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Abstract. We prove existence of a global attractor of the semigroup, generated by the
initial boundary value problem for the 3D singularly perturbed viscous Cahn - Hilliard
equation , when the corresponding nonlinear term may grow as a fifth order polynomial.

1. Introduction

In a bounded domain Ω ⊂ R3 with a sufficiently smooth boundary ∂Ω, we consider the
following singularly perturbed Cahn - Hilliard equation:{

ε∂2
t u− γ∆x∂tu+ α∂tu+∆x(∆xu− f(u) + g) = 0

u
∣∣
∂Ω

= ∆xu
∣∣
∂Ω

= 0, u
∣∣
t=0

= u0, ∂tu
∣∣
t=0

= u′
0.

(1.1)

Here u = u(t, x) is an unknown function, ∆x is a Laplacian with respect to the variable x,
ε > 0, γ > 0 and α ≥ 0 are given parameters where ε is assumed to be small, g ∈ L2(Ω)
is a given external force, and f ∈ C1(R1,R1) is a given nonlinearity.

The equation (1.1) models various processes in viscoelasticity, hydrodynamics and phase
transitions problems for different type of nonlinearities f(u) (see e.g. [4],[5]).

Existence of a global attractor for the semigroup generated by the 1D problem (1.1) for
the nonlinear term f(u) = u3 − λu in the phase space H1

0 ×H−1 is established in [3],[16].
The existence of an inertial manifold for the 1D problem (1.1) is established in [13], when
nonlinear term satisfies the dissipativity conditions (1.3). In [6] it is shown that the 3D
problem (1.1) has a global attractor for the nonlinear term f(u) satisfying the growth con-

dition |f ′′(u) ≤ C(1+|u|), ∀u ∈ R and the dissipativity condition lim inf |u|→∞
f(u)
u

> −λ1.
The main result obtained in this note can be considered as a development of the result
on the attractor obtained in [6].

We assume that f satisfies the following growth

|f ′(u)| ≤ C(1 + |u|4), ∀u ∈ R, (1.2)

and dissipativity assumptions

1) f(u) · u ≥ −C, 2) f ′(u) ≥ −K, ∀u ∈ R, (1.3)

where C and K are some fixed constants.
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Let us denote by P the inverse of the operator −∆x under the homogeneous Dirichlet
boundary condition.

It is convenient to apply the operator P to both sides of the equation (1.1) and rewrite
the problem (1.1) in the following equivalent form:{

P∂2
t u+ γ∂tu+ αP∂tu−∆xu+ f(u) = g,

u
∣∣
∂Ω

= 0, u
∣∣
t=0

= u0, ∂tu
∣∣
t=0

= u′
0.

(1.4)

As usual, we consider the equation (1.4) in the energy phase space Eε := H1
0 (Ω)×H−1(Ω)

endowed by the following norm:

∥ξu(t)∥2Eε := ε∥∂tu(t)∥2−1 + ∥u(t)∥21, ξu(t) := {u(t), ∂tu(t)}. (1.5)

Here and in what follows ∥ · ∥ and (·, ·) will denote the norm and the scalar product in

L2(Ω), ∥u∥−1 := ∥P 1
2u∥ and ∥u∥1 := ∥∇xu∥.

Throughout this paper, the same letter C denotes a generic constant which do not depend
on data and parameters ϵ, α.

Definition 1.1. A function ξu(t) := {u(t), ∂tu(t)} is called a solution of the problem (1.1)
if

1. ξu ∈ C([0, T ], Eε), 2. ∂tu ∈ L2([0, T ], L2(Ω)), 3. u ∈ L2([0, T ], H2(Ω)) (1.6)

for every T > 0 and the equation (1.1) is satisfied in the sense of distributions.

Recall now that, due to the standard embedding theorem for the anisotropic Sobolev
spaces, see e.g. [11], the assumption (1.6) implies that

u ∈ L10(GT ), where GT := (0, T )× Ω,

and, consequently, due to the growth restriction (1.2),

f(u) ∈ L2(GT ). (1.7)

(exactly this embedding defines the critical exponent 4 in the growth restriction (1.2)).
Furthermore, from equation (1.4) we conclude that P∂2

t u ∈ L2(GT ) and equation (1.4)
can be considered as equality in L2(GT ).

