment. Proxy P 
might take on the shape of the fingertip or a tool in the user's grasp. 
 

 
Figure 2. This two part figure presents a schematic representation of haptic rendering. The left figure 
corresponds to the physical world where a human interacts with the haptic device. The figure on the 
right depicts the computationally implemented virtual environment. 
 
The virtual coupler is depicted as a spring and damper in parallel, which is a model of its most 
common computational implementation, though generalizations to 3D involve additional 
linear and rotary spring-damper pairs not shown.  The purpose of the virtual coupler is two-
fold.  First, it links a forward-dynamics model of the virtual environment with a haptic 
interface designed for impedance-display1. Relative motion (displacement and velocity) of the 
                                                 
1 Impedance display describes a haptic interface that senses motion and sources forces and moments. An 
admittance display sources motion and senses forces and moments. Most haptic interface devices are controlled 
using impedance display, which may be implemented using low inertia motors and encoders connected to the 
mechanism through low friction, zero backlash, direct-drive or near-unity mechanical advantage transmissions. 
Impedance display does not require force or torque sensors. 



two ends of the virtual coupler determines, through the applicable spring and damper 
constants, the forces and moments to be applied to the forward dynamics model and the equal 
and opposite forces and moments to be displayed by the haptic interface.  Note that the 
motion of P is determined by the forward dynamics solution, while the motion of E is 
specified by sensors on the haptic interface.  The second role of the virtual coupler is to filter 
the dynamics of the virtual environment so as to guarantee stability when display takes place 
through a particular haptic device.  The parameters of the virtual coupler can be set to 
guarantee stability when parameters of the haptic device hardware are known and certain 
input-output properties of the virtual environment are met.  Thus the virtual coupler is most 
appropriately considered part of the haptic interface rather than part of the virtual environment 
(Adams and Hannaford, 1999, 2002). If an admittance-display architecture is used, an 
alternate interpretation of the virtual coupler exists, though it plays the same two basic roles.  
For further discussion of the virtual coupler in performance/stability tradeoffs in either the 
impedance or admittance-display cases, see the work done by Adams and Hannaford (1999, 
2002), and Miller and Colgate (2000). 
 
One final note can be made with reference to Figure 2: rigid bodies in the virtual environment, 
including P, have both configuration and shape -they interact with one another according to 
their dynamic and geometric models. Configuration (including orientation and position) is 
indicated in Figure 2 using reference frames (three mutually orthogonal unit vectors) and 
reference points fixed in each rigid body. Shape is indicated by a surface patch. Note that the 
image of the device end-effector E has configuration but no shape. Its interaction with P takes 
place through the virtual coupler and requires only the configuration of E and P.  
 

 
 
Figure 3. A block diagram of haptic rendering according to an impedance display architecture. There 
are three major blocks in the diagram modeling input/output characteristics of the human, the haptic 
interface and the virtual environment. 
 
The various components in Figure 2, including the human user, haptic device, virtual coupler, 
and virtual environment, form a coupled dynamical system whose behavior depends on the 
force/motion relationship established by the interconnection of the components. Figure 3 



shows these components interconnected in a block diagram, where the additional indication of 
causality has been made.  Causality expresses which force and motion variables are inputs and 
which are outputs for each component.  For example, the human operates on the velocity vh 
(common to the finger and end-effector) to produce the force Fh imposed on the haptic device.  
The haptic device is a two-port that operates on the force Fh imposed by the human and the 
force Fm produced by its motors to produce the velocities vh and vm. Usually, by careful haptic 
device transmission design, vh and vm are the same, and measured with a single encoder.  
Intervening between the human and haptic device, that ‘live’ in the continuous, physical 
world and the virtual coupler and virtual environment that live in the discrete, computed 
world are a sampling operator T and zero-order hold (ZOH).  The virtual coupler is shown as 
a two-port that operates on velocities vm and ve to produce the motor command force Fm and 
force Fe imposed on the virtual environment. Forces Fm and Fe are usually equal and opposite. 
Finally, the virtual environment is shown in its forward dynamics form, operating on applied 
forces Fe to produce response motion ve. Naturally, the haptic device may use motors on its 
joints, so the task-space command forces Fm must first be mapped through the manipulator 
Jacobian before being applied to the motors. 
 
Note that the causality assumption for the human is by itself rather arbitrary. However, 
causality for the haptic device is essentially determined by electro-mechanical design, and 
causality for the virtual coupler and virtual environment is established by the implementation 
of a discrete algorithm.  The causality assumptions in Figure 3 correspond to impedance 
display.  Impedance display is the most common but certainly not the only possible 
implementation. See (Adams and Hannaford, 1999) for a framework and analysis using 
network diagrams (that do not indicate causality), which is more general. 
 