Notice that the required assumptions 1) and 2) of (1.6) in our definition of an energy
solution are standard for the theory of semi-linear hyperbolic equation and are motivated
by the usual energy estimate for solutions of (1.1) (which can be obtained by multiplica-
tion of (1.4) by ∂tu and integrating over (0, T ) × Ω, see [1, 10, 15]). However, the third
assumption is typical for the theory of parabolic equations and reflects the fact that the
problem (1.1) is parabolic for γ > 0 (and can be rewritten as a semi-linear system of
parabolic equations, see Remark 2.5 below). Moreover, exactly that parabolic nature of
the problem (somehow overpassed in [6]) allows to shift the limit growth exponent from
n

n−2
= 2 (standard hyperbolic critical exponent) till n+2

n−2
= 4 (usual parabolic one) in the

growth assumption (1.2).

The main result of the paper is the following theorem about the existence of a global
attractor, that is of a compact set which is invariant and attracts uniformly each bounded
set of the phase space.
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Theorem 1.2. Let the above assumptions hold. Then, for every ε > 0, problem (1.1) is
globally well-posed in the phase space Eε and generates a dissipative semigroup Sε(t) in
that space which possesses a global attractor Aε there.
Moreover, the above global attractor is uniformly bounded in the space H2(Ω)× L2(Ω)

as ε → 0.

2. Proof of the main result

We start from verifying the basic dissipative estimate for solutions of the problem (1.1).

2.1. Hyperbolic dissipative estimate. Let us multiply the equation (1.4) by ∂tu(t)
and integrate over Ω. Then, after the integration by parts and standard transformations,
we obtain the so-called energy equality

1/2
d

dt

(
∥ξu(t)∥2Eε + (F (u(t)), 1)L2 − 2(g, u)

)
+ γ∥∂tu(t)∥2 + α∥∂tu(t)∥2−1 = 0, (2.1)

where F (u) :=
∫ u

0
f(v) dv (in contrast to the situation with damped wave equations, all of

the terms in the equation (1.4) belong to L2(GT ), see (1.7), and ∂tu also belongs to L2(GT ).
Thus, the scalar product of (1.4) is well-defined and not any additional justification is
necessary).

At the next step, we multiply equation (1.4) by u and integrate over Ω and obtain

1/2
d

dt

(
2ε(P∂tu, u) + γ∥u∥2 + α∥u∥2−1

)
+ ∥u∥21 + (f(u), u) = (g, u). (2.2)

Multiplying the equation (2.2) by some sufficiently small number δ which will be specified
below, taking a sum with equation (2.1) and using the first dissipativity assumption of
(1.3), we arrive at

d

dt
Eε(ξu(t)) + δ1(∥∂tu(t)∥2 + ∥u(t)∥21) ≤ Cδ(1 + ∥g∥2) (2.3)

with

Eε(ξu) := ∥ξu∥2Eε + (F (u), 1)− 2(g, u) + 2δε(P∂tu, u) + γδ∥u∥2 + αδ∥u∥2−1 (2.4)

and δ1 := min{γ, δ}. Using again the first dissipativity assumption of (1.3), we infer that

F (u) ≥ −C1(|u|+ 1)

for some constant C1 independent of u. Applying that estimate to (2.4), we see that, for
sufficiently small δ (uniformly with respect to ε → 0), the following coercivity estimate
holds:

Eε(ξu) ≥ 1/2∥ξu∥2Eε − C(∥g∥2 + 1) (2.5)

where C is also uniform with respect to ε → 0. On the other hand, using the growth
restriction (1.2) together with the embedding H1 ⊂ L6, we see that

Eε(ξu) ≤ C(1 + ∥ξu∥2Eε)
3 (2.6)

where the constant C is uniform with respect to ε → 0. Thus, we can rewrite the
inequality (2.3) in the form

d

dt
Eε(ξu(t)) + δ2∥ξu(t)∥2Eε ≤ C(1 + ∥g∥2). (2.7)
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Then, the Gronwal-like estimate (see e.g. [2]) applied to the inequality (2.7) gives the
required dissipative estimate

∥ξu(t)∥2Eε ≤ Q(∥ξu(0)∥Eε)e−αt +Q(∥g∥) (2.8)

for some positive constant α and monotone function Q which are uniform with respect
to ε → 0. Finally, integrating the inequality (2.3) over [T, T + 1] and using the proven
estimate (2.8), we deduce that∫ T+1

T

∥∂tu(t)∥2 dt ≤ Q(∥ξu(0)∥Eε)e−αT +Q(∥g∥), (2.9)

where Q is also uniform with respect to ε → 0. Thus, the ”hyperbolic” dissipative
estimates are obtained.

2.2. Parabolic dissipative estimate. Exploiting now the parabolic nature of equation
(1.4), we multiply it by −∆xu and integrate over Ω. Then, after integration by parts, we
have

1/2
d

dt

(
2ε(∂tu, u) + γ∥u∥21 + α∥u∥2

)
+∥∆xu∥2+(f ′(u)∇xu,∇xu) = ∥∂tu∥2−(g,∆xu).

(2.10)

Integrating this equality with respect to t ∈ [T, T + 1] and using the quasi-monotonicity
assumption 2) of (1.3) together with the proven estimates (2.8) and (2.9), one can easily
deduce that ∫ T+1

T

∥∆xu(t)∥2 dt ≤ Q(∥ξu(0)∥Eε)e−αT +Q(∥g∥), (2.11)

where Q and α are also uniform with respect to ε → 0. Thus, we have proven the following
result.

Lemma 2.1. Let the above assumptions hold and let ξu(t) := (u(t), ∂tu(t)) be a solution
of the equation (1.1) satisfying (1.6). Then, the following estimate holds:

∥ξu(T )∥2Eε +
∫ T+1

T

∥∂tu(t)∥2 + ∥∆xu(t)∥2 dt ≤ Q(∥ξu(0)∥Eε)e−αT +Q(∥g∥), (2.12)

where the positive constant α and the monotone function Q are uniform with respect to
ε → 0.

Indeed, the assertion of the lemma is an immediate corollary of estimates (2.8), (2.9)
and (2.11).

Remark 2.2. The quasi-monotonicity assumption f ′(u) ≥ −K, ∀u ∈ is not necessary
in the case of subcritical growth rate

|f ′(u)| ≤ C(1 + |u|4−r), ∀u ∈ , r > 0.

Indeed, using the standard interpolation inequality

∥u∥5L10 ≤ C∥u∥41∥∆xu∥ (2.13)

together with the subcritical growth restriction we can estimate the L2-norm of f(u) as
follows:

∥f(u)∥2 ≤ Cµ + µ∥u∥10L10 ≤ Cµ + µ∥u∥81∥∆xu∥2,
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where µ > 0 is arbitrary. In particular, scaling ν = µ/∥u∥81, we have

∥f(u)∥2 ≤ Qν(∥u∥1) + ν∥∆xu∥2, (2.14)

where ν > 0 is again arbitrarily small.
Since the H1-norm of u is under the control due to (2.8), this inequality allows indeed

to estimate the term (f(u),∆xu) without integration by parts and without employing the
quasi-monotonicity assumption.

Unfortunately, in the critical case r = 0, we cannot obtain (2.14) with small ν and
the quasi-monotonicity assumption seems unavoidable. Since, from our point of view,
the possibility to treat the critical case is much more important than the relaxation
of the quasi-monotonicity assumption, we have formulated our main result under the
dissipativity assumptions (1.3).

2.3. Uniqueness and existence of a semigroup. Let u1(t) and u2(t) be two solutions
of the problem (1.1) satisfying (1.6) and let ū(t) := u1(t) − u2(t). Then, this function
solves

εP∂2
t ū+ γ∂tū+ α∂tū−∆xū = −[f(u2)− f(u1)]. (2.15)

Multiplying this equation by ∂tū and arguing as in (2.1), we deduce that

d

dt
∥ξū(t)∥2Eε + γ∥∂tū(t)∥2 ≤ C∥f(u1(t))− f(u2(t))∥2, (2.16)

where the constant C depends only on γ. Thus, we only need to estimate the term in
the right-hand side. To this end, using Hölder inequality and the embedding H1 ⊂ L6

together with the growth restriction (1.2), we infer

∥f(u1)− f(u2)∥2 ≤ C(1 + ∥u1∥8L12 + ∥u2∥8L12)∥ū∥2L6 ≤
≤ C1(1 + ∥u1∥8L12 + ∥u2∥8L12)∥ū∥21 := Hu1,u2(t)∥ū∥21 ≤ Hu1,u2(t)∥ξū(t)∥2Eε . (2.17)

Using now the proper interpolation inequality:

∥u∥8L12 ≤ C∥u∥61∥∆xu∥2 (2.18)

together with the control (2.12) of the C([0, T ], H1) and L2([0, T ], H2) norms of solutions
u1 and u2, we deduce that∫ T

0

Hu1,u2(t) dt ≤ Q(∥ξu1(0)∥Eε + ∥ξu2(0)∥Eε)(T + 1), (2.19)

where the function Q is independent of ε → 0 and T ≥ 0. Thus, inserting estimate (2.17)
into the right-hand side of (2.16), applying the Gronwall’s inequality and using the control
(2.19), we infer the following Lipschitz continuity:

∥ξu1(t)− ξu2(t)∥Eε ≤ CeKt∥ξu1(0)− ξu2(0)∥Eε , (2.20)

where the constants C and K depend on the norms of ξui
(0), but are independent of

ε → 0. Thus, the uniqueness is verified. The existence of a solution can be verified in a
standard way, using e.g. the Galerkin approximation method, see e.g. [1].