 
3. Rendering of 3D Rigid Objects 
Typically, a haptic rendering algorithm is made of two parts: (a) collision detection and (b) 
collision response (see Figure 4). As the user manipulates the probe of the haptic device, the 
new position and orientation of the haptic probe are acquired and collisions with the virtual 
objects are detected (i.e. collision detection). If a collision is detected, the interaction forces 
are computed using preprogrammed rules for collision response, and conveyed to the user 
through the haptic device to provide him/her with the tactual representation of 3D objects and 
their surface details. Hence, a haptic loop, which updates forces around 1 kHz (otherwise, 
virtual surfaces feel softer, or, at worst, instead of a surface it feels as if the haptic device is 
vibrating), includes at least the following function calls:  
 
            
          …  
             get_position (Vector &position);  // position and/or orientation of the end-effector   
               calculate_force (Vector &force);  // user-defined function to calculate forces  
               send_force (Vector force); // calculate joint torques and reflect forces back to the user 
 
          … 
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Figure 4. A haptic interaction algorithm is typically made of two parts: (a) collision detection and (b) 
collision response. The haptic loop seen in the figure requires an update rate of around 1 kHz for 
stable force interactions. Computationally fast collision detection and response techniques are 
necessary to accommodate this requirement. 
 
To describe the basic concepts of haptic rendering, let us consider a simple example: haptic 
rendering of a 3D frictionless sphere, located at the origin of a 3D virtual space (see Figure 5). 
Let us assume that the user can only interact with the virtual sphere through a single point 
which is the end point of the haptic probe, also known as the Haptic Interaction Point (HIP). 
In the real world, this is analogous to feeling the sphere with the tip of a stick. As we freely 
explore the 3D space with the haptic probe, the haptic device will not reflect any force to the 
user until a contact occurs. Since our virtual sphere has a finite stiffness, HIP will penetrate 
into the sphere at the contact point. Once the penetration into the virtual sphere is detected and 
appropriate forces to be reflected back to the user are computed, the device will reflect 
opposing forces to our hand to resist further penetration. We can easily compute the 
magnitude of the reaction force by assuming that it is proportional to the depth of penetration. 
Assuming no friction, the direction of this force will be along the surface normal as shown in 
Figure 5. 
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void calculate_force (Vector &force)
          {
                float X, Y, Z, distance;
                float R = 20.0;

                X = HIP[0]; Y = HIP[1];  Z = HIP[2];
                distance = sqrt(X*X + Y*Y + Z*Z);

                if(distance < R)  //collision check
                {
                      force[0] = X/distance * (R-distance);
                      force[1] = Y/distance * (R-distance);
                      force[2] = Z/distance * (R-distance);

                }

          }
 

 
Figure 5. Haptic rendering of a 3D sphere in virtual environments. The software code presented on 
the right-hand side calculates the direction and the magnitude of the reaction force for the sphere 
discussed in the example. The sphere has a radius of 20 units and is located at the origin. 
 
As it can be seen from the example given above, a rigid virtual surface can be modeled as an 
elastic element. Then, the opposing force acting on the user during the interaction will be: 



 
xkF vv

∆=     (1) 
 
where, k  is the stiffness coefficient and || xv∆  is the depth of penetration. While keeping the 
stiffness coefficient low would make the surface feel soft, setting a high value can make the 
interactions unstable by causing undesirable vibrations. Figure 6 depicts the changes in force 
profile with respect to position for real and virtual walls. Since the position of the probe tip is 
sampled digitally with certain frequency during the simulation of a virtual wall, a “staircase” 
effect is observed. This staircase effect leads to energy generation (see the discussions and 
suggested solutions in Colgate and Brown, 1994, Ellis et al., 1996, and Gillespie and 
Cutkosky 1996). 
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Figure 6. Force-displacement curves for touch interactions with real and virtual walls. In the case of 
real wall, the force-displacement curve is continuous. However, we see the “staircase” effect when 
simulating touch interactions with a virtual wall. This is due to the fact that a haptic device can only 
sample position information with a finite frequency. The difference in the areas enclosed by the curves 
that correspond to penetrating into and out of the virtual wall is a manifestation of energy gain. This 
energy gain leads to instabilities as the stiffness coefficient is increased (compare the energy gains for 
stiffness coefficients k1 and k2). On the other hand, a low value of stiffness coefficient generates a soft 
wall, which is not desirable either. 
 
Although the basic recipe for haptic rendering of virtual objects seems easy to follow, 
rendering complex 3D surfaces and volumetric objects requires more sophisticated algorithms 
than the one presented for the sphere. The stringent requirement of updating forces around 1 
kHz leaves us very little CPU time for computing the collisions and reflecting the forces back 
to the user in real-time when interacting with complex shaped objects. In addition, the 
algorithm given above for rendering of a sphere considered only “point-based” interactions 
(as if interacting with objects through the tip of a stick in real world), which is far from what 
our hands are capable of in the real world. However, several haptic rendering techniques have 
been developed to simulate complex touch interactions in virtual environments. The existing 
techniques for haptic rendering with force display can be distinguished based on the way the 
probing object is modeled: (1) a point (Zilles and Salisbury, 1995; Adachi et al., 1995; Avila 
and Sobierajski, 1996; Ruspini et al., 1997; Ho et al., 1999), (2) a line segment (Basdogan, et 
al., 1997; Ho et al., 2000), or (3) a 3D object made of group of points, line segments and 
polygons (McNeely et al., 1999; Nelson et al., 1999; Gregory et al. 2001; Johnson et al. 2003; 
Laycock et al. 2005; Otuday and Lin, 2005). The type of interaction method used in simulations 
depends on the application. 
 



In point-based haptic interactions, only the end point of the haptic device, also known as the 
haptic interface point (HIP), interacts with virtual objects. Each time the user moves the 
generic probe of the haptic device, the collision detection algorithm checks to see if the end 
point is inside the virtual object. If so, the depth of indentation is calculated as the distance 
between the current HIP and the corresponding surface point, also known as the Ideal Haptic 
Interface Point (IHIP), god-object, proxy point, or surface contact point. For exploring the 
shape and surface properties of objects in VEs, point-based methods are probably sufficient 
and could provide the users with similar force feedback similar to that experienced when 
exploring the objects in real environments with the tip of a stylus.  
 
An important component of any haptic rendering algorithm is the collision response. Merely 
detecting collisions between 3D objects is not enough for simulating haptic interactions. How 
the collision occurs and how it evolves over time (i.e. contact history) are crucial factors in 
haptic rendering to accurately compute the interaction forces that will be reflected to the user 
through the haptic device (Ho et al., 1999; Basdogan and Srinivasan, 2002). In other words, 
the computation of IHIP relies on the contact history. Ignoring contact history and always 
choosing the closest point on the object surface as our new IHIP for a given HIP would make 
the user feel as if he is pushed out of the object. For example, Figure 7a shows a thin object 
with the HIP positioned at three successive time steps. Step 1 shows the HIP on the left hand 
side just coming into contact with the thin object. At Step 2, the HIP has penetrated the thin 
object and is now closer to the right face of the object. The HIP will be forced out the other 
side producing an undesired result. A similar problem will occur if the HIP is located 
equidistant to two faces of the virtual object. Figure 7b illustrates this case and it is unclear 
which face normal to choose by looking at a single time step. The HIP could easily be forced 
out of the object in the incorrect direction. To overcome these problems an approach is 
required to keep a contact history of the position of the HIP. The next section discusses 
techniques that, among other advantages, overcome these problems. 
 
 
  
 
 
 
 
 
 
 
 
 
 
   (a)      (b) 
 
Figure 7. a) The Haptic Interface Point can be forced out of the wrong side of thin objects. b) The 
Haptic Interface Point is equidistant to both faces. The algorithm is unable to decide which face is 
intersected first by looking at a single time step. 
 
 
 
The algorithms developed for 3-dof point-based haptic interaction depend on the geometric 
model of the object: 1) surface models and 2) volumetric models. The surface models can be 
also grouped as 1) polygonal surfaces, 2) parametric surfaces, and 3) implicit surfaces. 

Step 1. Step 3.

Step 2. 



 
3.1. Surface Models 
Polygonal surfaces: Virtual objects have been modeled using polygonal models in the field of 
computer graphics for decades due to their simple construction and efficient graphical 
rendering. For similar reasons haptic rendering algorithms were developed for polygonal 
models and triangular meshes in particular. Motivating this work was the ability to directly 
augment the existing visual cues with haptic feedback utilizing the same representations. 
 
The first method to solve the problems of single point haptic rendering for polygonal models 
was developed at the Massachusetts Institute of Technology (MIT) (Zilles and Salisbury, 
1995). The method enabled a contact history to be kept and at the time it was able to provide 
stable force feedback interactions with polygonal models of 616 triangular faces on a 
computer with a 66MHz Pentium processor. A second point known as the “god-object” was 
employed to keep the contact history. It would always be collocated with the HIP if the haptic 
device and the virtual object were infinitely stiff. In practice the god-object and the HIP are 
collocated when the HIP is moving in free space. As the HIP penetrates the virtual objects the 
god-object is constrained to the surface of the virtual object. An approach is subsequently 
required to keep the god-object on the surface of the virtual object as the HIP moves around 
inside. Constraint based approaches that keep a point on the surface sometimes refer to this 
point as the Surface Contact Point, SCP. The position of the god-object can be determined by 
minimizing the energy of a spring between the god-object and the HIP, taking into account 
constraints represented by the faces of the virtual object. By minimizing L in Equation (2) the 
new position can be obtained. The first line of the equation represents the energy in the spring 
and the remaining three lines represent the equations of three constraining planes. The values 
x, y and z are the coordinates of the god-object and xp, yp and zp represent the coordinates of 
the HIP. 
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where,       L = value to be minimized. 

     l1,l2,l3 = Lagrange multipliers 
      A,B,C,D = coefficients for the constraint plane equations. 

 
To efficiently solve this problem a matrix can be constructed and used in Equation (3) to 
obtain the new position of the god-object as given by x, y and z. When there are three 
constraining planes limiting the motion of the god-object the method only requires 65 
multiplications to obtain the new coordinates. The problem is reduced as the number of 
constraint planes is reduced. 
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It was noted by Ruspini et al. (1997) that small numerical inconsistencies can cause gaps in 
polygonal models that enable the god-object to slip into the virtual objects. To overcome this 
the topology of the surface must be reconstructed. To avoid this reconstruction phase a 
strategy similar in style to the previous approach was developed which permitted the 
constrained point to have finite size (Ruspini et al., 1997). The algorithms employed by 
Ruspini et al. were originally developed for the robotics field. The term Virtual Proxy is used 
to refer to the spherical object constrained to the surface of the virtual objects. Its motion is 
akin to the motion of a robot greedily attempting to move towards a goal, in this case the HIP. 
Configuration space obstacles are constructed by wrapping the virtual object by a zone equal 
to the radius of the Virtual Proxy. Doing this enables a single point to be incorporated as the 
haptic probe once more. Lagrange multipliers can then be used as described by Zilles and 
Salisbury (1995) to obtain the new position of the Virtual Proxy.  
 