Therefore, the problem (1.1) is indeed globally well-posed in the phase space Eε and
defines a bounded dissipative semigroup Sε(t) in it via the standard expression

Sε(t)ξ0 := ξu(t), ξu solves (1.1) with ξu(0) = ξ0. (2.21)
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Thus, for proving the main Theorem 1.2, we only need to verify the existence of a global
attractor Aε for that semigroup and obtain its uniform bounds as ε → 0. As usual, in
order to do so, we need to study the smoothing properties of system (1.1).

2.4. Smoothing property and absorbing sets. Let us multiply the equation (1.4)
by −t∂t∆xu and integrate over Ω. Then, after the integration by parts and obvious
transformations, we get

d

dt

(
t∥ξu∥2E1

ε
+ t(g,∆xu)

)
+

+ γt∥∂t∇xu∥2 ≤ Ct∥f ′(u)∇xu∥2 + ε∥∂tu∥2 + ∥∆xu∥2 + (g,∆xu), (2.22)

where ∥ξu∥2E1
ε
:= ε∥∂tu∥2 + ∥∆xu∥2. Thus, keeping in mind the control (2.12), we see that

we only need to estimate the first term in the right-hand side of (2.22). To this end,
arguing analogously to (2.17) and using the growth restriction (1.2), we deduce

∥f ′(u)∇xu∥2 ≤ ∥f ′(u)∥2L3∥∇xu∥2L6 ≤
≤ C(1 + ∥u∥L12)8∥u∥2H2 := Hu(t)∥∆xu∥2 ≤ Hu(t)∥ξu∥2E1

ε
, (2.23)

where, due to the interpolation inequality (2.18) and the control (2.12), the function
Hu(t) := C(1 + ∥u(t)∥8L12) satisfies∫ 1

0

Hu(t) dt ≤ Q(∥ξu(0)∥Eε) +Q(∥g∥), t ∈ [0, 1] (2.24)

Inserting now estimate (2.23) into the right-hand side of (2.22), integrating it by t and
using the Gronwall’s inequality together with the control (2.24), we get

∥ξu(t)∥2E1
ε
≤ C

t
(Q(∥ξu(0)∥Eε) +Q(∥g∥)) , t ∈ (0, 1], (2.25)

where the monotone function Q is uniform with respect to ε → 0. Thus, we have proven
the following result.

Lemma 2.3. Let the above assumptions hold. Then, the following estimate holds for
every solution u(t) of the problem (1.1):

∥ξu(T )∥2E1
ε
+

∫ T+1

T

∥∂tu(t)∥21 dt ≤
T + 1

T

(
Q(∥ξu(0)∥Eε)e−αT +Q(∥g∥)

)
, (2.26)

where the positive constant α and monotone function Q are independent of ε → 0.

Indeed, estimate (2.26) is an immediate corollary of estimates (2.25) and (2.8).
The smoothing estimate (2.26) guarantees the existence of a compact absorbing set for
the semigroup Sε(t) which is sufficient to obtain the existence of its global attractor Aε.
However, it is not sufficient for obtaining the uniform bounds for Aε as ε → 0. In order
to overcome this difficulty, we need one more smoothing estimate.

Lemma 2.4. Let the above assumptions hold. Then, the following estimate holds for
every solution u(t) of problem (1.1):

∥∂tu(T )∥2 + ε

∫ T+1

T

∥∂2
t u(t)∥2−1 dt ≤

T + 1

T

(
Q(∥ξu(0)∥Eε)e−αT +Q(∥g∥)

)
, (2.27)
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where the positive constant α and monotone function Q are independent of ε → 0.

Proof. Multiplying equation (1.4) by t∂2
t u and integrating over Ω, we will have

d

dt

(
γt∥∂tu∥2L2 + αt∥∂tu∥2−1 − 2t(∂tu,∆xu) + 2t(∂tu, f(u))− 2t(g, ∂tu)

)
+

+ 2tε∥∂2
t u∥2−1 = 2t∥∂t∇xu∥2 + 2t(f ′(u)∂tu, ∂tu) + γ∥∂tu∥2+

+ α∥∂tu∥2−1 − 2(∂tu,∆xu) + 2t(∂tu, f(u))− 2(g, ∂tu). (2.28)