A more procedural constraint based approach was developed by Ho et al. (1999) for single 
point rendering. They state that it increases the servo-rate, facilitates stable haptic interactions 
and importantly enables the servo rate to be independent of the number of polygons. They 
refer to their constrained point as the Ideal Haptic Interface Point, IHIP, with a force being 
sent to the haptic device based on a spring between the IHIP and HIP. Figure 8 illustrates an 
overview of the algorithm. A two-dimensional slice of a three-dimensional object has been 
included to represent the virtual object. Initially the IHIP and the HIP are set at the same 
position identical to the god-object and Virtual Proxy approaches. At each time step a line 
segment is constructed from the previous HIP, P_HIP, to the current HIP. If there exists an 
intersection point between this line segment and the virtual object, then the IHIP is 
constrained to the closest point to the current HIP on the face nearest to the P_HIP. This is 
depicted in Figure 8b. As the HIP moves the IHIP is tracked over the surface of the mesh by 
choosing the closest feature to the HIP. For efficiency, only those features (edge, vertex, face) 
that bound the current feature are tested, as is depicted in Figures 8c and 8d. When the vector 
from the IHIP to HIP points in the direction of the current feature normal, then there is no 
contact with the surface and the HIP and IHIP are once again collocated. 
 
 
 
 
 
 
 
 
 
 
 
 

(3) 



(a) (b) 

(c) (d) 

Figure 8 a) The HIP and IHIP illustrated moving down towards the top of the two-dimensional slice of 
the virtual object. b) The line segment between the P_HIP and the HIP intersects with the virtual 
objects. The contact face is shown with the dotted line and the IHIP is constrained to the surface. c) 
The IHIP is tracked along the surface of the virtual object. d) The HIP is now closer to a new feature of 
the virtual object and so the contact face is updated. 
 
 
Parametric surfaces: Polygonal representations are perfect for displaying simple objects, 
particularly those with sharp corners, but are limited when it comes to representing highly 
curved objects. In such case a large number of polygons would be required to approximate the 
curved surface, resulting in higher memory requirements. Modeling interactively using these 
models can also be very tedious. To overcome this, parametric surfaces have been used and 
are very important in modeling packages and Computer Aided Design (CAD) packages.  
 
To directly render parametric models without performing a difficult conversion into a 
polygonal representation, haptic rendering algorithms have been developed to allow direct 
interaction with NURBS surfaces. In 1997, at the University of Utah, Thompson et al. (1997) 
developed a technique for the haptic rendering of NURBS surfaces. The motivation was to be 
able to interact with a CAD modeling system using the Sarcos force-reflecting exoskeleton 
arm. The algorithm is broken into two phases. Firstly, the collision detection between the HIP 
and the surfaces is undertaken and secondly they employ a Direct Parametric Tracing 
algorithm to constrain a point to the surface as the HIP is permitted to penetrate the surface. 
The constrained point will be referred to as the Surface Contact Point, SCP. The first stage of 
the collision detection uses bounding boxes encompassing the surfaces to aid in trivial 
rejection. If the HIP is inside the bounding box then the HIP is projected onto the control 
mesh. The parameters (u, v) are defined for each vertex of the control mesh. The (u, v) 
parameters for the projected point can be obtained by interpolating the parameter values at the 
vertices. The distance between the HIP and the point on the surface can then be obtained. The 
Direct Parametric Tracing method tracks the position of the HIP on the surface. As the HIP 
moves it is projected onto the surface tangent plane, tangential to the gradient of the surface at 
the previous location of the SCP. The new SCP and tangent plane are then found by 



parametric projection  using the projected HIP (Thompson et al., 1997). The force returned to 
the device is based on a spring damper model between the HIP and the surface.  

Alternatively, the minimum distance between convex parametric surfaces may be determined 
by formulating a nonlinear control problem and solving it with the design of a switching 
feedback controller (Patoglu and Gillespie, 2004, 2005).  The controller simply has the job of 
stabilizing the integration of the differential kinematics of the error vector that connects two 
candidate points, one drawn from each of two interacting surfaces. The controller manipulates 
the parameters (u, v) and (r, s) of the candidate points until the projections of the error vector 
onto all four surface tangents are driven to zero. With the design of a suitable feedback 
control law, the simulation of the differential kinematics produces an asymptotically 
convergent algorithm. While algorithms based on Newton's Iteration have a limited region of 
attraction, the algorithm built around the control formulation guarantees global uniform 
asymptotic stability, hence dictates that any pair of initial points belonging to the convex 
surface patches will converge to the closest point solution without ever leaving the patches 
(Patoglu and Gillespie, 2005). Global convergence for a narrow phase algorithm greatly 
simplifies the design of a multi-phase algorithm with global convergence. The algorithm may 
be run as the surface patches move, where it becomes a tracking algorithm. Other notable 
features include no requirement for matrix inversion, high computational efficiency, and the 
availability of analytic limits of performance. Together with a top-level switching algorithm 
based on Voronoi diagrams, this closest point algorithm can treat parametric models formed 
by tiling together surface patches (Patoglu and Gillespie, 2005). 

One of the most promising applications of rendering parametric surfaces is in free-form 
design. Free-form surfaces are defined by parametric functions and the conventional methods 
of design using these surfaces require tedious manipulation of control points and careful 
specification of constraints. However, the integration of haptics into free form design 
improves the bandwidth of interactions and shortens the design cycle. Dachille et al. (1999) 
developed a method that permits users to interactively sculpt virtual B-spline objects with 
force feedback. In this approach, point, normal, and curvature constraints can be specified 
interactively and modified naturally using forces. Nowadays, commercial packages based on 
the free-form design concept (FreeForm Concept and FreeForm Modeling Plus from Sensable 
Tech.) offer alternative solutions to the design of jewelry, sport shoes, animation characters, 
and many other products. Using these software solutions and a haptic device, the user can 
carve, sculpt, push, and pull instead of sketching, extruding, revolving, and sweeping as in 
traditional design. 

 
Implicit Surfaces: An early approach for the haptic rendering of implicit surfaces was 
developed by Salisbury and Tarr (1997). Their approach used implicit surfaces defined by 
analytic functions. Later, Kim et al. (2002) developed a technique where an implicit surface is 
constructed that wraps around a geometric model to be graphically rendered. To ensure the 
surface can be accurately felt a virtual contact point is incorporated. This point is constrained 
to the surface as shown in Figure 9.  



 
(a) (b) 

 
Figure 9. Computing the force magnitude, (a) shows an approximate method and (b) illustrates the 
approach by Kim et al. Adapted from Kim et al. (2002) 
 
The method was used for virtual sculpting. The space occupied by the object is divided into a 
three-dimensional grid of boxes, in a similar strategy to the volume rendering techniques that 
will be discussed in the next section. Collision detection using implicit surfaces can be 
performed efficiently, since by using implicit surfaces it is possible to determine whether a 
point is interior, exterior or on the surface by evaluating the implicit function with a point. 
The potential value is determined for each grid point and then it can be used with an 
interpolation scheme to return the appropriate force. The surface normal at each grid point is 
calculated from the gradient of the implicit function. The surface normal for any point can 
then be determined by interpolating the values of the surface normals at the eight neighbors.  
 
The previous two methods permit only one side of the surface to be touched. For many 
applications this is not sufficient, since users often require both sides of a virtual object to be 
touched. Maneewarn et al. (1999) developed a technique using implicit surfaces that enabled 
the user to interact with the exterior and interior of objects. The user's probe is restricted by 
the surface when approached from both sides.  
 
3.2. Volumetric Models 
Volumetric objects constructed from individual voxels can store significantly more 
information than a surface representation. The ability to visualize volume data directly is 
particularly important for medical and scientific applications. There are a variety of 
techniques for visualizing the volume data such as the one proposed by Lacroute and Levoy 
for shearing, warping and compositing two-dimensional image slices (Lacroute and Levoy, 
1994). In contrast, a method termed “splatting” can be used where a circular object can be 
rendered in each voxel (Laur and Hanrahan 1991). Each circular object is aligned to the 
screen and rendered to form the final image. Volume data can also be visualized indirectly by 
extracting a surface representation using methods such as Marching Cubes. Once the surface 
is extracted, haptic interaction can then take place using the surface based methods discussed 
earlier (Eriksson et al. 2005; Körner et al. 1999). However, the process of surface extraction 
introduces a number of problems. As it requires a preprocessing step the user is prevented 
from modifying the data during the simulation and it also can generate a large number of 
polygons. Furthermore, by only considering the surface, it is not possible to incorporate all the 
structures present in a complex volume. To create a complete haptic examination of volume 
data, a direct approach is required. Iwata and Noma (1993) were the first to enable haptic 
feedback in conjunction with volume data using a direct volume rendering approach, which 
they termed Volume Haptization. The approach illustrated ways of mapping 3D vector or 
scalar data to forces and torque. The mapping must determine the forces at interactive rates 
and typically the forces must directly relate to the visualization of the data. This form of direct 



volume rendering is particularly useful for scientific visualization (Lawrence et al. 2000). 
Iwata and Noma used their approach for the haptic interaction of data produced in 
Computational Fluid Dynamics. In this case force could be mapped to the velocity and torque 
mapped to vorticity.  
 
Utilizing Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) as a basis for 
volume rendering enables a three dimensional view of patient specific data to be obtained. 
Enabling the user to interact with the patient data directly is useful for the medical field 
particularly since surgeons commonly examine patients through their sense of touch. Gibson 
(1995) developed a prototype for the haptic exploration of a 3D CT scan of a human hip. The 
CT data is converted to voxels with each voxel incorporating information for both haptic 
rendering and graphical rendering. The human hip is then inserted into an occupancy map, 
detailing where the model is located in the voxel grid. The occupancy map consists of a 
regularly spaced grid of cells. Each cell either contains a null pointer or an address of one of 
the voxels representing an object in the environment. The size of the occupancy map is set to 
encompass the entire virtual environment. The fingertip position controlled by the haptic 
device is represented by a single voxel. Collision detection between the fingertip and the 
voxels representing the human hip are determined by simply comparing the fingertip voxel 
with the occupancy map for the environment.  
 