Analogously to (2.23), we can estimate the term with f ′(u) as follows:

|(f ′(u)∂tu, ∂tu)| ≤ ∥f ′(u)∥L3∥∂tu∥∥∂tu∥L6 ≤
≤ C(1 + ∥u∥L12)4∥∂tu∥∥∇x∂tu∥L6 ≤ Hu(t)∥∂tu∥2 + C∥∂t∇xu∥2 (2.29)

Moreover, due to the dissipative estimate (2.8),the smoothing property (2.26), the inter-
polation inequality (2.13) and growth restriction (1.2), for 0 < t ≤ 1, we have

t∥f(u(t))∥2 ≤ Ct(1 + ∥u∥L10)10 ≤
≤ C1(1 + ∥u∥H1)8[t∥∆xu(t)∥2] ≤ Q(∥ξu(0)∥Eε) +Q(∥g∥). (2.30)

Integrating now the equation (2.28) over [0, t], t ≤ 1 and using the estimates (2.29) and
(2.30) together with the controls (2.12) and (2.26), we infer

t∥∂tu(t)∥2 +
∫ t

0

εs∥∂2
t u(s)∥2−1 ds ≤

≤
∫ t

0

Hu(s)s∥∂tu(s)∥2 ds+Q(∥ξu(0)∥2Eε) +Q(∥g∥), (2.31)

where the function Hu(t) satisfies the inequality (2.24) and t ≤ 1. Applying finally the
Gronwall’s inequality to (2.31), we get

t∥∂tu(t)∥2 + ε

∫ 1

0

s∥∂2
t u(s)∥2−1 ds ≤ Q(∥ξu(0)∥Eε) +Q(∥g∥), t ∈ (0, 1] (2.32)

which together with the dissipative bounds (2.8) give the required estimate (2.27) and
finishes the proof of the lemma. □

Remark 2.5. We see that equation (1.1) possesses smoothing estimates (2.26) and (2.27)
which are typical for second order parabolic equations. This analogy is not surprising since
this equation can be easily transformed to a semi-linear second order parabolic system.
Indeed, introducing a new variable v(t) := −P∂tu(t), we get{

∂tu = ∆xv,

ε∂tv = γ∆xv − αv −∆xu+ f(u)− g.
(2.33)

Or rewriting it in a vector form

∂t

(
u
v

)
= Aε∆x

(
u
v

)
+

(
0

−αv + f(u)− g

)
, Aε :=

(
0 ; 1
−1

ε
; γ

ε

)
. (2.34)
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Since the eigenvalues λ1,2 =
γ±
√

γ2−4ε

2ε
of the matrix Aε are strictly positive, the obtained

system (2.34) is indeed uniformly parabolic. In particular, this means that, in contrast
to the case of hyperbolic equations, we have not only the maximal regularity estimates in
L2(Ω) deduced above, but also the Lp-maximal regularity estimates for every 1 < p < ∞,
see e.g. [11].

2.5. Attractors and concluding remarks. Estimates (2.26) and (2.27) show that the
R-ball BR of the space H2(Ω)× L2(Ω) will be the absorbing set for the semigroup Sε(t)
generated by the problem (1.1) if R is large enough. Moreover, this R is uniform with
respect to ε → 0. Due to (2.20), the semigroup Sε(t) is Lipschitz continuous in Eε and
due to the Lemma 2.3 it is a compact semigroup in Eε. Therefore the standard global
attractor’s existence theorem (see e.g.,[1]) implies existence of a global attractor Aε to-
gether with the embedding Aε ⊂ BR and finishes the proof of Theorem 1.2.

Remark 2.6. It follows from eqref1.ene that the problem (1.1) possesses a Lyapunov
functional

L(u) := ε∥∂tu(t)∥2−1 + ∥u(t)∥21 + (F (u(t)), 1)− 2(g, u).

Hence the global attractor Aε consists of the finitely may stationary solutions of the
problem (1.1) and trajectories joining them (see for instance [10]).

Remark 2.7. By using the concavity method (see [12],[9]) one can show that if the
nonlinear term f satisfies the conditions

kF (u)− f(u)u ≤ C, ∀u ∈ R,
with some k > 2 and C ≥ 0, then for a wide class of initial data the corresponding
solutions of the problem (1.1) blow up in a finite time.

The paper was completed in 2008 and was not published, because we learned that the re-
sult on exitence of an exponential attractor for seingularly perturbed viscous cahn-Hilliard
equation was had been published in [A] :

[A] A.Bonfoh, Existence and continuity of uniform exponential attractors for a singular
perturbation of a generalized Cahn-Hilliard equation, Asymptot. Anal.43 (2005)233-247.
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