 
Avila and Sobierajski (1996) developed a technique for the haptic rendering of volume data, 
where the surface normals were obtained analytically. The method works by decomposing the 
object into a three-dimensional grid of voxels. Each voxel contains information such as 
density, stiffness and viscosity. An interpolation function is used to produce a continuous 
scalar field for each property. They present one example of interacting with a set of dendrites 
emanating from a lateral geniculate nucleus cell. The data was obtained by scanning with a 
confocal microscope. The additional functionality was developed to enable the user to 
visualize and interact with the internal structure. Bartz and Guvit (2000) used distance fields 
to enable the direct volume rendering of a segment of an arterial blood vessel derived from 
rotational angiography. The first distance field is generated by first computing a path from a 
given starting voxel to a specified target voxel in the blood vessel. This path is computed 
using Dijkstra’s Algorithm. This creates a distance field which details the cost of traveling to 
the target voxel. A second field is based on the Euclidean distance between each voxel and the 
surface boundary.  A repulsive force can then be rendered based on the distance between the 
haptic probe and the surface. The effects of the two distance fields are controlled using 
constant coefficients. A local gradient at a point can then be obtained using trilinear 
interpolation of the surrounding voxels. The coefficients of the distance fields must be chosen 
carefully to avoid oscillations.  
 
Several researchers have investigated cutting and deforming volumetric data representing 
anatomical structures (Agus et al. 2002; Eriksson et al. 2005; Kusumoto et al. 2006; Petersik 
et al. 2002; Gibson et al. 1997). Gibson et al. (1997) segmented a  series of MRI images by 
hand for the simulation of arthroscopic knee surgery. The deformation of the model was 
calculated using an approach which permits a volume to stretch and contract in accordance to 
set distances (Gibson 1997). The physical properties of the material are also useful for 
sculpting material represented by volume data. Chen and Sun (2002) created a system for 
sculpting both synthetic volume data and data obtained from CT, MRI and Ultrasound 
sources. The direct haptic rendering approach utilized an intermediate representation of the 
volume data (Chen et al. 2000). The intermediate representation approach to haptic rendering 



was inspired from its use in rendering geometric models (Mark et al. 1996). The sculpting 
tools developed by Chen and Sun were treated as volumes allowing each position in the tool 
volume to effect the object volume data. They simulated a variety of sculpting effects 
including melting, burning, peeling and painting. 
 
When interacting with the volume data directly, an approach is required to provide stiff and 
stable contacts in a similar fashion to the rendering achieved with geometric representations. 
This is not easily accomplished when using the techniques based on mapping volume data 
directly to forces and torques. One strategy is to use a proxy constrained by the volume data 
instead of utilizing an intermediate representation as in the previous example (Ikits et al. 
2003; Lundin et al. 2002; Palmerius 2007). Lundin et al. (2002) presented an approach aimed 
at creating natural haptic feedback from density data with solid content (CT scans). To update 
the movements of the proxy point, the vector between the proxy and the HIP was split into 
components: one along the gradient vector (fn) and the other perpendicular to it (ft). The proxy 
could then be moved in small increments along ft.  Material properties such as friction, 
viscosity and surface penetratability could be controlled by varying how the proxy position 
was updated. Palmerius (2007) developed an efficient volume rendering technique to 
encompass a constraint based approach with a numerical solver and importantly a fast 
analytical solver. The proxy position is updated by balancing the virtual coupler force, f

r
, 

against the sum of the forces from the constraints, iF
r

. The constraints are represented by 
points, lines and planes. The balancing is achieved by minimizing the residual term, ε

r
, in the 

following equation: 
 

∑+−=
i

proxyiproxy xFxf )()( rrrrr
ε                                                   (4) 

 
By modifying the effects of the constraints in the above equation different modes of volume 
exploration can take place such as surface-like feedback and 3D friction. Linear combinations 
of the constraint effects can be used to obtain the combined residual term. An analytical 
solver may then be used to balance the equation and hence find the position of the proxy. The 
analytical solver is attempted first for situations where the constraints are orthogonal, 
however, if this fails a numerical solver is utilized. This combination of techniques is 
available in the open source software titled Volume Haptics Toolkit (VHTK).  
 
4. Surface Details: Smoothing, Friction, and Texture  
Haptic simulation of surface details such as friction and texture significantly improves the 
realism of virtual worlds. For example, friction is almost impossible to avoid in real life and 
virtual surfaces without friction feel “icy-smooth” when they are explored with a haptic 
device. Similarly, most surfaces in nature are covered with some type of texture that is sensed 
and distinguished quite well by our tactile system. Haptic texture is a combination of small-
scale variations in surface geometry and its adhesive and frictional characteristics. Oftentimes, 
displaying the detailed geometry of textures is computationally too expensive. As an 
alternative, both friction and texture can be simulated by appropriate perturbations of the 
reaction force vector computed using nominal object geometry and material properties. The 
major difference between the friction and the texture simulation via a haptic device is that the 
friction model creates only forces tangential to the nominal surface in a direction opposite to 
the probe motion, while the texture model can generate both tangential and normal forces in 
any direction (see Figure 10). 

 



 
 
 
 
 
 
 
 
 
 
 
Figure 10. Forces acting on the user (Fuser = Fn + Ft + Ff) during haptic simulation of friction and 
textures. The normal force can be computed using a simple physics-based model such as Hooke’s law 
(Fn = k ∆x, where ∆x is the depth of penetration of the haptic probe into the virtual surface). To 
simulate coulomb friction, we need to create a force (Ff = µFn, where µ is the coefficient of friction) that 
is opposite to the direction of the movement. To simulate texture, we change the magnitude and 
direction of the normal vector (Fn) using the gradient of the texture field at the contact point.  
 
Smoothing: A rapid change in surface normals associated with sharp edges between joining 
surfaces or between faces in a polygonal models causes force discontinuities that may prove 
problematic during haptic rendering. Incorporating techniques to blend between the surface 
normals can alleviate these problems. Without this type of technique high numbers of 
polygons would be required to simulate surfaces with smooth curved areas. Strategies 
analogous to Gourard or Phong shading, used for interpolating normals for lighting, can be 
developed for haptic rendering. The paper by Morgenbesser and Srinivasan (1996) was the 
first to demonstrate the use of force shading for haptic rendering. Using a similar technique to 
Phong shading Salisbury et al. (1995) found that a smooth model could be perceived from a 
coarse three-dimensional model. This is akin to visualizing a smooth three-dimensional object 
using Phong shading when a relatively low number of triangles are used in the underlying 
geometry.  
 
Ruspini et al. (1997) also incorporated a force shading model, which interpolated the normals 
similar to Phong shading. A two pass technique was utilized to modify the position of the 
Virtual Proxy. The first stage computes the closest point, CP, between the HIP and a plane 
that runs through the previous virtual proxy position. The plane's normal is in the same 
direction as the interpolated normal. The second stage proceeds by using the CP as the 
position of the HIP in the usual haptic rendering algorithm described in the previous section. 
They state that the advantages of this method are that it deals with the issue of force shading 
multiple intersecting shaded surfaces and that by modifying the position of the Virtual Proxy 
the solution is more stable. 
 
In some approaches changes in contact information, penetration distance and normals can 
affect the force feedback significantly between successive steps of the haptic update loop. 
These changes can cause large force discontinuities producing undesirable force feedback. 
Gregory et al. (2001) encountered this problem and employed a simple strategy to interpolate 
between two force normals. Their strategy prevents the difference between previous and 
current forces becoming larger than a pre-defined value, Fmax. This simple approach provides 
a means of stabilizing forces. 
 

 
 

if (F1x-F0x) > 2Fmax 
then F1x = F0x – Fmax 

else if (F1x – F0x) > Fmax 
then F1x = (F0x + F1x) / 2 

return F1x 
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The pseudo code given above is used to prevent the new force vector, F1, becoming 
significantly different from the previous force vector, F0. The pseudo code presented 
illustrated how the force smoothing takes place for the x components of the force vectors. 
Similar code is required for the y components and z components. 
 
Friction: In the previous section the methods for computing forces that act to restore the HIP 
to the surface of the virtual object have been discussed. If this force is the only one 
incorporated then the result is a frictionless contact where the sensation perceived is 
analogous to moving an ice-cube along a glassy surface (Salisbury et al., 1995). Achieving 
this is a good result as some good properties with respect to the design of the haptic feedback 
device are exhibited in addition to smooth and stable feedback. However, this interaction is 
not very realistic, in most cases, and can even hinder the interaction as the user slips off 
surfaces accidentally. Several approaches have been developed to simulate both static and 
dynamic friction to alleviate this problem (Salcudean and Vlaar 1994; Salisbury et al., 1995, 
Mark et al., 1996, Ruspini et al., 1997, Kim et al., 2002). By changing the mean value of 
friction coefficient and its variation, more sophisticated frictional surfaces such as periodic 
ones (Ho et al., 1999) and various grades of sandpaper (Green and Salisbury, 1997) can be 
simulated as well. 
 
Salisbury et al. (1995) developed a stick-slip friction model enhancing the feedback from their 
god-object approach. The model utilizes Coulomb friction and records a stiction point. The 
stiction point remains static until an offset between the stiction point and the user's position is 
exceeded. At this stage the stiction point is moved to a new location along a line that connects 
the previous stiction point and the user's position.  Kim et al. (2002) enabled friction to be 
incorporated with their implicit surface rendering technique. By adjusting the position of the 
contact point on the surface a component of force tangential to the surface could be 
integrated. To achieve this, a vector, V, is obtained between the previous and new positions of 
the contact point on the surface. A friction coefficient can be integrated to determine a point, 
P, along V. The surface point that is intersected by a ray emanating from the HIP position 
passing through P is chosen as the new contact point.  
 
At the University of North Carolina, Chapel Hill, Mark et al. (1996) developed a model for 
static and dynamic friction. The surfaces of the objects are populated by snags, which hold the 
position of the user until they push sufficiently to leave the snag. When the probe moves 
further than a certain distance from the centre of the snag the probe is released. While stuck in 
a snag a force tangential to the surface pulls the user to the centre of the snag and when 
released a friction force proportional to the normal force is applied. It is easily envisaged that 
this technique is appropriate for representing surface texture by varying the distribution of the 
snags. Surface texture will be described in the next section. 

 
Texture: Haptic perception and display of textures in virtual environments require a thorough 
investigation, primarily because the textures in nature come in various forms. Luckily, 
graphics texturing has been studied extensively and we can draw from that experience to 
simulate haptic textures in virtual environments. There exists a strong correlation between the 
friction of a surface and its surface roughness, or texture. However, texture enriches the user’s 
perception of a surface to a higher extent than friction, as extra details about the surface can 
be perceived. Integrating texture into haptic rendering algorithms presents more information, 



to the user, about the virtual object than applying images to the surface of objects for 
graphical rendering, using texture mapping. Surface texture is important when humans 
interact with objects and therefore it is important for the haptic rendering of virtual objects. 
Many researchers have investigated the psychophysics of tactile texture perception. Klatzky et 
al. (2003) investigate haptic textures perceived through the bare finger and through a rigid 
probe. Choi and Tan (2004) investigated the perceived instabilities in haptic texture rendering 
and concluded that the instabilities may come from many sources including the traditional 
control instability of haptic interfaces as well as inaccurate modeling of environment 
dynamics, and the difference in sensitivity to force and position changes of the human 
somatosensory system. Minsky et al. (1990) developed a simulation to represent the 
roughness of varying degrees of sandpaper. Users were then asked to order the pieces of 
simulated sandpaper according to their roughness. A texture depth map was created, utilized 
by the haptic device by pulling the user's hand into low regions and away from high regions. 
A strategy similar to that of bump mapping objects, utilized in graphical rendering, was 
employed by Ho et al. (1999). For graphical texture mapping, techniques have been 
developed to enable statistical approaches to the generation of textures (Siira and Pai, 1996; 
Fritz and Barner, 1996; Basdogan et al., 1997). Fritz and Barner (1996) developed two 
methods for rendering stochastic based haptic textures. The lattice texture approach works by 
constructing a 2D or 3D grid where a force is associated to each point. The second method 
labeled local space approach also uses a lattice defined in the texture space coordinate system. 
In this case the forces are determined for the centers of the grid cells. For implicit surfaces 
Kim et al. (2002) enabled Gaussian noise and texture patterns to directly alter the potential 
values stored in the points forming three-dimensional grids. The three-dimensional grids 
encompass the virtual objects. The adaptation could be incorporated without increasing the 
overall complexity of the haptic rendering algorithm. Fractals are also appropriate for 
modeling natural textures since many objects seem to exhibit self-similarity Ho et al. (1999) 
have used the fractal concept in combination with the other texturing functions such as 
Fourier series and pink noise in various frequency and amplitude scales to generate more 
sophisticated surface details. 
 
Recently haptic texturing has also been employed between two polygonal models. This 
approach can be applied to the haptic rendering techniques for object-object interactions. 
Otaduy et al. (2004) developed a technique to estimate the penetration depth between two 
objects described by low resolution geometric representations and haptic textures created 
from images that encapsulate the surface properties. 
 
 
5. Summary and Future 
The goal of 3-dof haptic rendering is to develop software algorithms that enable a user to 
touch, feel, and manipulate objects in virtual environments through a haptic interface. 3-dof 
haptic rendering views the haptic cursor as a point in computing point-object interaction 
forces. However, this does not restrict us to simulate tool-object or multi-finger interactions. 
For example, a 3D tool interacting with a 3D object can be modeled as dense cloud of points 
around the contact region to simulate tool-object interactions. Many of the point-based 
rendering algorithms have been already incorporated into commercial software products such as 
the Reachin API1, GHOST SDK, and OpenHaptics2. Using these algorithms, real-time haptic 
display of shapes, textures, and friction of rigid and deformable objects has been achieved. 
Haptic rendering of dynamics of rigid objects, and to a lesser extent, linear dynamics of 
                                                 
1 http://www.reachin.se 
2 http://www.sensable.com 



deformable objects has also been accomplished. Methods for recording and playing back 
haptic stimuli as well as algorithms for haptic interactions between multiple users in shared 
virtual environments are emerging. 
 
In the future, the capabilities of haptic interface devices are expected to improve primarily in 
two ways: (1) improvements in both desktop and wearable interface devices in terms of 
factors such as inertia, friction, workspace volume, resolution, force range, and bandwidth; (2) 
development of tactile displays to simulate direct contact with objects, including temperature 
patterns. These are expected to result in multifinger, multihand, and even whole body 
displays, with heterogeneous devices connected across networks. Even with the current rapid 
expansion of the capabilities of affordable computers, the needs of haptic rendering with more 
complex interface devices will continue to stretch computational resources. Currently, even 
with point-based rendering, the computational complexity of simulating the nonlinear 
dynamics of physical contact between an organ and a surgical tool as well as surrounding 
tissues is very high (see the review in Basdogan et al., 2004). Thus there will be continued 
demand for efficient algorithms, especially when the haptic display needs to be synchronized 
with the display of visual, auditory, and other modalities. Similar to graphics accelerator cards 
used today, it is quite likely that much of the repetitive computations will need to be done 
through specialized electronic hardware perhaps through parallel processing. Given all the 
complexity and need for efficiency, in any given application the central question will be how 
good does the simulation need to be to achieve a desired goal. 
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